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BOUNDS FOR INITIAL MACLAURIN COEFFICIENTS OF A
SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED

WITH SUBORDINATION

AHMAD MOTAMEDNEZHAD, SHAHPOUR NOSRATI, AND SIMA ZAKER

Abstract. In this paper, we investigate the bounds of the coeffi cients for
new subclasses of analytic and bi-univalent functions in the open unit disc
defined by subordination. The coeffi cients bounds presented in this paper
would generalize and improve those in related works of several earlier authors

1. Introduction and definitions

Let A be a class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let S
denote the class of functions f ∈ A which are univalent in U.
The Koebe one-quarter theorem [8] ensures that the image of U under every

univalent function f ∈ S contains a disk of radius 1
4 . So every function f ∈ S has

an inverse f−1, which is defined by

f−1(f(z)) = z (z ∈ U),

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
,

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · ·. (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1).
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Recently some researchers have been devoted to study the bi-univalent functions
class Σ and obtain non-sharp estimates on the first two Taylor-Maclaurin coeffi -
cients |a2| and |a3|. For a brief history and interesting examples of functions in
the class Σ, see [15]. In fact that this widely-cited work by Srivastava et al. [15]
actually revived the study of analytic and bi-univalent functions in recent years and
that it has led to a flood of papers on the subject by (for example) Srivastava et
al.[6, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], and others [10, 11, 14, 27]. The co-
effi cient estimate problem i.e. bound of |an| (n ∈ N−{2, 3}) for each f ∈ Σ, is still
an open problem. In fact there is no direct way to get bound for coeffi cients greater
than three. In special cases there are some papers in which the Faber polynomial
methods were used for determining upper bounds for higher-order coeffi cients ( for
example see [20]).

More recently El-Ashwah [10] introduced the following two subclasses of the
bi-univalent function class Σ and obtained non-sharp estimates on the first two
Taylor-Maclaurin coeffi cients |a2| and |a3| of functions in each of these subclasses.

Definition 1. [10] For 0 < α ≤ 1; λ ≥ 1, a function f(z) given by (1) is said to
be in the class BΣ(h, α, λ) if the following conditions are satisfied:

f ∈ Σ, |arg((1− λ)
(f ∗ h)(z)

z
+λ(f ∗ h)′(z))| < απ

2
(z ∈ U),

(3)

and

|arg((1− λ)
(f ∗ h)−1(w)

w
+ λ((f ∗ h)−1)

′
(w))| < απ

2
(w ∈ U),

(4)

where the functions h(z) and (f ∗ h)−1(w) are defined by:

h(z) = z +

∞∑
n=2

hnz
n (hn > 0), (5)

and

(f ∗ h)−1(w) =w − a2h2w
2 + (2a2

2h
2
2 − a3h3)w3

− (5a3
2h

3
2 − 5a2h2a3h3 + a4h4)w4 + · · · .

(6)

theorem 1. [10] Let f(z) given by (1) be in the class BΣ(h, α, λ), 0 < α ≤ 1 and
λ ≥ 1. Then

|a2| ≤
2α

h2

√
(λ+ 1)2 + α(1 + 2λ− λ2)

, |a3| ≤
1

h3

(
4α2

(λ+ 1)2
+

2α

(2λ+ 1)

)
. (7)
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Definition 2. [10] For 0 ≤ β < 1; λ ≥ 1, a function f(z) given by (1) is said to
be in the class BΣ(h, β, λ) if the following conditions are satisfied:

f ∈ Σ, Re

(
(1− λ)

(f ∗ h)(z)

z
+ λ(f ∗ h)′(z)

)
> β ( z ∈ U), (8)

and

Re

(
(1− λ)

(f ∗ h)−1(w)

w
+ λ((f ∗ h)−1)′(w)

)
> β ( w ∈ U), (9)

where the functions h(z) and (f ∗ h)−1(w) are defined by (5) and (6) respectively.

theorem 2. [10] Let f(z) given by (1) be in the class BΣ(h, β, λ), 0 ≤ β < 1 and
λ ≥ 1. Then

|a2| ≤
1

h2

√
2(1− β)

(2λ+ 1)
, |a3| ≤

1

h3

(
4(1− β)2

(λ+ 1)2
+

2(1− β)

(2λ+ 1)

)
. (10)

The object of the present paper is to introduce a new subclasses of the function
class Σ and obtain estimates on the coeffi cients |a2| and |a3| for functions in the new
subclass. Our results would generalize and improve the Theorem 1 and Theorem
2.

2. Subclass BΣ(ϕ, τ , λ)

An analytic function f is said to be subordinate to another analytic function g,
written as

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w, which is analytic in U with w(0) = 0 and
|w(z)| < 1 (z ∈ U), such that f(z) = g(w(z)). In particular, if the function g is
univalent in U , then we have the following equivalence:
f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
Let ϕ be an analytic function with positive real part in U such that ϕ(0) = 1,

ϕ′(0) > 0 and ϕ(U) is symmetric with respect to the real axis. Such a function has
a series expansion of the form:

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0). (11)

We now introduce the following class of bi-univalent functions.

Definition 3. Let 0 ≤ γ ≤ 1 and τ ∈ C − {0}. A function f ∈ Σ given by (1),
is said to be in the class BΣ(ϕ, τ , λ) if each of the following subordinate conditions
holds true:

1 +
1

τ

[
(1− λ)

(f ∗ h)(z)

z
+ λ(f ∗ h)′(z)− 1

]
≺ ϕ(z) (z ∈ U), (12)
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and

1 +
1

τ

[
(1− λ)

(f ∗ h)−1(w)

w
+ λ((f ∗ h)−1)′(w)− 1

]
≺ ϕ(w) (w ∈ U), (13)

where the functions h(z) and (f ∗ h)−1(w) are defined by (5) and (6) respectively.

Remark 1. There are many choices of ϕ which would provide interesting subclasses
of class BΣ(ϕ, τ , λ).

• If we take τ = 1 and ϕ =
(

1+z
1−z

)α
(0 < α ≤ 1), then the class BΣ(ϕ, τ , λ)

reduce to Definition 1.

• If we take τ = 1, ϕ =
(

1+z
1−z

)α
(0 < α ≤ 1) and h(z) = z

1−z , then the class

BΣ(ϕ, τ , λ) reduce to the class BΣ(α, λ) introduced and studied by Frasin
and Aouf [11].

• If we take τ = λ = 1, ϕ =
(

1+z
1−z

)α
(0 < α ≤ 1) and h(z) = z

1−z , then the

class BΣ(ϕ, τ , λ) reduce to the class HαΣ introduced and studied by Srivastava
et al. [15].

• If we take τ = 1 and ϕ = 1+(1−2β)z
1−z (0 ≤ β < 1), then the class BΣ(ϕ, τ , λ)

reduce to Definition 2.
• If we take τ = 1 and ϕ = 1+(1−2β)z

1−z (0 ≤ β < 1), then the class BΣ(ϕ, τ , λ)

reduce to the class BΣ(β, λ) introduced and studied by Frasin and Aouf [11].
• If we take τ = λ = 1 and ϕ = 1+(1−2β)z

1−z (0 ≤ β < 1), then the class
BΣ(ϕ, τ , λ) reduce to the class HΣ(β) introduced and studied by Srivastava
et al. [15].

3. Coefficient bounds for the class BΣ(ϕ, τ , λ)

In order to derive our main results, we have to recall here the following lemma.

Lemma 1. [13] Let p ∈ P the family of all functions p analytic in U for which
<p(z) > 0 and have the form p(z) = 1+p1z+p2z

2 +p3z
3 + · · · (z ∈ U) for z ∈ U .

Then |pn| ≤ 2, for each n.

theorem 3. Let f(z) ∈ BΣ(ϕ, τ , λ) be of the form (1). Then

|a2| ≤ min

[
|τ |B1

h2(1 + λ)
,

1

h2

√
|τ |(B1 + |B1 −B2|)

(1 + 2λ)
,

|τ |B1

√
B1

h2

√
|(B1 −B2)(1 + λ)2 + τB2

1(1 + 2λ)|

]
.

(14)

|a3| ≤ min

[
|τ |(B1 + |B1 −B2|)

h3(1 + 2λ)
,
|τ2|B2

1

h3(1 + λ)2
+

|τ |B1

h3(1 + 2λ)

]
. (15)

where the coeffi cients B1 and B2 are given as in (11).
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Proof. For f ∈ BΣ(ϕ, τ , λ) , there are analytic functions u, v : U −→ U , with
u(0) = v(0) = 0, satisfying the following conditions:

1 +
1

τ

[
(1− λ)

(f ∗ h)(z)

z
+ λ(f ∗ h)′(z)− 1

]
= ϕ(u(z)) (z ∈ U) (16)

and

1 +
1

τ

[
(1− λ)

(f ∗ h)−1(w)

w
+ λ((f ∗ h)−1)′(w)− 1

]
= ϕ(v(w)) (w ∈ U). (17)

Now we define the functions p1 and p2 by

p1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + · · · (18)

and

p2(z) =
1 + v(z)

1− v(z)
= 1 + b1z + b2z

2 + · · · . (19)

Then p1 and p2 are analytic in U with positive real parts and p1(0) = 1 = p2(0).
Therefore, in view of the Lemma 1, we have

|bn| ≤ 2 and |cn| ≤ 2 (n ∈ N). (20)

Solving (18) and (19) for u(z) and v(z), we get

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 + · · ·

]
(z ∈ U) (21)

and

v(z) =
p2(z)− 1

p2(z) + 1
=

1

2

[
b1z +

(
b2 −

b21
2

)
z2 + · · ·

]
(z ∈ U). (22)

Clearly, upon substituting from (21) and (22) into (16) and (17), respectively, if we
make use of (11), we find that

1 +
1

τ

[
(1− λ)

(f ∗ h)(z)

z
+ λ(f ∗ h)′(z)− 1

]
= ϕ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + · · ·

(23)

and

1 +
1

τ

[
(1− λ)

(f ∗ h)−1(w)

w
+ λ((f ∗ h)−1)′(w)− 1

]
= ϕ

(
p2(w)− 1

p2(w) + 1

)
= 1 +

1

2
B1b1w +

[
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

]
w2 + · · · .

(24)
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Clearly it follow from (23) and (24), we have

(1 + λ)a2h2

τ
=

1

2
B1c1, (25)

(1 + 2λ)a3h3

τ
=

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
, (26)

−(1 + λ)a2h2

τ
=

1

2
B1b1 (27)

and
(1 + 2λ)(2a2

2h
2
2 − a3h3)

τ
=

[
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

]
. (28)

From (25) and (27), it follows that

c1 = −b1 (29)

and
2(1 + λ)2a2

2h
2
2

τ2
=

1

4
B2

1(c21 + b21). (30)

By using lemma 1, we obtain

|a2| ≤
|τ |B1

h2(1 + λ)
. (31)

By adding (26) and (28) we have

(1 + 2λ)2a2
2h

2
2

τ
=

[
1

2
B1(b2 + c2)− 1

4
B1(b21 + c21) +

1

4
B2(b21 + c21)

]
. (32)

i.e.,

a2
2 =

τ
[
2B1(b2 + c2)−B1(b21 + c21) +B2(b21 + c21)

]
8(1 + 2λ)h2

2

.

Since B1 > 0, h2 > 0, 0 ≤ λ ≤ 1 and by using lemma 1, we obtain

|a2|2 ≤
|τ |(B1 + |B1 −B2|)

(1 + 2λ)h2
2

,

|a2| ≤
1

h2

√
|τ |(B1 + |B1 −B2|)

(1 + 2λ)
. (33)

On the other by using (30) in (32) we obtain

2(1 + 2λ)a2
2h

2
2

τ
=

[
1

2
B1(b2 + c2)− 2(B1 −B2)(1 + λ)2a2

2h
2
2

τ2B2
1

]
. (34)

Then
2a2

2h
2
2

τ2B2
1

((B1 −B2)(1 + λ)2 + τB2
1(1 + 2λ)) =

1

2
B1(b2 + c2). (35)
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i.e.,

a2
2 =

τ2B3
1(b2 + c2)

4h2
2((B1 −B2)(1 + λ)2 + τB2

1(1 + 2λ))
.

By applying lemma 1, we obtain

|a2|2 ≤
4τ2B3

1

4h2
2|(B1 −B2)(1 + λ)2 + τB2

1(1 + 2λ)| ,

|a2| ≤
|τ |B1

√
B1

h2

√
|(B1 −B2)(1 + λ)2 + τB2

1(1 + 2λ)|
. (36)

Now from (31), (34) and (36), we can find the bound for |a2|.

Similarly, upon subtracting (28) from (26) and using (29) we get

2(1 + 2λ)a3h3

τ
− 2(1 + 2λ)a2

2h
2
2

τ
=

1

2
B1(c2 − b2). (37)

Now if we use (30) in (37) we obtain

2(1 + 2λ)a3h3

τ
=
τB2

1(1 + 2λ)(c21 + b21)

4(1 + λ)2
+

1

2
B1(c2 − b2). (38)

a3 =
τ2B2

1(1 + 2λ)(c21 + b21)

8(1 + λ)2(1 + 2λ)h3
+
τB1(c2 − b2)

4(1 + 2λ)h3
,

By applying lemma 1, we have

|a3| ≤
|τ2|B2

1

h3(1 + λ)2
+

|τ |B1

h3(1 + 2λ)
. (39)

If we use (32) in (37), we get

2(1 + 2λ)a3h3

τ
=

[
1

2
B1(c2 + c2)− 1

4
B1(b21 + c21) +

1

4
B2(b21 + c21)

]
, (40)

a3 =
τ
(
2B1(c2 + c2)−B1(b21 + c21) +B2(b21 + c21)

)
8(1 + 2λ)h3

.

Since B1 > 0, h3 > 0, 0 ≤ λ ≤ 1 and by using lemma 1, we get

|a3| ≤
|τ |(B1 + |B1 −B2|)

h3(1 + 2λ)
. (41)

Now from (39) and (41), we can find the bound for |a3|.
�
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4. Conclusions

If we take τ = 1 and

ϕ =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + · · · (0 < α ≤ 1),

in Theorem 3, we conclude the following result which is an improvement of Theorem
1.

Corollary 1. Let f(z) ∈ BΣ(h, α, λ) be of the form (1). Then

|a2| ≤ min

[
2α

h2(1 + λ)
,

1

h2

√
4α− 2α2

(1 + 2λ)
,

2α

h2

√
(1 + λ)2 + α(1 + 2λ− λ2)

]
. (42)

|a3| ≤ min

[
4α− 2α2

h3(1 + 2λ)
,

4α2

h3(1 + λ)2
+

2α

h3(1 + 2λ)

]
. (43)

If we take h(z) = z
1−z in Corollary 1 we obtain the following result which is an

improvement of theorem obtained by Frasin and Aouf [11].

Corollary 2. Let f(z) ∈ BΣ(α, λ) be of the form (1). Then

|a2| ≤ min

[
2α

(1 + λ)
,

√
4α− 2α2

(1 + 2λ)
,

2α√
(1 + λ)2 + α(1 + 2λ− λ2)

]
. (44)

|a3| ≤ min

[
4α− 2α2

(1 + 2λ)
,

4α2

(1 + λ)2
+

2α

(1 + 2λ)

]
. (45)

If we take λ = 1 in Corollary 2, then we have the following result which is an
improvement of result obtained by Srivastava et al. [15].

Corollary 3. Let f(z) ∈ HαΣ be of the form (1). Then

|a2| ≤ min

[√
4α− 2α2

3
,

2α√
4 + 2α

]
. (46)

|a3| ≤ min

[
4α− 2α2

3
, α2 +

2α

3

]
. (47)

If we take τ = 1 and

ϕ =
1 + (1− 2β)z

1− z = 1 + 2(1− β)z + 2(1− β)z2 + · · · (0 ≤ β < 1)

in Theorem 3, we conclude the following result which is an improvement of Theorem
2.
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Corollary 4. Let f(z) ∈ BΣ(h, β, λ) be of the form (1). Then

|a2| ≤ min

[
2(1− β)

h2(1 + λ)
,

1

h2

√
2(1− β)

(1 + 2λ)

]
. (48)

|a3| ≤
2(1− β)

h3(1 + 2λ)
. (49)

If we take h(z) = z
1−z in Corollary 4 we obtain the following result which is an

improvement of theorem obtained by Frasin and Aouf [11].

Corollary 5. Let f(z) ∈ BΣ(β, λ) be of the form (1). Then

|a2| ≤ min

[
2(1− β)

(1 + λ)
,

√
2(1− β)

(1 + 2λ)

]
. (50)

|a3| ≤
2(1− β)

(1 + 2λ)
. (51)

If we take λ = 1 in Corollary 5 we obtain the following result which is an
improvement of theorem obtained and studied by Srivastava et al. [15].

Corollary 6. Let f(z) ∈ HΣ(β) be of the

|a2| ≤ min

[
(1− β),

√
2(1− β)

3

]
. (52)

|a3| ≤
2(1− β)

3
. (53)
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[6] Çaǧlar, M., Deniz, E. and Srivastava, H. M., Second Hankel determinant for certain subclasses
of bi-univalent functions, Turkish J. Math. 41, (2017) 694-706.

[7] Ding, S. S., Ling Y. and Bao, G. J., Some properties of a class of analytic functions, J. Math.
Anal. Appl. 195 (1) (1995) 71-81.

[8] Duren, P. L., Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo,
1983.

[9] Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized
hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.



134 AHMAD MOTAMEDNEZHAD, SHAHPOUR NOSRATI, AND SIMA ZAKER

[10] El-Ashwah, R. M., Subclasses of bi-univalent functions defined by convolution, J. Egypt.
Math. Soc. (2013)

[11] Frasin B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24
(2011) 1569-1573.

[12] MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Am. Math.
Soc. 104 (1962) 532-537.

[13] Pommerenke, C., Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
[14] Porwal S. and Darus, M., On a new subclass of bi-univalent functions, J. Egyptian Math.

Soc. 21, (2013) 190-193.
[15] Srivastava, H. M., Mishra A. K. and Gochhayat, P., Certain subclasses of analytic and

bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
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