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OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY
s-CONVEX FUNCTIONS

IMDAT ISCAN

ABSTRACT. The author introduces the concept of harmonically s-convex func-
tions and establishes some Ostrowski type inequalities and a variant of Hermite-
Hadamard inequality for these classes of functions.

1. INTRODUCTION

Let f: I— R, where I C R is an interval, be a mapping differentiable in I° (the
interior of I) and let a,b € I° with a < b. If | f'(x)| < M, for all z € [a, b], then the
following inequality holds
(1.1)

<Mb-a)|-+

4 (b-a)

for all z € [a,b]. This inequality is known in the literature as the Ostrowski in-
equality (see [13]), which gives an upper bound for the approximation of the inte-

b — atb)?
O AL 1 ()]

gral average ;- f: f(t)dt by the value f(x) at point x € [a,b]. For some results
which generalize, improve and extend the inequalities(1.1) we refer the reader to
the recent papers (see [2, 12] ).

In [7], Hudzik and Maligranda considered the following class of functions:

Definition 1.1. A function f : I C Ry — R where Ry = [0,00), is said to be
s-convex in the second sense if

flax + By) <o f(x) + B°f(y)

for all z,y € I and «, 8 > 0 with «+ 3 = 1 and s fixed in (0, 1]. They denoted this
by K?2.

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of
functions defined on [0, 00).
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In [5], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequal-
ity which holds for the s-convex functions.

Theorem 1.1. Suppose that f : Ry —R. is an s-convex function in the second
sense, where s € [0,1) and let a,b € [0,00), a <b. If f € L][a,b], then the following
inequalities hold

b
_ a+b 1 fla) + f(b)
1.2 251 < L
(12) f( 2 )—b—a/f(x)dx— s+ 1
the constant k = SJ%I is the best possible in the second inequality in (1.2).

The above inequalities are sharp. For some recent results and generalizations
concerning s-convex functions see [3, 4, 5, 6, 8, 10, 11].

In [9], the author gave harmonically convex and established Hermite-Hadamard’s
inequality for harmonically convex functions as follows:

Definition 1.2. Let I C R\ {0} be a real interval. A function f : I — R is said to
be harmonically convex, if

(1) Moy, ) <t +a-of@

for all z,y € I and ¢ € [0,1]. If the inequality in (1.3) is reversed, then f is said to
be harmonically concave.

Theorem 1.2. Let f : I C R\ {0} — R be a harmonically convex function and
a,b € T with a <b. If f € Lla,b] then the following inequalities hold

b
2ab ab T a b
» P2 < [y o S0 S0

a
The above inequalities are sharp.
The goal of this paper is to introduce the concept of the harmonically s-convex
functions, obtain the similar the inequalities (1.4) for harmonically s-convex func-

tions and establish some new inequalities of Ostrowski type for harmonically s-
convex functions.

2. MAIN RESULTS

Definition 2.1. Let I C (0,00) be an real interval. A function f: I — R is said
to be harmonically s-convex (concave), if

xy S S
2.1 — | < (> 1-t¢
2.) Haris) <@+ -0
for all z,y € I | ¢t € [0,1] and for some fixed s € (0, 1].

Proposition 2.1. Let I C (0,00) be an real interval and f : I — R is a function,
then ;

(1) if fis s-convex and nondecreasing function then f is harmonically s-convez.
(2) if f is harmonically s-conver and nonincreasing function then f is s-convet.
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Proof. Since f: (0,00) = R, f(z) =z, harmonically convex function, we have

Y <ty+ (-t
y

(2:2) te+ (1 —1)

for all z,y € (0,00) , t € [0,1]. The proposition (1) and (2) is easily obtained from
the inequality (2.2). O

Example 2.1. Let s € (0,1] and f: (0,1] — (0,1], f(z) = 2*. Since f is s-convex
(see [7]) and nondecreasing function, f is harmonically s—convex.

Proposition 2.2. Let s € (0,1], f : [a,b] C (0,00) = R be a function and g :
[a,b] = [a,b], g(z) = aﬁim. Then f is harmonically s-convex on [a,b] if and only
if fog is s-convex on [a,b].

Proof. Since

ab
2' 1 —_ = —
(2.3 (og)ta+ @ -00 =1 (=)
for all ¢ € [0,1]. The proof is obvious from equality (2.3). O

The following result of the Hermite-Hadamard type holds.

Theorem 2.1. Let f : I C (0,00) — R be an harmonically s-convex function,
s €(0,1] and a,b € I with a <b. If f € L]a,b] then the following inequalities hold:

a+b

b

Proof. Since f : I — R is an harmonically s-convex function, we have, for all
x,y € I (with ¢ = % in the inequality (2.1) )

F <x2iyy> < f(y);f(w)

Choosing x = we get

ab _ ab
tar(1—00° ¥ = r(—va’

f( 2ab ) - f (tb+ﬁl:t)a) +f (ta+zllbft)b)

a+b 25

Further, integrating for ¢ € [0, 1], we have

1

e () =z / (i) = [ (i)

0

b
Since each of the integrals is equal to bafb f 1) dx, we obtain the left-hand side of

a z2

the inequality (2.4) from (2.5).
The proof of the second inequality follows by using (2.1) with z = a and y = b
and integrating with respect to ¢ over [0, 1]. O

In order to prove our main theorems, we need the following lemmas:
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Lemma 2.1. Let f : I C R\ {0} — R be a differentiable function on I° and a,b € I
with a < b. If f' € Lla,b] then

W [,

b—a u?
a

1
o 2 , axr
- b { / (ta+ (1 —t)x 2f (ta+(1—t)w)dt

0

1
2 , bx
/ (th+ (1 —t)x 2f (tb+(1—t)$>dt}

0

fx) =

Proof. Integrating by part and changing variables of integration yields

1
0)? , az
b { / (ta+ (1 —t)z 2f (ta—i—(l—t)x)dt

0

1
bx
— 2 !
(b-2) /tb+ 1—t)z f<fb+(1—t)$>dt}
0

_ x(bl_a) -b(x_a)o/ltdf (M) O/ltdf (tb+ (1—t)x )]
- _b(x_a){tf (M) :—Oflf<m+<a1z—t>x> dtH

1 bx
Jrx(b—oz) [a(bx) {tf <tb—|— (1 —t)x>

;Oflf(mﬁx—wdt}}

O

Theorem 2.2. Let f: 1 C (0,00) — R be a differentiable function on I°, a,b € I°
with a < b, and f' € Lla,b]. If |f'|* is harmonically s- convezx on [a,b] for ¢ > 1,
then for all x € [a,b], we have

(2.6) flz) - bciba fz(ﬂ) du
< 2P @) (ulan 5,00 1 @F 4 dol(,5,0.0) 7 @)

+ (0= 2)” (0,25, 0.0) 1f @)+ Ma(b,2,5,0,0) | (0)]) 7}
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where

+s+1,1 a
Ai(a,z, 5,9, p) = %-25 (2197P+5+1§P+5+2§1—;)7

B(p +11)

Xo(a,z, 8,9, p) = 2F1<219 p+1p+s+21—7)
T

B,p+s+1)
20

s+1,p+1
)\4(b71'78719,p) = %

B is Fuler Beta function defined by

>\3(b7xa37197p): -2F1 (219,1,,0"‘84‘2,1—%)’

2Fy (20,5 +Lip+s+21- 7).,

B(x,y) = L =Y dt, @,y >0,

O\H

and o F is hypergeometric function defined by
1

oFy (a,b;¢;2) = bc—b /t — )T A —2t) " dt, ¢ > b >0, |2 < 1 (see [1]).
0

Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of | f'|* on [a, b],we have

b
ab [ f(u)
7b—a/ u? du
1
0)? , ax
= b { o/ta+ 1—1t) ) f<ta+(1—t)a:>’dt
, bx
z |/ (tb—l—(l—t)x)‘dt}

1

=
(th+ (1 —t)x

0

q

A

1
abx—a
2. 1
en < 2= /dt
0
1 q

N oo @ 0 @

0
2 [ 1 -
Lablb— ) (/ 1dt>
b—a
0

1 t4 . . o ; 7
X(!Wl[t |f @)+ Q=) |f (b)l]dt) 7

Q|-
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where an easy calculation gives
(2.8)
1

/ tats dt_ﬁ(q+s+1,l)
(ta+ (1 — t)x)* r24

a
2F (2q,q+s+1;q+8+2;1—5),
0

1

/ s Bl,g+s+1)

X
-dt = .F(2,1; n +2;1—7),
Otb+1—t) b2a 21\ 2q, L, g T s b

~ Blg+1,5+1)
— )’ a2

a
WP (2q,q+1;s+q+2;1—;),

O\H
—~
~
S
+ |5
QU
~

(2.9) / : t1(1 —t)* g — B(s+1,q+1)
0

xr
oF (2,s+1;s+ +2;1—7).
th+ (1 —t)z)* b2 SN I b

Hence, If we use (2.8)-(2.9) in (2.7), we obtain the desired result. This completes
the proof. (Il

Corollary 2.1. In Theorem 2.2, additionally, if |f'(z)] < M, x € [a,b], then
inequality

b—a u?

b
< LM {0 (e r5.0.0) + Mol(a,2,5,0.0))

+ (b - l’)2 ()\3(ba z,s,q, Q) + )\4([),33, S, Q7q))%}

Q=

holds.

Theorem 2.3. Let f: 1 C (0,00) — R be a differentiable function on I°, a,b € I°
with a < b, and f' € Lla,b]. If |f'|* is harmonically s- convezx on [a,b] for ¢ > 1,

then for all x € [a,b], we have
) b
a / f(?;) du
—a u

- (1) -’ {($ - a)2 ()‘1(@71‘7 5,4, 1) If/ (x)‘q + )\2(&,.’1), $4q 1) |f/ (a)|q)

(2.10)

Q=

b—a \ 2
+ (0= 2)” (.25, 0. D) [ @)+ Malb 5,0, D)1 B}

where A1, Aa, A3 and My are defined as in Theorem 2.2.
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Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of |f'|? on [a, b],we have

b
(2.11) fz)— bciba/%du

9 1
< W(/tdt)
0

1 t — q s |4 q
’ </ G @ e @+ a0l W)

y /1 -3
L) ( / tdt)
b—a

0

1—1
q

q

q

1 t s , q _ s /! q
’ </ @i g @000 W)

Q=

ba_ba <;> ’ {(33 — a)2 (M(a,x,s,q, DIf (x)\q +Xo(a,2,5,¢,1) | f (a)|q)

+ (0= 2)” (alb,2,5,0, ) [f @) + Malb 5,0, 1 (07}

This completes the proof. O

Corollary 2.2. In Theorem 2.3, additionally, if |f'(z)] < M, x € [a,b], then
inequality

ab 1 -3 ) B
= ) - q
< b—aM<2) {(x a)” (M(a,x,s,q,1) + Aa((a,2,5,q,1))

j

Theorem 2.4. Let f: 1 C (0,00) — R be a differentiable function on I°, a,b € I°
with a < b, and f" € Lla,b]. If |f'|* is harmonically s- convex on [a,b] for ¢ > 1,
then for all x € [a,b], we have

Q=

+ (b—2) Ns(b, 2, 5,4, 1) + Ma(b, 7, 5,4, 1))
holds.

b
(2.12) F(z) - b“_ba / fi? du
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Q=

< @ {A;‘3<a,x><x—a>2 (a5, 1) |f (@)|" + Aala 25,1, 1) [f ()])

L }

S

Q=

+ )\éié(b, z) (b—2)” (Ns(b,z, 5, L, 1) | (2)|" + Na(b,2,5,1,1) [ (b)]")

where

1 1 Inz—1né
)\5(9’1:)::10—9{6_ x—0 }7

and A1, A2, A3 and Ay are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Power mean inequality and the harmonically s-convexity
of |f'|? on [a, b],we have

b
(2.13) f(@) =+ ab /jﬁﬁmb

—a u2

1—1
q

1
< ab(x — a) / _dt
b—a J (ta+ (1 —t)x)

1

/ (ta+ (1 —1) ) [ |f( )|q+(1—t)8|f/(a)|q]dt

0

Q=

1 1—-1
b_“ (!‘w+1t ﬁ)

It is easily check that

(2.14)

o —

t 1 {1 lnm—lna}
sdt = - ,
(ta+ (1 —t)x) r—a la x—a

/ dt* 1 lnbflnxil
(tb+ (1 —t)x Cb—x b—=z b’

0

=

Hence, If we use (2.8)-(2.9) for ¢ = 1 and (2.14) in (2.13), we obtain the desired
result. This completes the proof. (I
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Corollary 2.3. In Theorem 2.4, additionally, if |f'(x)] < M, = € [a,b], then
inequality

(),

u2

~
—~
S~—"
|
IS
Q\H p\c’“

Q=

IN

(z —a)® (M(a,z,5,1,1) + Ao(a, 2, 5,1,1))

n A; 3(1) z) (b—z)* (As(b,z,5,1,1) + As(b, 57171))3}

holds.

Theorem 2.5. Let f: I C (0,00) = R be a differentiable function on I°, a,b € I°
with a < b, and f' € Lla,b]. If |f'|? is harmonically s-convex on [a,b] for q¢ >
1, %—Fé:l, then

b
(2.15) f(z) - bab /Mdu

“a /] w2

Q=

IN

= (1) - 0 @z s.0.0) 1 @) + dola,2.5.0.0) 7 @)

p+1
+ (0= )’ (a(b,2,5,0,0) 1f @) + Aa(b,2,5,0,0) | (1)) 7}

where A1, A2, A3 and Ay are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Holder’s inequality and the harmonically convexity of | /|

on [a, b],we have

/ 1 PN O ()] ’
X(!W_t)x)gq[t Lf ()" + (1 —1) |f()|}dt)

o2 [ %
+M (/tpdt)
b—a
0

: 1 s / q _ +\$ / q q
’ </ @i g @000 W)
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Q=

ba_ba <Pi1> ; {(I —a)* (M(a,2,5,4,0) [f' ()" + Na(a, 2, 5,4,0) | (a)|")
+ (b — ’15)2 (/\S(b,l'a S, 4, O) |f/ (‘r)|q + )\4([),33, S, 4, O) |f/ (b)|q)%} '

This completes the proof. (I

Corollary 2.4. In Theorem 2.5, additionally, if |f'(z)] < M, x € [a,b], then

inequality
b
/ fu)

B (p ) (@ —a)® (M(a, 2, 5,¢,0) + Aa(a, 2, 5,¢,0)7

+
+ (b-— (x\g(bxsq, 0) + As(b, x,s,4,0) %}

|
S8

holds.

Theorem 2.6. Let f: I C (0,00) — R be a differentiable function on I°, a,b € I°
with a < b, and f' € Lla,b]. If |f'|? is harmonically s-convex on [a,b] for q >

1,1 _
1,5+a—1,then
b
a U
— d
b—a/ w2

< b‘iba{ma,x,o,p,p»é(xa)z<|f'<w>| T ACA)

s+1
Ot ma) (b ) <f/ @)+ | (b>|q>q}.

s+1
where A1, A2, A3 and Ay are defined as in Theorem 2.2.

Proof. From Lemma 2.1, Holder’s inequality and the harmonically convexity of | f/|?
on [a, b],we have

) b
fa)— -2 [T,

bfa u?

1 ¥
(z —a) / dt
(ta+ (1 —t)z)*P

0

x (/ [ 1 @) + (1 - 0)° | (a)] ]dt)

IA

1
q
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1
ab (b — z)* P
a J (tb+ (1 —t)x)

1
x / (81 (@) + (1— £)° | (5)]] dt
0

=

< 2 (Al(a,x7o7p,p))5(w—a)2(|fl(x)|si|1f/(a)| )

=

+ (Ag(bvgj,o’p’p)) (b— x)2 <f’ (x)|‘1 + |f/ (b)|q>q

s+1
This completes the proof. ([
Corollary 2.5. In Theorem 2.6, additionally, if |f'(z)] < M, x € [a,b], then

inequality
b
ab | fw
f) = b—a/ u? du

ab 2 q 1 2
< 7 (2 -
< o (20) (a0

+ ()\3([7,.’15, 07p7p))5 (b - w)z}
holds.
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