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Abstract 

In this study, the sets of equation were extracted by Genetic Programming (GP) for thermal stress analysis of one-dimensional functionally 

graded rectangular plates. First, thermal stress analyses were performed using a finite difference method for a sufficient number of 

compositional gradient exponents. Then, equation sets were obtained by the GP using the maximum and minimum equivalent stress levels 
obtained from these analyses. Appropriate models are produced for equivalent stress levels at compositional gradient exponents. The models 

achieved these levels 100 times faster than the finite difference method by using GP. GP provided significant time gain in deriving sets of 

equations for thermal stress analysis of plates with current boundary conditions. 

Keywords: “Functionally graded plates, genetic programming, finite difference methods, thermal stress analysis.” 

1. Introduction 

Materials in materials science and technology are being designed and investigated for new material properties arising from 

the necessity. For this purpose, functionally graded materials are considered to be both high thermal resistance and thermal stress 

resistant materials for high temperature applications [1-4]. These materials are designed on the one side as a metal, on the other 

side as a function of volume and transition region volume fraction. Functionally change of the transition region prevents the 

occurrence of stress discontinuities which can be caused by the incompatibilities of the thermal and mechanical properties of the 

two different materials, namely ceramic and metal transition regions. In these special materials, it is important to determine the 

material composition, that is, the compositional gradient exponents, for which the thermal discontinuities are the lowest for 

different thermal and structural boundary conditions [5-7]. Thus, cracks or breaks in these regions can be prevented. 

The main applications of different algorithms [8-15] in the literature having same purpose are separated to provide solutions 

for different boundary conditions and different mechanical effects and to determine optimum compositional gradient upper value. 

Goupee and Vel [16] performed the optimization of the natural frequencies of bidirectional functional graded beams. They used 

the Genetic Algorithms (GA) to optimize the material composition. Ashjari and Khoshravan [17] performed mass optimization 

for strain distributions in the bending test of functionally graded materials. They used GA and particle swarm optimization in 

their work. They compared the convergence speed of these algorithms and the convergence accuracy. Karaboğa et al. [18] 

proposed a model with the artificial bee colony algorithm. They compared the results of the method with GP. In [19] it is 

investigated the applicability of layer optimization for the Artificial Bee Colony algorithm to maximize the lowest fundamental 

frequency of symmetric laminate composite plates. They compared the results with the GA. Apalak et al. presented layer 

optimization of plates using the GA to maximize the lowest fundamental frequency of plates of layered composites [20]. Tahami 

et al. [21] investigated the optimum design by evaluating the sudden temperature changes at the nodes of the functional cascaded 

material. They presented their experiments with the GA to provide the optimum volume distribution. Nguyen and Lee [22] 

investigated the optimum design of functionally graded beams under buckling. They used the GA to determine the optimum 

design according to the thickness of the beams. 

Guse and Brezocnik [23] presented analyzes of tensile strength and conductivity by cold-formed materials with the GP. They 

emphasized that the results of the GP are quite good and the cost of design was reduced. Brezocnik [24] developed different 

prediction models by the GP for the cold tensile strength of alloyed bars in different conditions. Ali has proved its validity by 

comparing the test model with the best model that is determined by the GP. Vassilopuas et al. [25] used the GP to measure the 
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durability of the reinforced fiber composite material. They indicated that the modeling technique they offer with the GP is more 

unitable than traditional methods.  

Ahishek et al. [26] used the GP to optimize the processing performance of polymer composite materials during manufacturing. 

Patterns is compared with GP and Adaptive Neuro Fuzzy. Russo et al. [27] used the GP to increase productivity during 

manufacture. They have determined optimal working conditions by the GP for the problems they deal with. Gandomi and Alavi 

[28] are proposed GP method for modeling structural engineering problems and determined optimum conditions for various 

complex structure problems. They presented their models by comparing them with the literature. In the literature, studies have 

been made to optimize or estimate the compositional gradient exponents, which determines the material composition of many 

functionally graded materials. However, in the studies related to FGM and GP, there is no study in which the grading is along the 

plane and the finite difference method used as the numerical solution method. In this respect, our work will provide important 

contributions to literature. 

In this study, the sets of equation were presented by the GP for thermal stress analysis of one-dimensional functionally graded 

rectangular plates. First, thermal stress analyses were performed [29] program using a finite difference method for a sufficient 

number of compositional gradient exponents. Then, equation sets were obtained by the GP using the maximum and minimum 

equivalent stress levels obtained from this analysis. As a result, produced appropriate models to obtain equivalent stress levels at 

compositional gradient exponents. The models achieved these levels are 100 times faster than the finite difference method. GP 

provided significant time gain in deriving sets of equations for thermal stress analysis of plates with current boundary conditions 

2. Material and Method 

2.1. Functionally Graded Materials 

FGM are designed on the one side as a metal, on the other side as a function of volume and transition region volume fraction.  

These materials are intended for high temperature applications. Because of the discontinuity of the material in the transition 

regions between layers in conventional composites, interfacial cracks occur. By using graded materials, the discontinuities in the 

interfacial area were removed and interfacial defects and cracks were prevented.  In these materials, it is very important to 

determine the optimum compositional gradient exponents in terms of workability of the material within economic, functionality 

and elastic boundaries. 

2.2. Yapı 

Genetic Programming, developed by Koza [30], has been applied to solve numerous interesting problems [31-35]. Genetic 

Programming which uses the same analogy as GA is a most well-known automatic programming technique. The basic steps for 

the GP method are similar to the steps of GA. The most important difference GP and GA is in the representation of individuals. 

While GA express individuals as fixed code sequences, GP express them parse trees. The trees are randomly generated according 

to tree depth which is previously determined. The production of tree nodes is provided by terminals (constants or variables such 

as x, y, 5) and functions (arithmetic operators such as +, -, *, /). Nodes create branches and branches form solution trees. The 

mathematical relationship of the solution model in GP can be represented by individuals which is described in Equation 1 as 

given in Figure 1. In these notations, x is used to represent the independent, and f (x) is dependent. 

 

                                  f(x) = log(x) + 4x (1) 

Figure 1: Representation of an example solution in GP with tree structure 
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Figure 2: The flow chart of Genetic Programming. 

A flow chart of genetic programming is given in Figure 2 [36]. The first step in the flow chart is the generating the initial 

population. Individuals are produced by the full method, the grow method, or the ramped half and half method [37].  The quality 

of each solution tree is determined by taking into account the predetermined fitness function of each problem. Individuals with 

high quality are more likely to pass on to the next generation. Genetic programming iteratively transforms a population of 

computer programs into a new generation of the population by applying genetic operations such reproduction, crossover and 

mutation. These operations are applied to individual(s) selected from the population. Choosing the best individuals according to 

fitness is applied with methods like tournament, roulette wheel [38]. The crossover operator allows the hybrid of two selected 

individuals to produce a new individual. Generally, sub-trees taken from two crossing points selected from parent trees are 

crossed to obtain new hybrid trees. The mutation operator provides unprecedented and unexplored individual elements [39]. With 

elitism, it is ensured that the good generations of the previous generation are transferred to the current generation. The method is 

terminated when it is met stopping criteria such as the specific fitness value of the individuals or the number of generations. 

2.3. Problem Description and Experimental Design 

In this section, the sets of equation were presented using Genetic Programming (GP) for thermal stress analysis of one-

dimensional functionally graded rectangular plates. First, thermal stress analyses were performed using a finite difference 

method for a sufficient number of compositional gradient exponents. Numerical methods were used to obtain the true values for 

graded upper values of 200 different composition randomly generated in the range    [0.001-1.5]. Then, equation sets were 

obtained by the GP using the maximum and minimum equivalent stress levels obtained from this analysis. In the problem, while 

the plate was subjected to an in-plane constant heat flux q= 50 kW/m2 at y = h along its ceramic edge, the heat flux at the other 

edges was zero and adiabatic boundary conditions were assumed. The initial temperature was taken as 298 K for the whole plate 

and analysis was completed when the temperature reached 600 K at any point on the metal edge opposite the edge of the heat 

flux. Since the 1 mm plate thickness was much smaller than the other dimensions, the strain and stress in the thickness direction 

were neglected and 2-D analyses were performed.  The plate was fixed along all its edges. The plate edge exposed to heat flux is 

completely ceramics (ZrO2). The edge opposite this edge is completely metal (Ti-6Al-4V).  

Datasets 

This section demonstrates feature selected classification ability of GP, set of experiments conducted. In this study, each 

dataset is split into a training set and test set to investigate performance of extracted models in GP. The number of features, 

training instances and test instances of the four datasets are shown in Table 1. All datasets are almost split with 70% of instances 

randomly selected from the datasets for training and the other 30% instances forms test set.  
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Table 1. Characteristics of the datasets considered in the experiments 

Dataset 
Total 

Instances 

Training 

Instances 

Test 

Instances 

(𝜎eqv)
1

(the greatest of the greatest value of equivalent stress levels) 200 140 60 

(𝜎eqv)
2

 (the smallest value of the largest value of the equivalent stress levels) 200 140 60 

(𝜎eqv)
3

(the largest value of the smallest value of the equivalent stress levels) 200 140 60 

(𝜎eqv)
4

 (the smallest value of the smallest value of the equivalent stress levels) 200 140 60 

 

Fitness Function- Parameters 

The performance of models obtained by GP is evaluated by the Root Mean Square Error (RMSE) on both the training set and 

the test set. The fitness function is shown Eq. (2). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = √
∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙)2𝑛

1

𝑛
 

(2) 

Where n define the data size, yactual is y values from data set, ypred is the estimated y value obtained by entering the values of 

the solution set of the obtained solution. The complexity of the obtained solution is calculated as in Eq. (3) in proportion to the 

depth of the tree and the number of nodes.   

𝐶 = ∑ 𝑛 ∗ 𝑘

𝑑

𝑘=1

 

(3) 

Where C is tree complexity, d is the depth of the solution tree and n is the number of nodes at depth. The parameters for GP is 

summarized in Table 2. for the problems. The same parameters are used for all data sets. 

Table 2. Parameters 

Parameters GP 

Population Size 100 

Generation 100 

Maximum Tree Depth 4 

Crossover Rate 0.14 

Mutation Rate 0.84 

Direct Reproduction Rate 0.02 

Initialization Ramped Half and Half 

Functions +, -, * 

 

3. Results and Discussion 

This section demonstrates symbolic regression abilities of GP, set of experiments conducted. 

3.1. Simulation Results 

The experiments are run 100 times independently and the obtained training results are demonstrated in Table 3 and test 

results are in Table 4. Standard deviation in the tables is shown as S.D. As seen in Table 3, the most error value was (𝜎eqv)
2
 with 
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4.66 value. Best fitness was achieved using (𝜎eqv)
1
. The maximum standard deviation is found  (𝜎eqv)

3
 with 7.53 value in 

dataset. Extracted model which produces the closest value to the real values is found in (𝜎eqv)
2
 with 4.66 fitness. 

Table 3. Training Simulation Results 

Dataset Criteria Metric 

(σeqv)
1
 

Mean 9.39 

Max 10.04 

Min 8.52 

S.D 0.38 

(σeqv)
2

 

Mean 11.14 

Max 15.22 

Min 4.66 

S.D 2.22 

(σeqv)
3

 

Mean 14.08 

Max 14.4 

Min 7.53 

S.D 1.02 

(σeqv)
4

 

Mean 23.40 

Max 24.11 

Min 13.66 

S.D 1.93 

 

Figure 3 ((𝜎eqv)
1
), Figure 4 ((𝜎eqv)

2
), Figure 5 ((𝜎eqv)

3
), Figure 6 ((𝜎eqv)

4
) are shown training model predictions and 

actual values and Figure 7 ((𝜎eqv)
1
), Figure 8 ((𝜎eqv)

2
), Figure 9 ((𝜎eqv)

3
), Figure 10 ((𝜎eqv)

4
) are shown test model 

predictions and actual values Good predictions are those close to the identity line. As seen in the graphs, the predicted values are 

close to the actual values. 

 

Fig 3. Training Actual with Predicted Model Graph(𝜎eqv)
1
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Fig 4. Training Actual with Predicted Model Graph(𝜎eqv)
2
 

 

 

Fig 5. Training Actual with Predicted Model Graph(𝜎eqv)
3
 

 

 

Fig 6. Training Actual with Predicted Model Graph(𝜎eqv)
4
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Table 4. Test Simulation Results 

Dataset Criteria Metric 

(σeqv)
1

 

Mean 9.45 

Max 10.08 

Min 8.54 

S.D 0.39 

(σeqv)
2

 

Mean 11.42 

Max 15.47 

Min 4.67 

S.D 2.24 

(σeqv)
3
 

Mean 14.86 

Max 15.22 

Min 7.77 

S.D 1.09 

(σeqv)
4
 

Mean 23.86 

Max 24.6 

Min 13.69 

S.D 2.00 

 

As shown in Table 4, the average value in the test data set is 9.45 in (𝜎eqv)
1
 and the worst fitness value has 24.6 in (𝜎eqv)

4
. 

The model which is minimum error 4.67 fitness are produced equivalent stress values in (𝜎eqv)
2
.  

  

Fig 7. Test Actual with Predicted Model Graph(𝜎eqv)
1
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Fig 8. Test Actual with Predicted Model Graph(𝜎eqv)
2
 

  

Fig 9. Test Actual with Predicted Model Graph(𝜎eqv)
3
 

 

Fig 10. Test Actual with Predicted Model Graph(𝜎eqv)
4
 

3.2. Analysis of Evolved Models 

The evolved trees information of best solutions are shown in Table 5. GP extracted successful models with few features by 

evaluating the data sets. Extracted best models of equations have the best performance in equivalent stress are given Table 6. 
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Table 5. Best solution tree information for each data set 

Problem Best Model Criteria Metric 

(σeqv)
1

 
Node 11 
Complexity 33 
Tree Depth 4 

(σeqv)
2
 

Node 11 
Complexity 33 
Tree Depth 4 

(σeqv)
3
 

Node 13 
Complexity 41 
Tree Depth 4 

(σeqv)
4
 

Node 15 
Complexity 49 
Tree Depth 4 

 

Table 6.  Best model of equations   

Dataset Equations   

(σeqv)
1
 −58.57m1

3 + 234.0 m1
2 − 83.22m1 + 587.1 

(σeqv)
2
 −158.5m1

3 + 457.1m1
2 − 235.9m1 + 479.2 

(σeqv)
3
 146.5m1

3 − 543.8m1
2629.3m1 + 244.2 

(σeqv)
4
 184.4m1

3 − 678.5m1
2 + 779.7m1 + 140.4 

 

Numerical (real) values corresponding to 200 different composition gradient upper values (m values) were produced in the 

range of 0.001-1.5 of the one dimensional functionally graded rectangular plates. These values are used as datasets in GP. In this 

study, we obtained error values using the actual values and predicted values using Eq. (2).  The graph of error values of all 

datasets in equivalent stresses is shown in Figure 11. As shown in Figure 11, the error values are fluctuated in all datasets. 

 

Fig 11. Error Distributions in All Datasets 

20 randomly selected samples are shown in Table 7. Table 7 show that the minimum error value is 0.01 and the error rate is 

0.0017% ; the maximum error value is 30.14 and the error rate is 5.46%. The RMSE value is 8.53. 
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Table 7.  Actual, GP Predicted and Error Values in (𝛔𝐞𝐪𝐯)
𝟏
 

m 
(σeqv)

1
with 

FDM 

(σeqv)
1
wit

h GP 

(σeqv)
1
 with 

GP Error 

0,0001 594,91 587,09 7,82 

0,0002 594,83 587,08 7,74 

0,003 592,44 586,85 5,59 

0,08 551,77 581,91 30,14 

0,13 557,37 580,11 22,74 

0,17 562,25 579,43 17,17 

0,33 583,00 583,02 0,01 

0,48 602,65 594,59 8,06 

0,43 596,14 589,93 6,21 

0,49 603,94 595,61 8,33 

0,5 605,23 596,67 8,56 

0,74 635,27 629,92 5,35 

1,17 714,64 716,25 1,61 

1,19 719,68 720,74 1,06 

1,2 722,18 722,99 0,80 

1,21 724,68 725,24 0,56 

1,26 737,04 736,58 0,47 

1,28 741,94 741,13 0,80 

 

Real and predicted values for (𝛔𝐞𝐪𝐯)
𝟐
 were obtained by selecting the range [0.001-1.5]. 20 randomly selected samples are 

shown in Table 8. Table 8 show that the minimum error value is 0.02 and the error rate is 0.004% ; the maximum error value is 

15,18 and the error rate is 3.4%. The RMSE value is 4.67. 

Table 8.  Actual, GP Predicted and Error Values in (𝛔𝐞𝐪𝐯)
𝟐
 

m 

(σeqv)
2
with 

FDM 

 

(σeqv)
2
with GP 

(σeqv)
2
 

with GP Error 

0,0001 482,13 479,18 2,96 
0,0002 482,06 479,15 2,91 
0,003 480,10 478,50 1,61 
0,08 447,99 463,17 15,18 
0,13 448,97 455,92 6,95 
0,17 449,78 451,55 1,78 
0,33 453,00 445,60 7,40 
0,48 455,85 454,26 1,59 
0,43 454,93 450,04 4,88 
0,49 456,04 455,25 0,78 
0,5 456,22 456,29 0,07 
0,74 490,93 492,58 1,64 
1,17 582,46 582,43 0,02 
1,19 586,05 586,43 0,38 
1,2 587,83 588,40 0,57 
1,21 589,59 590,36 0,76 
1,26 598,26 599,80 1,54 
1,28 601,65 603,41 1,76 
1,34 611,54 613,56 2,02 
1,5 636,21 634,41 1,80 

 

Real and predicted values for (𝛔𝐞𝐪𝐯)
𝟑
 were obtained by selecting the range [0.001-1.5]. 20 randomly selected samples are 

shown in Table 9. Table 9 show that the minimum error value is 0.02 and the error rate is 0.005%; the maximum error value is 

20.65 and the error rate is 4.3%. The RMSE value is 7.6. 
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Table 9.  Actual, GP Predicted and Error Values in (𝛔𝐞𝐪𝐯)
𝟑
 

m 

(σeqv)
3

wit

h FDM 

 

(σeqv)
3

with GP 
(σeqv)

3
 

with GP Error 
0,0001 243,97 244,26 0,29 
0,0002 244,11 244,33 0,21 
0,003 248,07 246,08 1,99 
0,08 286,22 291,14 4,92 
0,13 308,17 317,14 8,97 
0,17 325,56 336,18 10,62 
0,33 390,60 397,91 7,31 
0,48 444,69 437,17 7,51 
0,43 427,52 425,90 1,62 
0,49 448,02 439,23 8,80 
0,5 451,33 441,21 10,11 
0,74 471,44 471,46 0,02 
1,17 465,97 470,71 4,74 
1,19 465,82 469,87 4,05 
1,2 465,75 469,44 3,69 
1,21 465,69 469,01 3,32 
1,26 465,40 466,84 1,43 
1,28 465,31 465,97 0,67 
1,34 465,25 463,51 1,75 
1,5 479,69 459,04 20,65 

 

Real and predicted values for (𝛔𝐞𝐪𝐯)
𝟒
 were obtained by selecting the range [0.001-1.5]. 20 randomly selected samples are 

shown in Table 10. Table 10 show that the minimum error value is 0.17 and the error rate is 0.028% ; the maximum error value 

is 31.78 and the error rate is 5.65%. The RMSE value is 13.67. 

Table 10.  Actual, GP Predicted and Error Values in (𝛔𝐞𝐪𝐯)
𝟒
 

m 

(σeqv)
4

with 

FDM GP (σeqv)
4

 
(σeqv)

4
with 

GP Error 

0,0001 127,83 140,40 12,65 

0,0002 128,00 140,40 12,56 

0,003 132,65 140,40 10,09 

0,08 225,68 140,40 27,15 

0,13 262,00 140,40 31,30 

0,17 286,03 140,40 31,78 

0,33 343,71 140,40 13,27 

0,48 374,63 140,40 4,09 

0,43 364,71 140,40 0,17 

0,49 376,57 140,40 4,67 

0,5 378,50 140,40 5,18 

0,74 411,70 140,40 8,85 

1,17 416,90 140,40 2,29 

1,19 417,16 140,40 1,00 

1,2 417,30 140,40 0,34 

1,21 417,45 140,40 0,33 

1,26 418,12 140,40 3,62 

1,28 418,38 140,40 4,90 

1,34 419,18 140,40 8,61 

1,5 421,26 140,40 15,59 

 

The RMSE, minimum and maximum error values in the effective value range are shown in Table 11. RMSE values generated 

in GP under the boundary conditions [0.001-1.5], the best result is achieved in  (𝜎eqv)
2
. The minimum error value is (𝜎eqv)

1
 and 

the maximum value is (𝜎eqv)
4
.  
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Table 11. RMSE Minimum and Maximum Error Values in The Effective Value Range 

 
(σeqv)

1
 (σeqv)

2
 (σeqv)

3
 (σeqv)

4
 

RMSE 8.53 4.67 7.6 13.67 

Min 
Error 

0.01 0.02 0.02 0.17 

Max 
Error 

30.14 15.18 20.65 31.78 

4. Conclusions 

In this study, equation sets were found by Genetic Programming (GP) for thermal stress analysis of functional grade 

rectangular plates. The variable ‘m’ value in the set of equations is the composition gradient upper value. In these equations, 

different equivalent stress levels are obtained by substituting ‘m’ value.  GP provided significant time gain in deriving sets of 

equations for thermal stress analysis of plates with current boundary conditions. In the study, the models in the range of [0.001-

1.5] have been observed more efficiently. The error rates obtained by GP are: 1.07% for (𝜎eqv)
1
, 0.72% for (𝜎eqv)

2
, 1.47% for 

(𝜎eqv)
3
 and 4.59% for (𝜎eqv)

4
. In the future works, it is aimed to change the parameters such as tree depth, functions used in the 

extracted models and compare the method with other automatic programming methods. 
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