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ABSTRACT

In this paper, we derive curvature identities for Lagrangian submersions from globally conformal Kaehler manifolds onto Rieman-
nian manifolds. Then, we give a relation between the horizontal lift of the curvature tensor of the base manifold and the curvature
tensor of a fiber. We examine the necessary and sufficient conditions for the total manifolds of Lagrangian submersions to be
Einstein. We also obtain Ricci, scalar, sectional, holomorphic bisectional and holomorphic sectional curvatures for these submer-
sions. Finally, we give some inequalities involving the scalar and Ricci curvatures, and we also provide Chen-Ricci inequality for
Lagrangian submersions from globally conformal Kaehler space forms.
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1. INTRODUCTION

Curvature invariants play the most important role in Riemannian geometry. They determine the intrinsic and extrinsic properties
of Riemannian manifolds. Chen (1993) established a relationship between the intrinsic and extrinsic invariants. He also obtained
an inequality between Ricci curvature and the squared mean curvature of a submanifold of a real space form (Chen (1999)). After
then, he obtained a generalization of this inequality which is known as Chen-Ricci inequality (Chen (2005)).

On the other hand, the notion of Riemannian submersion is a generalization of an isometry between two Riemannian manifolds
which was introduced by O’Neill (1966) and Gray (1967), independently. This notion was extended to almost complex and almost
contact manifolds (Watson (1976), Chinea (1985)). After that, Riemannian submersions are studied widely in various kinds of
structures for both almost complex and almost contact manifolds such as almost Hermitian (Sahin (2017)), almost contact (Tastan
(2017)), cosymplectic (Tastan and Gerdan Aydin (2019)) and Sasakian (Tastan and Gerdan (2016)). These structures have also
examined in different types of Riemannian submersions such as anti-invariant submersions (Sahin (2010)), Lagrangian submersions
(Tastan (2014)) etc. Riemannian submersions have also been studied in globally conformal Kaehler manifolds which are a special
class of Kaehler manifolds. The globally and locally conformal Kaehler manifolds were studied widely by Vaisman (1980). Then,
locally conformal Kaehler submersions were introduced by Marrero and Rocha (1994) and studied by many researchers (Cimen
et al. (2024), Piringgi et al. (2023)).

In this paper, we study the curvature relations for Lagrangian submersions which are defined from globally conformal Kaehler
manifolds onto Riemannian manifolds. First, we obtain curvature identities for Lagrangian submersions whose total manifolds
are globally conformal Kaehler manifolds. Then, we give a relation between the horizontal lift of the curvature tensor of the base
manifold and the curvature tensor of a fiber. We obtain Ricci curvatures and scalar curvatures for these submersions. Then, we
give the necessary and sufficient conditions for the total manifolds of such submersions to be Einstein. We also obtain sectional,
holomorphic bisectional and holomorphic sectional curvatures. Finally, we derive some inequalities involving the scalar curvature
and Ricci curvature of Lagrangian submersions from globally conformal Kaehler space forms and give Chen-Ricci inequality for
such submersions as well.
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2. GLOBALLY CONFORMAL KAEHLER MANIFOLDS

A Hermitian manifold (M?",J, g) with an almost complex structure J and a Hermitian metric g is called a locally conformal
Kaehler (1.c.K.) manifold, if there exists an open cover {O;};c; of M** with a family {07;};c; of smooth functions o; : O; — R
such that

gi=e 7'glo

are Kaehler metrics for every i € I (Dragomir and Ornea (1998)). If § = e~ “ g is Kaehlerian for a smooth function o : M n R,
then (M?*, J, g) is called a globally conformal Kaehler (g.c.K.) manifold. Dragomir and Ornea (1998) gave the following theorem
for locally conformal Kaehler manifolds.

Theorem 2.1. Let ® be a 2-form defined by ®(X,Y) = g(X,JY) on a Hermitian manifold (M*",J,g), where X,Y are vector
fields on M*". Then (M*",J, g) is a locally conformal Kaehler manifold if and only if there exists a closed 1- form w defined on
M globally such that d® = w A ®.

If w is exact, then (M n g, g) is a g.c.K. manifold. In the case w = 0, a g.c.K. manifold reduces a Kaehler manifold. The 1-form
w is called Lee form of (M?",J, g) and a g.c.K. manifold (M?", J, g) with Lee form w is denoted by (M**, J, g, w).
For the Riemannian connections V of (M n g, g,w) and V of Kaehler metric £, we have

VxY =VxY — %{w(X)Y+a)(Y)X—g(X, Y)B}, (1)

where X, Y are vector fields on M?" and B is the g- dual vector field of w which is called Lee vector field of (M*",J,g,w). Visa
torsion-free connection and also satisfies VJ = 0. Hence, using (1), we have

1
(VxJ)Y = E{w(JY)X —w(Y)JX -®(X,Y)B+g(X, Y)JB}.
Now, from (1), Vaisman (1980) gave curvature identity between Riemannian curvature tensors of V and V as follows:
R(X,Y)Z = R(X,V)Z

- %{L(X, 2)Y - L(Y,2)X - g(Y, Z) [VXB + %a)(X)B

+ ¢(X,2) [VyB + %w(Y)B]} )

ol

where ||w||? = g(B, B),
LX.Y) = (Tx@) (1) + 30(X)w(Y) = g(VxB,Y) + 30(X)(?),

and X, Y, Z are vector fields on M%".
We note that L is a symmetric (0,2)-tensor on M 2n_From (2), he also obtained the well-known formula:

eR(X,Y,Z,W)= R(X,Y,Z,W)
- %{L(X, 2)2(Y, W) = L(Y, Z)g(X, W)
~ L(X,W)g(Y,Z) + L(Y,W)g(X, Z)} 3)

ol
4

{(r. 28X, W) = g(x, 2)5(v, W)},

where R denotes the Riemannian curvature tensor of the Kaehler metric g. Now, since g is a Kaehler metric, the Riemannian
curvature tensor R satisfies R(UX,JY,JZ,JW) = R(X,Y,Z,W).If we use the last equation in (3), then we get the following result
as in the l.c.K submersion case in Pirincci et al. (2023).
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Theorem 2.2. Let (M, J, g, w) be a g.c.K. manifold. Then we have
R(X,Y,Z,W) = R(JX,JY,JZ,JW)
+ %{5(}(, 2)g(Y. W) = 8(Y, Z)g(X, W) )
- 6(X, W)g(Y.2) +6(Y, W)g(X. Z)],
where
§(X,Y) = L(X,Y) — L(JX,JY),

and X,Y,Z,W are vector fields on M3,

3. LAGRANGIAN SUBMERSIONS

In this section, we will give the notion of Riemannian submersion and its special type Lagrangian submersion. We deduce the
curvature relations for Lagrangian submersions.
Let (M{, g1) and (M, g>) be Riemannian manifolds with dimensions n and m, respectively. O’Neill (1966) called a mapping

Y of (MY, g1) onto (M]", g») that satisfies the following two conditions a Riemannian submersion:

(i) The rank of ¢ is maximal;
which means that the derivative map .. is surjective. Hence foreach y € MJ", ¥~1(y) is an (n—m)-dimensional closed submanifold
of M{'. A submanifold Y~ (y) is called a fiber. The vector fields on M i which are tangent to a fiber is called vertical, and the
vector fields on M{' orthogonal to a fiber is called horizontal. Vertical and horizontal distributions of the tangent space of M{' are
denoted by kery. and (kery.)* , respectively. A horizontal vector field X on M{' is called basic if ¢.(X) = X., for a vector field
X, on M3".

(ii) . is a linear isometry on (kery.)=*.
Let E¥ and E" be the vertical and horizontal part of a vector field on M", respectively. Then, the covariant derivatives of vertical
and horizontal vector fields are defined by O’Neill (1966) as follows:

TeF = (Ve )" + (Vo F1)Y, Q)
AeF = (Ven F)" + (Ven FM)Y, ©6)
where E and F are vector fields on M{" and V is the Riemannian connection of g;. The tensors 7 and A defined above are

called O’Neill’s tensors. Tg and Ag are skew-symmetric operators and each one reverses the vertical distribution to the horizontal
distribution, and vice versa.

Lemma 3.1. Let ¢ : (M}, g1) — (M]", g2) be a Riemannian submersion, and X, Y be basic vector fields on M{'. Then,
(i) g1(X,Y) = g2(X. V) o,
(i) ¥.([X,Y]") = [X.. V],
(i) Y. ((VxY)") = V3 Y.

Using (5), (6) and Lemma 3.1 we obtain the following equations:

TuoV =IU, (7
AxY =—AyX = %[X, Y], ©))
VuV =TgV + (VyV)Y, )
VuX = (VuX) "+ T X, (10)
VxU = AxU + (VxU)", (11)
VxY = (VxY)" + AxY, (12)
(VuX)" = AxU,  for a basic vector field X, (13)

where U,V € kery, and X,Y € (kery.)*. T is the second fundamental form of all the fibers. We say that the fibers are totally
geodesic when 7 = 0. If {Uy, ..., U, } is an ortonormal frame of kery ., then H = % | Tu, Uy is called the mean curvature vector

field of the fibers. For more information about Riemannian submersions, we refer to O’Neill (1966) and Falcitelli et al. (2004).
Now, using Lemma 3.1 and the equations (7)~(13) we have the following curvature relations for every U,V, W, W’ € kery.
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and X,Y,Z,7Z’ € (kery,)*:

Ri(U.V.W. W) =R(U,V.W.W') + g (TuW', v W) — g1 (TuW, Ty W'), (14)
R (U, V,W,X) =g1((VvT)uW,X) - g1((VuT)vW, X), (15)
Ri(X,Y,Z,Z")=R"(X,Y,Z,Z") — 2g1(AxY, Az Z")

- 81(AxZ, AyZ') + g1 (AxZ', Ay Z), (16)
Ri(X,Y,Z,U) =g1 (V2 A)xY,U) + g1 (AxY, TuZ) + 81 (AxZ, TyY)

- 81(AyZ, Ty X), (17)
Ri(X,Y,U,V) =g1((VuA)xY,V) = g1 (Vv A)xY, U) + g1 (AxU, AyV)

- g1(AxV, AyU) - g1 (Tu X, TvY) + g1 (Tv X, TuY), (18)
Ri(X,U,Y,V) =g1((VxT)uV.Y) + g1 (VuA)xY, V) = g1 (Tu X, TvY)

+81(AxU, AyV), (19)

where R; and R, are Riemannian curvature tensors of M 1” and Mg", respectively, R is the horizontal lift of the curvature tensor
of Ry, ie., R*(X,Y,Z,Z") = g1(R*(Z,2")Y,X) = Ro(y. X, .Y, . Z,.Z") o and R is the curvature tensor of ' (y) (see
O’Neill (1966)).

We note that (Vg A)r and (Vg7 ) are skew-symmetric and linear operators defined by

(VEA)FG =VE(AFG) - Av,r)G — Ar(VEG),
(VET)FG =VE(TrG) = Tv.F)G — Tr (VEG),

respectively, where E, F and G are vector fields on M{'. Moreover, g1 ((VEA)xY, U) is alternate in X and Y, g1 ((VET )V, X) is
symmetric in U and V, where U,V € kery, and X,Y € (kery.)*. Furthermore, (14) and (15) are the corresponding Gauss and
Codazzi equations, (16) and (17) are their dual equations.

Definition 3.2. Lety be a Riemannian submersion from a Hermitian manifold (M 12”, J, g1) onto a Riemannian manifold (M}", g2).
 is called an anti-invariant Riemannian submersion, if its vertical distribution is anti-invariant with respect to J, i.e. J(kery.) C
(kery.)*. Especially, ¢ is called a Lagrangian submersion when J(kery.) = (kery.,)™. In this case J reverses the vertical
(horizontal) distributions to the horizontal (vertical) distributions, and m = n.

4. CURVATURE IDENTITIES FOR LAGRANGIAN SUBMERSIONS

In this section, we obtain curvature relations using the following result due to Piringci (2025). From now on, (M ]2”,J ,81,W)
represents a g.c.K. manifold and (M, g,) represents a Riemannian manifold.

Lemma 4.1. Letyy : (M?", ], g1, w) — (M}, g2) be a Lagrangian submersion. Then we have
ToJV =JTgV + %{w(JV)U+g1(U, V)JB"},
ToJX =JTuX - %{w(X)JU - a1(JU,X)B"},
AxJU =JAxU — %{w(U)JX +g1(X,JU)B"},
AxJY =JAxY + %{w(JY)X +21(X,Y)JB"},

where U,V € kery, and X,Y € (kery?).

Piring¢i (2025) showed that for a Lagrangian submersion ¢ from a l.c.K. manifold onto a Riemannian manifold, if JU is a basic
vector field for any U € kery ., then the Lee vector field B cannot be vertical. Therefore, we will examine the curvature relations
in the special case where the Lee vector field B is horizontal. In this case he showed that the horizontal distribution is integrable
and totally geodesic, i.e., A = 0. Then we get the following result from (13)~(18):

Corollary 4.2. Lety : (M12", J,g1,w) — (M}, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. Then,

23




Istanbul Journal of Mathematics

we have the following curvature relations for every U,V, W, W’ € kery., and X,Y,Z,Z’ € (kery.)*:

Ri(U,V,W, W) =R(U,V,W, W) + g1 (TuW', Ty W) — g1 (TuW, Ty W), (20)
Ri(U,V,W,X) =g1 (VvT)uW, X) —g1((VuT)vW, X), (21
R(X,Y,Z2,Z')=R"(X,Y,Z,7"), (22)
Ri(X,Y,Z,U) =0, (23)
Ri(X,Y,U,V) =g1(TvX,TgY) — g1 (Tu X, vY), (24)
Ri(X,U,Y, V) =g1((VxT)uV.Y) — g1(Tu X, TvY). (25)

Now, if we use A = 0, (20) and (22) in (4), then we get the following relation between the horizontal lift of the curvature tensor
of R, and the curvature tensor of a fiber.

Theorem 4.3. Let y : (M12", J, g1, w) — (Mé‘, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. Then,
we have the following curvature relation for every U,V, W, W’ € kery.,.:

RU,V,W,W') = R*(JU,JV,IJW,JW') — gt (TuW', Ty W) + g1 (TuW, Ty W)
+ %{5(U, W)g1(V, W) —o(V,W)g1 (U, W’) (26)
= S(UW)ZI (V. W) +8(V, W)g1 (U W)}
In a similar way, if we use (21) and (23) in (4), then we have
QI ((TyTIoW. X) = &1 (T TIW, X) = 5[5V, X)g1 (U, W) = 5(U, X)za (v, W)},
Using the skew-symmetry property of the operator (Vy 7))y, we get
(VuT)vX = (VyT)uX = %{5(\/, XU -6, XV} 27)

We will examine the conditions for M 12" to be an Einstein manifold. To obtain these conditions we will first find the Ricci and
scalar curvatures of M 12” using the following notation:

75 =81(T0,U;. JU), (28)
IT1P =" (T, U T U = D > (T2 (29)
i,j=1 k=11i,j=1
n
§(7) = &1(Vyu, T, Uy, JU»), (30)
i,j=1
where {Uj, ..., U, } is an orthonormal frame of keriy..

Lemma4.4. Lety : (M 12", J,g1,w) — (M}, 82) be a Lagrangian submersion and the Lee vector field B be horizontal. Then the
Ricci tensor Ric and the scalar curvature p1 of M 12” satisfy the following relations:

n 1
Ric (U, V) = Ric(U,V) = z0(JU)w (V) +g1(U, V)lwl?

—ngi(H, V) + ) a1(Vsu, DV, JUy), (31)
i=1
. n-1

Rlcl(U, X) = T(VUCU)X, (32)

n
Riei(X.Y) = Ric" (X, 1) + " {1 (Vx T, Ui ¥) - 1 (T, X T, 1) (33)

i=1
pr=p+p"+@n=Dllwl* = n?||H|* = |T1]* +26(7), (34)

where U,V € kery,, X,Y € (kery,)*, {Ui,...,U,} is an orthonormal frame of kery., Ric is Ricci tensor of any fiber, Ric* is
the horizontal lift of Ricci tensor of M}, p is scalar curvature of any fiber and p* is the lift of scalar curvature of M.
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Proof. Let {Uy,...,U,} be an ortonormal frame of kery .. From the definition of Ricci tensor, (20) and (25) we have

n n
Ric1(U,V) = ) Ri(U, U, Up,V) + Y Ri(JU;, U, JU, V)
i=1 i=1
n
= > {RWLUULY) + 01V TOUD - 1 (T, U T V)
i=1

n
+ Y a1 (Vu DuV,IU) - 81 (01U T U |
i=1
=Ric(U,V) —ng\(H,TyV)

+ Y &1 (UL TV U + 81 (Y0, TV JUD) = 81 (T I U, TodUp) | (35)
i=1

Now, from Lemma 4.1 we have

n

n
1
1 TLIUL TV IU) = )" g1(TuU ToUi) + 5 3 {@(UDg1 ToU;. V)
i=1 i=1

+ g1 (V,U) g1 (TuUs, B") + w(JU) g1 (U, JTv U;)
+ 1(U.Ungi (TvUy, B}

n

i=1

n 1 n

=2 81U T U) = 5 3 {1(Un B (Ui, T V)
i=1 i=1
+ 21 (V. Ui)g1(Ui, Ty B) + g1 (Ui, JB)g1(TvJU, Uy)

+ 1(U,Ug1 (U, TvB))}

= Zgl(%Ui’%Ui)
im1

1
+3 {w(J‘i’UJV) +20(THV) + w(JfrVJU)}. (36)
Moreover, from Lemma 4.1, since

wUTGIV) == g1(Tu IV, JB)
1
== 1TV + 5{w(V)U +&1(U,V)JB"}, JB)

=~ W(ToV) + 30UV 0UU) - g1(U, V)l
= w(JTyJIU),

equation (36) becomes

n

n
1
2 ToIUL Ty U = ) a(TgUs ToUy) + 50 (J0)w (V) = g1 (U. V)] (37)

i=1 i=1

Using (37) in (35), we obtain (31).
Similarly, using (21), (22), (23), (25) and (27) we obtain (32) and (33). Now, from the definition of scalar curvature, (31) and (33)
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we have

Rici(U;,U;) + Z Ric,(JU,,JU,)

Jj=1 Jj=1

n n
p1=
n N 1
=> {ch(uj, Uy) = 30(U)IU)) + 81Uz, Upllol?
j=1

+ Zn: [gl((VJUiT)UjUj»JUi) - gl((];]iUl"?;]jUj)]}
i=1

n n
+ Z {Ric*(JUj, JUj) + Z [g1 ((Vyu, T, Ui JU;) = g1(T, T U, ﬁ]iJUj)] }
j=1 i=1

2n —1

A 2_ 2 2
=p+p'+ llwl|” = n”||H|

+2 Z g1((Vyu, T, Uj, JU;) = Z g1(Tu,JU;, Ty, JU )
i,j=1 i,j=1

Finally, if we use (29), (30) and (37) in the last equation, we get (34).

Theorem 4.5. Let  : (M 12", J,g1,w) > (M}, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. Then,
(M?", ], g1, w) is an Einstein manifold if and only if the following relations hold:

., 1
Ric(U.V) = (52 = [[0]P)g1(U.V) +ngi (H.TgV) + 30(V)w(JV)

g1(Vyu, TV, JU;),
i=1
n

Ric*(X.¥) =501 (X.¥) = )" {e1 (VT Usn¥) - 1(T0, X, T0, 1)
i=1

and
(Vyw)X =0,
where U,V € keryr., X,Y € (kery.)* and {Uy, ..., U, } is an orthonormal frame of kery..

Proof. (MIZ", J, g1, w) is an Einstein manifold if and only if Ric| = lzﬂgl. Using this in (31), (32) and (33), we get the results.
n

Theorem 4.6. Let  : (M%",J,gl,w) — (M}, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. If
U,V € kery. and X,Y € (kery.)?*, then the sectional curvature K, is given by

ToVI1? = g1 (ToU, TvV)

K (U,V) =R(U,V) +
1(U,V) =K(U,V) U AVIE

>

K (X,Y)=K"(X,Y),

\Y X) - |70 X|I?
K](X,U)zgl(( xTuU, X) - |7y ||’

IX121U1]?
where ||U A V(> = [[UIP[IVI]® = (g1 (U, V)™
R((E,F,EF) .
Proof. If we use the definition of the sectional curvature K| (E, F) = W in (20), then we have
Ry(U,V,U,V
K (U,V) SEICRAA )
;U AV
1 N
=W{R(U,V,U,V)+gl(%v’%U)_gl(%]U,%V)}
5 ToVII? - g1(TuU, TvV
:K(U,V)+||U II° — g1 (ToU, TvV)

o AV

Similarly, using (22) and (25), we obtain the other two equations.
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The holomorphic bisectional curvature and the holomorphic sectional curvature of an almost Hermitian manifold (M?", J, g) are
defined for any nonzero vector fields E, F on M n ag

R(E,JE,F,JF)
B(E,F)=—F——F—-—-,
IIEIIIF11?
and
H(E) = B(E,E),

respectively. Hence, we have the following results.

Theorem 4.7. Let  : (M, J,g1,w) — (M, g>) be a Lagrangian submersion and the Lee vector field B be horizontal. If
U,V € kery. and X,Y € (kery.)?*, then the holomorphic bisectional curvature By is given by

_&1((Vyu TV, JV) - g1(TyJU, Ty JV)

B (U,V) = ,
NUIV][?
\Y) JY,Y) — X, Y
B, (X.Y) _81((VxT)ix 2) 812(‘73)( Try )’
XI1=1Y1]
X, 75JU) — \Y) U,JU
B, (X.U) _81(TixX, Ty ||))(||2T|1[§|(|2XT)JX )_

Proof. Using the definition of the holomorphic bisectional curvature in (25), we obtain the results immediately.

Theorem 4.8. Let s : (MIZ",J ,81,w) — (M}, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. If
U € kery, and X € (kery.,)*, then the holomorphic sectional curvature H is given by
1(VouTuU,JU) = [|TJU|1?
H\ () =E e

_g1(VxT)yxJIX, X) — [|T7x X|?
Hi(X) = X[ ‘

Proof. Using the definition of the holomorphic bisectional curvature in Theorem 4.7, we obtain the above equations.

5. CHEN-RICCI INEQUALITY

A Kaehler manifold (M>",J, g) with constant holomorphic sectional curvature c is called a complex space form and denoted by
(M?"(c),J, g). The curvature tensor R of (M?"(c),J, g) satisfies

R(X,Y,Z, W) = %{g(X, W)e (Y, Z) - ¢(X, Z)g(Y, W) + g(JX, W)g(JY, Z) (38)
—e(UX, 2)g(JY, W) = 22(JX,Y)2(JZ, W)}

for every vector fields X,Y,Z, W on M 21 (¢).
A g.c.K. manifold (M 12", J, g1, w) with constant holomorphic sectional curvature c is called a globally conformal complex space
form and denoted by (Mf”(c), J, g1, w). Using (3) and (38), we get

RI(X’Y’Z’ W) :e_gg{gl(xv W)gl(Y’Z) _gl(X’Z)gl(Y’ W) +g1(JX’W)gl(JY72)
- 91X, 2)01(JY. W) = 281 (UX. V)g1 (JZ. W)}

+ L 21V W) = LY. Z)g0 (X, W) (39)

NI —

- LX. Wi (Y, 2) + LY, W)g1 (X, 2)|

llwll*

{011, 200X, W) = g1 (X. D)1 (v W)

for every vector fields X,Y, Z, W on M?"(c).
Lety : (M12"(c), J,g1,w) — (M3, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. Now, using (20)
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and (22) in (39), we have
ce” +||wl|?
4

1
+ E{L(U’ W)g1(V,W') = L(V,W)g (U, W) (40)

RU.v.W.W) = ( a1 W W1 (V. W) = g1 (U Wy (v. W)}

— LW, W1 (VW) + LV, W)gi (U W)
+81(TuW, TyW’) — g1 (TuW', Ty W)

and
-0

2
r(xy.2.2) = (N 0 (2060 0n.2) - 0. 200 0.2)
+ 3L 20010, 2) - L0, 201 (X, 7)
- L Z)1(Y.2)+ LY. Z)g1(X. ).

forevery U,V,W,W’ € kery, and X,Y,Z,Z’ € (kery.)* .
We will use the following remark in the examination of the curvature relations.

Remark 5.1. Piringgi (2025) showed that the vertical distribution of a Lagrangian submersion from a l.c.K. manifold onto a
Riemannian manifold cannot be totally geodesic, i.e., 7 # 0.

Proposition 5.2. Let ) : (MIZ" (c).J,g1,w) — (M}, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. If
{U1, ..., Up} is an orthonormal frame of kery .., then we have

ce™ +||wl||?
4

3|0 = 200 + no ),

Rﬁﬂh)<(l—nw )+ngﬂﬂhUhH) (41)

where

n
Ric(U)) = Y R(UI, Uy, Up, Uy). (42)
i=1
Proof. We note that if the Lee vector field B is horizontal, then L(U,V) = —w(7;V). So for every U,V,W, W’ € kery., (40)
becomes
ce” 7 +||w| |2
4

[ TW)g1 (V. W) = (T W)gi (U, W) 43)

RU.V. W) = ( J{e1 @ W1V W) = g1 (U Wi (V. W)

1
2
— O(TW)g1 (V. W) + &(To W )gi (U, W)
+g1(TuW, TvW’) — g1 (TuW', Ty W).
Using (43) in (42), we have

n -0 2
Fiewy) = ) (D) oy v W00 - 5101 U8 W0
i=1

1 n
-3 20T U8 UL U - 0T, UNg (U1 U
i=1
- (T, U1 (Ui, Un) + o(T5,Ud g (U, Un))

n
+ 3" a1 (0,01, T, U - 2170, U 5,00 |
i=1

ce ™ +||w||?

ZU_M( 4

—%“n—mwﬂaUQ+mﬂH”.

) + 021 (T0,U1, H) = 115,01

Hence, (41) comes from Remark 5.1.
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Proposition 5.3. Lety : (M ]2"(0), J,g1,w) = (M7, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. If
{Uy, ..., Un} is an orthonormal frame of kery., then the scalar curvature of the vertical distribution holds

ce™ +||wl||?

2 2
T+ o(H) )+ [P, (44)

P < n(l—n)(

where

p= > RU,U;ULU). (45)
ij=I
Proof. If we use (43) in (45), then we have

b= Z (Ce_(rz—”‘”lp){gl(m, Upgi(U;,Us) — g1(Us, Up) g1 (U, Uj)}

1 n
-3 2@ T W U) - (T, U (UL U;)
i,j=1

- (T, U)g1 (U, Up) + 0(T0,U )1 (Ui, Up |

+ 3 @00 70,U) - 810,05, 70,00}
i,j=1

=n(1 —n)(

ce 7 + ||a)||2

) TR+ nHIPE 11 = mw(H),

The result is obtained by using Remark 5.1.

Proposition 5.4. Let y : (Mlz"(c), J,g1,w) — (M}, 82) be a Lagrangian submersion and the Lee vector field B be horizontal. If
{Uy, ..., U,} is an orthonormal frame of keriy., then the scalar curvature of the horizontal distribution holds

7+ ||l

ce
" 1 (
p < n(l-n) 7

- w(H)) 1T + (n = 1)Trace(L), (46)

where

n
p*= ) R'(JU,JU;, U, JU)). (47)
i,j=1

29
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Proof. From (26) we have

n n
D RWLULULU ) = Y R (JU,JU;, JUL JU))
i,j=1 i,j=1

n n
- > &TU; To, U + ), 21(ToUs T, U)
i.j=1 i.j=1

Z {5(Ui, Ung(U;,Uj) = 6(U;, Ui)g1(U;, Uy)

l\)l>—‘

-0(U;, Uj)g1(U;, U) +6(U;,Uj)g1 (U, Ui)}

n
= R*JULJU;, JU;, JU) = [|T P + 0| H|?
i,j=1

+(n=1) ) 6(U, U
i=1

n
= R'JULJU;. JU;L JU) = [|T P + 0| H|?
i,j=1
n
+ (1= 1) ) LW, U) - LUV JUD
i=1
= > R'(JU. JU;, JU;, JU;) = || 11 + 0| | H 2
i,j=I
n
—n(n-Dw(H) - (n-1) Z L(JU:, JU;).
i=1
If we use (45), (47) and
n n
Trace(L) = )| {L(Ui, U+ LUJU,, JUi)} = —nw(H)+ Y LU, JU,),
i=1 i=1
in the last equation, then we have
p=p" =TI +n?|H||> - 2n(n - Dw(H) — (n — 1)Trace(L). (48)
Finally, using (44) in (48), we get (46).

Now, we give the Chen-Ricci inequality for a Lagrangian submersion from a g.c.K manifold onto a Riemannian manifold by using
the following equation which was introduced by Giilbahar et al. (2017):

n2 1 n n n
TP = S 1IHIP + 52(71’1‘ ~ T == T2 2 (T (49)
= k=1 j=2
_ZZ Z {Tka TIk)Z}
k=12<i<j

Theorem 5.5. Let ¢ : (M 12” (c),J,g1,w) — (M3, g2) be a Lagrangian submersion and the Lee vector field B be horizontal. If

{Uy, ..., Uy} is an orthonormal frame of kery.., then we have

(n® +5n—-2)ce™ " N n’>+6n-4
4 4

Ric(Uy) + Ric*(JU,) +6(T) + llewl|?

2 n? 2 1
vl +Z||H” + Trace(L)

n—2
+

{L(U1,U1) + L(JUI»JUI)},

where

n
Ric*(JU}) = Z Ric*(JU,,JU;, JU,, JU;).
i=1

30
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Proof. Using (39), we have

n
> RiU,JU;, U JU;) =
i,j=1

n

_oC
O e S o W 1U)e U, U - 61U U (005, 90;)
ij=1

- &1(JU;,JU)g1 (U}, Up) + g1(JU;, U g1 (Uj, JU;)
- 2g1(JUi, JUj)gl(./Ui,JUj)}

1
+ E{L(U,-, Ug1(JU;,JU;) = L(JU;, U gy (Ui, JU)

- LU, JU)1(JU;, Up) + LUU;, JU g1 (U, Up) |

w 2
M, 0. U080 = 1 U U 10|

+3)ce” T  n?
- gTrace(L) - % - ”Z||w||2.

If we substitute the above equation in the definition of the scalar curvature,
n

n
o1 = Z Ric\(U;,U;) + Z Ric1(JU;,JU;)
=

J=1

n n
= > Ri(U, UL U Up) +2 Y Ri(U, JU;, Us, JU)

i,j=1 i,j=1

n
+ > RI(JUL U, JULL JU)),
ij=1

then we have
n n
o1=2 Z Ri(U, U, U;, Uj) +2 Z Ri(JU;,JU;, JU;, JU;)

1<i<j 1<i<j
+3)ce T  n?
+ nTrace(L) — % - %||w||2.

On the other hand if we use (20), (25), (30) and (37) , then we have
n n
DRI ULULU = Y AR UL UL U + 80T, U T, Un) = 1 (T, Uss To,Up) |

i,j=1

n
=2 > R(UL U, ULUp) +|IT112 = n?|IHIP,

1<i<j

i,j=1

and

n n
D, RiULJU, U JUy) = Y Ri(JU;, Up, JU;, Uy
i,j=1 i,j=1

= Z {gl((VJU]-T)UiUi,JUj) —81(7ZJ,-JUj,7ZJiJUj)}

i.j=1
n

=0(7T) - Z { igl(%in’%in)

i=1 j=1

1
+ 50U - g1 (UL U]l

= 5(7) - I71P + (2wl

If we write the last two equations in (50) and use (22), then we get

01 =2 Z RULU;, U, U;) +2 Z R*(JU;,JU;,JU;, JU))
1<i<j 1<i<j

+26(T) + (2n = Dllol* = n[|H|]> = |17,

31
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Making use of (51) and (52), we have
n

n
D RWULULULU) + D RiJUL UL U JU)

1<i<j 1<i<j
3)ce™” n*+4n-2
N gTrace(L) B n(n+ 4)ce _nT+ 4n ol
n n
= > RWULULULUp) + Y RYJULIUS, JULJU)
1<i<j 1<i<j
v - S iiaIR - L
2 2 ’
Now, using (28) and (29) in (20) we obtain
n ~ n . n n ek o
Z R\(U;,U;,U;,Uj) = Z R(U;,U;,U;,Uj) = { w1y = (T7) }
2<i<j 2<i<j k=12<i<j
Substituting the last equation in (53), we get
n n n n
P RIULULULUD+ Y RIGULJULIULIUD = Y T3 = (747
j=2 j=2 k=12<i<j
+3)ce™” n’+4n-2
+gTrace(L) _nln 4)“ U 4” llwl?

2
N . n 1
= Ric(U1) + Ric" (JU1) +8(T) = S IHIP = 31711
If we use (39) for the first and the second terms on the left hand side of the last equation, namely

ce 7 + ||a)||2)

Zn:Rl(Ul,Uj,Ul,Uj)z(l—n)( - +%{(n—2)L(U1,U1)—na)(H)},

=2
and

o ce™ +||wl||?
> RIJUL IV UL TU)) = (1 - n)(—)

j=2 4
+ %{(” —-2)L(JUy,JU;) + Trace(L) +nw(H)},
then we have
2x 1Trace(L) + 1= Z{L(Ul,Ul) " L(JUl,JUl)} (4 5n; 2)ce "
2 nn
SR - 3 3 (T - o

A . 1 n*
= Ric(Uy) + Ric" (JU) +6(T) = SIITI” = S IIHII”.
Now, using (49) in the last equation, we have

2
s . % n
Ric(U)) + Ric*(JUy) +6(T) = [|IT1” - ZIIHII2

1 -2
= Trace(L) + 2 {L(Ul,U1)+L(JU1,JU1)}
B (n®+5n-2)ce™ " B n2+6n—4”w”2
4 4
1 S k k k2 AN kN2
— I T =T == T = D D (T
k=1 k=1 j=2

The result comes from Remark 5.1.

(53)
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