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Decompositions of continuity for multifunctions

Marian Przemski ∗

Abstract

Investigations of decompositions of continuity for functions between
topological spaces has a large literature, but extension of this topic to
multifunctions has not yet been investigated. The aim of the present
note is to introduce the study of decompositions of continuity for mul-
tifunctions. For this purpose we will generalize the methods introduced
by the author in [27] and later used in [9] and in many papers including
for example [10] and [23].
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1. Introduction and preliminaries

Throughout the present paper, (X, τ) and (Y, ξ) will denote a topological space with
no separation properties assume. Given a nonempty set Z ⊂ X, we denote by P(Z) the
power set of Z. For a subset A of a topological space (X, τ) we denote by Cl(A) and
Int(A) the closure and the interior of A, respectively. A subset A⊂X is said to be α-open
[21] (resp. semi-open [8], pre-open [16], b-open [2] (or γ-open [3], or sp-open [9]), β-open
[17] (or ps-open [1]) if A ⊂ Int(Cl(Int(A))) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A
⊂ Cl(Int(A)) ∪ Int(Cl(A))), A ⊂ Cl(Int(Cl(A))). The family of all α-open (resp. semi-
open, pre-open, γ-open, β-open) sets in (X, τ) is denoted by α(X,τ) (resp. SO(X,τ),
PO(X,τ), γ(X,τ), β(X,τ)). The union of all α-open (resp. semi-open, pre-open, γ-open,
β-open) sets of X contained in A is called α-interior (resp. semi-interior, preinterior, γ-
interior, β-interior) of A and is denoted by α.Int(A) (resp. s.Int(A), p.Int(A), γ.Int(A)(or
s.p.Int(A)[9]), β.Int(A)(or p.s.Int(A)[9])). The following results will be useful later.

Lemma 1.1[2]. The following hold for a subset A of a topological space (X, τ):
(a) α.Int(A) = A ∩ Int(Cl(Int(A)));
(b) s.Int(A) = A ∩ Cl(Int(A));
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(c) p.Int(A) = A ∩ Int(Cl(A));
(d) γ.Int(A) = s.Int(A) ∪ p.Int(A);
(e) β.Int(A) = A ∩ Cl(Int(Cl(A))).

By a multifunction F:X→Y we mean a map de�ned on X with values being nonempty
subsets of Y. Following [4] we shall denote the upper and lower inverse images of a set
B ⊂ Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X : F (x) ⊂ B} and
F−(B) = {x ∈ X : F (x) ∩B 6= ∅}. A multifunction F:(X,τ)→(Y,ξ) is called upper semi
continuous (brie�y u.s.c.) (resp. lower semi continuous (brie�y l.s.c.)) [13, 22] at a point
x ∈ X if, x ∈ Int(F+(W)) (resp. x ∈ Int(F−(W))) for each open subset W of Y such that
x ∈ F+(W) (resp. x ∈ F−(W)). It is called u.s.c. (resp. l.s.c.) if F is u.s.c. (resp. l.s.c.)
at each point of X.

There are many generalizations and modi�cations of continuity. The basic of these
are as follows:

A multifunction F:(X,τ)→ (Y,ξ) is said to be u.α.c. (or l.α.c.) [20] (resp. u.q.c. (or
l.q.c.) [25], u.p.c. (or l.p.c.) [24], u.γ.c. (or l.γ.c.) [18], u.β.c. (or l.β.c.) [26]) at a
point x ∈ X if, x ∈ α.Int(F+(W)) (or x ∈ α.Int(F−(W))) (resp. x ∈ s.Int(F+(W)) (or
x ∈ s.Int(F−(W))), x ∈ p.Int(F+(W)) (or x ∈ p.Int(F−(W))), x ∈ γ.Int(F+(W)) (or x
∈ γ.Int(F−(W))), x ∈ β.Int(F+(W)) (or x ∈ β.Int(F−(W)))) for each W ∈ ξ such that x
∈ F+(W) (or x ∈ F−(W)).

A multifunction F is called u.α.c. (or l.α.c.), (resp. u.q.c. (or l.q.c.), u.p.c. (or l.p.c.),
u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)) if it has this property at each point of X, that is,
A ⊂ α.Int(A) (or B ⊂ α.Int(B)) (resp. A ⊂ s.Int(A) (or B ⊂ s.Int(B)), A ⊂ p.Int(A)
(or B ⊂ p.Int(B)), A ⊂ γ.Int(A) (or B ⊂ γ.Int(B), A ⊂ β.Int(A) (or B ⊂ β.Int(B))) for
any pair (A, B) ∈ P(X) × P(X) of the form (A,B) = (F+(W), F−(W)), where W ∈ ξ;
equivalently, A ⊂ Int(Cl(Int(A))) (or B ⊂ Int(Cl(Int(B))), (resp. A ⊂ Cl(Int(A)), (or B
⊂ Cl(Int(B))), A ⊂ Int(Cl(A)), (or B ⊂ Int(Cl(B))), A ⊂ Cl(Int(A)) ∪ Int(Cl(A)), (or B
⊂ Cl(Int(B)) ∪ Int(Cl(B))), A ⊂ Cl(Int(Cl(A))), (or B ⊂ Cl(Int(Cl(B)))) ) for any pair
(A, B) ∈ P(X)× P(X) of the form (A,B) = (F+(W), F−(W )), where W ∈ ξ.

Of course, if a single-valued function f:(X,τ)→ (Y,ξ) is treated as a multifunction F
given by F(x) = {f(x)} for all x ∈ X, then the multifunction F is u.s.c or l.s.c. (resp.
u.α.c. or l.α.c., u.q.c. or l.q.c., u.p.c. or l.p.c., u.γ.c. or l.γ.c., u.β.c. or l.β.c.) if and
only if the function f is continuous (resp. α-continuous [15], semi-continuous [11], [14],
pre-continuous [16], γ-continuous [3], β-continuous [17]) because of the simple fact that
in this case we have F+(B) = F−(B) = f−1(B) for any B ⊂ Y.

Since any open subset W ⊂ Y designate a pair (F+(W), F−(W)) ∈ P(X)× P(X), it
is convenient to use the following general concept:

De�nition 1.2. Let R be a binary relation on P(X). We say that a multifunction
F:(X,τ)→(Y,ξ) is R-continuous if (F+(W), F−(W)) ∈ R for any W ∈ ξ.

Remark 1.3. If we denote
τuc = τ × P(X) (or τ lc = P(X)×τ) (resp.
τuα = α(X,τ)×P(X) (or τ lα = P(X)×α(X,τ)),
τus = SO(X,τ)×P(X) (or τ ls = P(X)× SO(X,τ)),
τup = PO(X,τ)×P(X) (or τ lp = P(X)×PO(X,τ)),
τuγ = γO(X,τ)×P(X) (or τ lγ = P(X)×γO(X,τ)),
τuβ = βO(X,τ)×P(X) (or τ lβ = P(X)×βO(X,τ))), then τuc -continuity (or τ lc-continuity)

(resp. τuα -continuity (or τ lα-continuity), τ
u
s -continuity (or τ ls-continuity), τ

u
p -continuity

(or τ lp-continuity), τ
u
γ -continuity (or τ lγ-continuity), τ

u
β -continuity (or τ lβ-continuity)) is

equivalent to u.s.c. (or l.s.c.) (resp. u.α.c. (or l.α.c.), u.q.c. (or l.q.c.), u.p.c. (or l.p.c.),
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u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)).
In this present paper we consider a special type of continuity for multifunctions, named

in the literature "minimality", or type ”lu” and de�ned as follows.

De�nition 1.4. A multifunction F:(X,τ)→(Y,ξ) is said to be:
(a) lu.s.c. if F−(W) ⊂ Int(F+(W) for each W ∈ ξ;
(b) lu.α.c. [28] if F−(W) ⊂ Int(Cl(Int(F+(W)))) for each W ∈ ξ;
(c) lu.q.c. [7, 5, 6, 12, 19] if F−(W) ⊂ Cl(Int(F+(W))) for each W ∈ ξ;
(d) lu.p.c. [28] if F−(W) ⊂ Int(Cl(F+(W))) for each W ∈ ξ;
(e) lu.γ.c. if F−(W) ⊂ Cl(Int(F+(W))) ∪ Int(Cl(F+(W))) for each W ∈ ξ;
(f) lu.β.c. [28] if F−(W) ⊂ Cl(Int(Cl(F+(W)))) for each W ∈ ξ.

The property lu.q.c. has been investigated in [7, Theorem 5.2] and in [5, 6, 12, 19]
under the name of minimality of multifunctions.

2. Decompositions of continuity of type ”lu”
In this paper we will generalize the methods introduced in [27]. We begin by de�n-

ing some useful notions speci�c for investigations of strictly multi-valued functions. By
P(X)~×P(X) we denote the set of all pairs (A,B) ∈ P(X)× P(X) satisfying A ⊂ B.

De�nition 2.1. Given a topological space (X,τ) we de�ne the following operators
P(X)~×P(X)→ P(X):

(a) Intu(A,B) = B ∩ Int(A);
(b) α.Intu(A,B) = B ∩ Int(Cl(Int(A)));
(c) s.Intu(A,B) = B ∩ Cl(Int(A));
(d) p.Intu(A,B) = B ∩ Int(Cl(A));
(e) γ.Intu(A,B) = s.Intu(A,B) ∪ p.Intu(A,B);
(f) β.Intu(A,B) = B ∩ Cl(Int(Cl(A))).

It is easy to see that the operators in Lemma 1.1 are compositions of the above
operators and the diagonal operator ∆P(X) : P(X) → P(X) × P(X) given by ∆P(X)(A)
= (A,A) for any A ∈ P(X). More precisely:

Remark 2.2. The following hold for a subset A of a topological space (X, τ):
(a) Intu(A,A) = Int(A);
(b) α.Intu(A,A) = α.Int(A);
(c) s.Intu(A,A) = s.Int(A);
(d) p.Intu(A,A) = p.Int(A);
(e) γ.Intu(A,A) = γ.Int(A);
(f) β.Intu(A,A) = β.Int(A).

De�nition 2.3. For a topological space (X, τ) we denote:
(a) πluc = {(A,B) ∈ P(X)× P(X) : B = Intu(A,B)};
(b) πluα = {(A,B) ∈ P(X)× P(X) : B = α.Intu(A,B)};
(c) πlus = {(A,B) ∈ P(X)× P(X) : B = s.Intu(A,B)};
(d) πlup = {(A,B) ∈ P(X)× P(X) : B = p.Intu(A,B)};
(e) πluγ = {(A,B) ∈ P(X)× P(X) : B = γ.Intu(A,B)};
(f) πluβ = {(A,B) ∈ P(X)× P(X) : B = β.Intu(A,B)}.

Remark 2.4. The property of being lu.s.c. (resp. lu.α.c., lu.q.c., lu.p.c., lu.γ.c., lu.β.c.)



624

is equivalent to τ luc -continuity (resp. τ luα -continuity, τ lus -continuity, τ lup -continuity, τ luγ -

continuity, τ luβ -continuity).

The following families of subsets were used to obtain standard types of decompositions
of continuity and generalized continuity.

De�nition 2.5.[27, 9] For a topological space (X, τ) we denote:
(a) D(c, α) = {A ∈ P(X) : Int(A) = α.Int(A)};
(b) D(c, s) = {A ∈ P(X) : Int(A) = s.Int(A)};
(c) D(c, p) = {A ∈ P(X) : Int(A) = p.Int(A)};
(d) D(c, β) = {A ∈ P(X) : Int(A) = β.Int(A)};
(e) D(α, s) = {A ∈ P(X) : α.Int(A) = s.Int(A)};
(f) D(α, p) = {A ∈ P(X) : α.Int(A) = p.Int(A)};
(g) D(α, β) = {A ∈ P(X) : α.Int(A) = β.Int(A)};
(h) D(p, γ) = {A ∈ P(X) : p.Int(A) = γ.Int(A)};
(i) D(p, β) = {A ∈ P(X) : p.Int(A) = β.Int(A)};
(j) D(γ, β) = {A ∈ P(X) : γ.Int(A) = β.Int(A)}.

Each of the above families is of the form {A ∈ P(X) : O1(A) = O2(A)}, that is, the
set of coincidence points of a pair (O1, O2) of di�erent operators O1, O2 : P(X)→ P(X)
which are members of the collection {Int, α.Int, p.Int, s.Int,
γ.Int, β.Int}. In the case of operators O:P(X)~×P(X) → P(X) introduced in De�nition
2.1, we get the general result. Before starting, we need a speci�c operator Il : P(X) ×
P(X)→ P(X) de�ned by Il(A,B) = B.

Theorem 2.6. Let (X, τ) be a topological space. Any set of coincidence points of a pair
(O1, O2) of di�erent operators belonging to the following collection
{Intu, α.Intu, s.Intu, p.Intu, γ.Intu, β.Intu, Il} is equal to one of the following:
(a) τ luc , τ luα , τ lus , τ lup , τ luγ , τ luβ ;

(b) Dlu(c,α) = {(A,B) ∈ P(X)× P(X) : Intu(A,B) = α.Intu(A,B)};
(c) Dlu(c, s) = {(A,B) ∈ P(X)× P(X) : Intu(A,B) = s.Intu(A,B)};
(d) Dlu(c, p) = {(A,B) ∈ P(X)× P(X) : Intu(A,B) = p.Intu(A,B)};
(e) Dlu(c, β) = {(A,B) ∈ P(X)× P(X) : Intu(A,B) = β.Intu(A,B)};
(f) Dlu(α, s) = {(A,B) ∈ P(X)× P(X) : α.Intu(A,B) = s.Intu(A,B)};
(g) Dlu(α, p) = {(A,B) ∈ P(X)× P(X) : α.Intu(A,B) = p.Intu(A,B)};
(h) Dlu(α, β) = {(A,B) ∈ P(X)× P(X) : α.Intu(A,B) = β.Intu(A,B)};
(i) Dlu(p, γ) = {(A,B) ∈ P(X)× P(X) : p.Intu(A,B) = γ.Intu(A,B)};
(j) Dlu(p, β) = {(A,B) ∈ P(X)× P(X) : p.Intu(A,B) = β.Intu(A,B)};
(k) Dlu(γ, β) = {(A,B) ∈ P(X)× P(X) : γ.Intu(A,B) = β.Intu(A,B)}.
Proof. It is clear that the sests in (a) are designated by the pairs (Il, Intu), (Il, α.Intu),

(Il, s.Intu), (Il, p.Intu), (Il, γ.Intu) and (Il, β.Intu), respectively. Analogously, the sets
Dlu(c,α), Dlu(c, s), Dlu(c, p) and Dlu(c, β) are designated by the pairs (Intu, α.Intu),
(Intu, s.Intu), (Intu, p.Intu) and (Intu, β.Intu), respectively. Now we show that the
pairs (Intu, β.Intu) and (Intu, γ.Intu) have the same set of coincidence points. Indeed,
if γ.Intu(A,B) ⊂ Intu(A,B), i.e., (B ∩ Cl(Int(A))) ∪ (B ∩ Int(Cl(A))) ⊂ B ∩ Int(A), then
Cl(B ∩ Int(Cl(A))) ⊂ Cl(B ∩ Int(A)) and consequently, Cl(Int(Cl(A))) = Cl(Int(A)) be-
cause of Cl(B ∩ Int(Cl(A)) = Cl(Cl(B) ∩ Int(Cl(A)) and A ⊂ B. As a result, we obtain
(B ∩ Cl(Int(A))) ∪ (B ∩ Int(Cl(A))) = B ∩ Cl(Int(Cl(A))) ⊂ Intu(A,B). This means
that Intu(A,B) = β.Intu(A,B). So, the sets in (b), (c), (d) and (e) are the only sets of
coincidence points that can be obtained by use of the operator Intu. Since Cl(Int(A))
= Cl(Int(Cl(Int(A)))), analogously one can show that α.Intu(A,B) = β.Intu(A,B) and
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α.Intu(A,B) = γ.Intu(A,B) are equivalent. So, the sets in (f), (g), (h) and (b) are the only
sets of coincidence points that can be obtained by use of the operator α.Intu. To prove
that the sets in (i), (j), (d) and (g) are the only sets of coincidence points that can be
obtained by use of the operator p.Intu, we will show that p.Intu(A,B) = s.Intu(A,B) and
α.Intu(A,B) = β.Intu(A,B) are equivalent. If p.Intu(A,B) = s.Intu(A,B), then of course,
Cl(p.Intu(A,B)) = Cl(s.Intu(A,B)). It is clear that Cl(p.Intu(A,B)) = Cl(Int(Cl(A))) as
shown in the previous part of the proof. Now we show that Cl(s.Intu(A,B)) = Cl(Int(A)).
Indeed, Cl(B ∩ Int(A)) ⊂ Cl(s.Intu(A,B)) ⊂ Cl(Int(A))and of course, Cl(B ∩ Int(A)) =
Cl(Int(A)). Consequently, B ∩ Int(Cl(Int(A))) = B ∩ Int(Cl(A)) and B ∩ Cl(Int(A)) =
B ∩ Cl(Int(Cl(A))) and therefore the equality p.Intu(A,B) = s.Intu(A,B) implies that
α.Intu(A,B) = β.Intu(A,B). Conversely, the last equality implies that p.Intu(A,B) ⊂
β.Intu(A,B) = α.Intu(A,B) ⊂ s.Intu(A,B) and s.Intu(A,B) ⊂ β.Intu(A,B) = α.Intu(A,B)
⊂ p.Intu(A,B). So, p.Intu(A,B) = s.Intu(A,B). Finally, we will show that the sets in (f)
and (c) are the only sets of coincidence points that can be obtained by use of the oper-
ator s.Intu. Since p.Intu(A,B) = s.Intu(A,B) and α.Intu(A,B) = β.Intu(A,B) are equiv-
alent, it is enough to prove that s.Intu(A,B) = γ.Intu(A,B), s.Intu(A,B) = β.Intu(A,B)
and α.Intu(A,B) = p.Intu(A,B) are equivalent. If s.Intu(A,B) = γ.Intu(A,B), then
Cl(p.Intu(A,B)) ⊂ Cl(s.Intu(A,B)) which means Cl(B∩ Int(Cl(A))) ⊂ Cl(B∩ Cl(Int(A)))
and implies that Cl(Int(Cl(A))) = Cl(Int(A)) . So γ.Intu(A,B) = (B ∩ Cl(Int(Cl(A)))) ∪
(B ∩ Int(Cl(A))) = β.Intu(A,B) and consequently, s.Intu(A,B) = β.Intu(A,B). The last
equality implies that Cl(B ∩ Cl(Int(Cl(A)))) = Cl(B ∩ Cl(Int(A))), so Cl(Int(Cl(A))) =
Cl(Int(A)) or equivalently, Int(Cl(A)) = Int(Cl(Int(A))). Thus, B ∩ Int(Cl(A)) = B ∩
Int(Cl(Int(A))), i.e. α.Intu(A,B) = p.Intu(A,B). Finally, using the last equality we have
γ.Intu(A,B) = (B ∩ Cl(Int(A))) ∪ (B ∩ Int(Cl(Int(A)))) = B ∩ Cl(Int(A)) = s.Intu(A,B),
and the proof is complete.

The following diagram shows the relationship between the families of sets considered
in the above theorem.

Diagram 2.7.
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The next result follows directly from the de�nitions of the families of sets considered
in Theorem 2.6 and, in the case (d), from the fact that the equalities s.Intu(A,B) =
β.Intu(A,B) and α.Intu(A,B) = p.Intu(A,B) are equivalent as is shown in the proof of
this theorem.

Theorem 2.8. For any topological space (X, τ), the following hold:
(a) τ luc = Dlu(c,α)∩τ luα = Dlu(c,s)∩τ lus = Dlu(c,p)∩τ lup = Dlu(c, β)∩τ luβ ;

(b) τ luα = Dlu(α, s)∩τ lus = Dlu(α, p)∩τ lup = Dlu(α, β)∩τ luβ ;

(c) τ lup = Dlu(p, γ)∩τ luγ = Dlu(p, β)∩τ luβ ;

(d) τ lus = Dlu(α, p)∩τ luβ ;

(e) τ luγ = Dlu(γ, β)∩τ luβ .

As a consequence of the above result we o�er the following �ve decomposition theorems
for multifunctions.

Theorem 2.9. For any multifunction F:(X,τ)→ (Y,ξ), the following statements are
equivalent:

(a) F is lu.s.c.;
(b) F is lu.α.c. and Dlu(c, α)-continuous;
(c) F is lu.q.c. and Dlu(c, s)-continuous;
(d) F is lu.p.c. and Dlu(c, p)-continuous;
(e) F is lu.β.c. and Dlu(c, β)-continuous.

Theorem 2.10. For any multifunction F:(X,τ)→ (Y,ξ), the following statements are
equivalent:

(a) F is lu.α.c.;
(b) F is lu.q.c. and Dlu(α, s)-continuous;
(c) F is lu.p.c. and Dlu(α, p)-continuous;
(d) F is lu.β.c. and Dlu(α,β)-continuous.

Theorem 2.11. For any multifunction F:(X,τ)→ (Y,ξ), the following statements are
equivalent:

(a) F is lu.p.c.;
(b) F is lu.γ.c. and Dlu(p, γ)-continuous;
(c) F is lu.β.c. and Dlu(p, β)-continuous.

Theorem 2.12. For any multifunction F:(X,τ)→ (Y,ξ), the following statements are
equivalent:

(a) F is lu.q.c.;
(b) F is lu.β.c. and Dlu(α, p)-continuous.

Theorem 2.13. For any multifunction F:(X,τ)→ (Y,ξ), the following statements are
equivalent:

(a) F is lu.γ.c.;
(b) F is lu.β.c. and Dlu(γ, β)-continuous.

Remark 2.14. The classes of multifunctions corresponding to appropriate families of
sets shown in the Diagram 2.7 are strictly di�erent.

Proof. Let us consider some examples of multifunctions F:(R,τ)→ (R,ξ), where R is
the set of all real numbers, τ denotes the natural topology on R and ξ is generated by the
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basis Bξ = {(−∞, r) : r ∈ R}. For a multifunction F and W ∈ Bξ we use the following
notation: AW = F+(W) and BW = F−(W).

(i) Let F be de�ned as follows: F(0) = R, F(x) = {− ln(x)} if x > 0 and F(x) =
{− ln(−x)} if x < 0. If W ∈ Bξ, then we have AW = (−∞, − exp(−r)) ∪ (exp(−r),
+∞), BW = AW ∪ {0} and Int(AW ) = Int(Cl(AW ))= AW . So, BW∩ Cl(Int(Cl(AW )))
= Int(AW ) but BW 6⊂ Cl(Int(Cl(AW ))) and therefore F is Dlu(c, β)-continuous but not
lu.β.c.

(ii) Let F be de�ned by F(0) = R, F(x) = {ln(x)} if x > 0 and F(x) = {ln(−x)}
if x < 0 and let W ∈ Bξ. Then we have AW = (− exp(r), 0) ∪ (0, exp(r)), BW =
AW ∪ {0}, Int(Cl(Int(AW ))) = BW but BW 6⊂ Int(AW ). So, F is lu.α.c. but not Dlu(c,
α)-continuous.

(iii) Let us de�ne F by F(0) = R, F(x) = {− ln(x)} if x > 0, F(x) = (−∞,− ln(−x))
if x ∈ Q ∩ (−∞, 0) and F(x) = R \ {− ln(−x)} if x ∈ (−∞, 0) \ Q, where Q is the set
of all rational numbers, and let W ∈ Bξ. Then we have AW = ((−∞,− exp(−r)] ∩Q) ∪
(exp(−r),+∞), BW = (−∞,− exp(−r)]∪ ((− exp(−r), 0]\Q)∪{0}∪ (exp(−r),+∞). So
Int(AW ) = (exp(−r),+∞), and Cl(AW ) = (−∞,− exp(−r)] ∪ [exp(−r),+∞). So BW∩
Cl(Int(AW )) ⊂ Int(AW ) but BW∩ Int(Cl(AW )) 6⊂ Int(AW ) and BW∩ Cl(Int(Cl(AW )))
6⊂ Int(Cl(AW )). Therefore, F is Dlu(c, s)-continuous but not Dlu(c, p)-continuous and
not Dlu(p,β)-continuous.

(iv) Let us de�ne F as follows: F(0) = R, F(x) = {ln(x)} if x > 0, F(x) = {ln(−x)}
if x ∈ Q ∩ (−∞, 0) and F(x) = [ln(−x),∞) if x ∈ (−∞, 0)\ Q, where Q is the set
of all rational numbers, and let W ∈ Bξ. Then, AW = (− exp(r), 0)∩Q)∪(0, exp(r)),
BW = (− exp(r)), exp(r)), Int(AW ) = Int(Cl(Int(AW )) = (0, exp(r)) and Int(Cl(AW )) =
(− exp(r), exp(r)) = BW . So BW ⊂ Int(Cl(AW )) but BW∩ Int(Cl(AW )) 6⊂ Int(Cl(Int(AW )))
and BW∩ Cl(Int(AW )) 6⊂
Int(Cl(Int(AW )). Therefore, F is lu.p.c. but not Dlu(α,p)-continuous and F is not
Dlu(α,s)-continuous.

(v) Let us de�ne F the following way: F(0) = R, F(x) = {ln(−k)} if x ∈ [k − 1, k),

where k = -1, -2,..., F(x) =
{

ln(− 1
n+1

)
}
if x ∈

[
− 1
n
,− 1

n+1

)
, where n = 1, 2,..., F(x)

= {ln(k)} if x ∈ (k, k + 1], where k = 1, 2,..., and F(x) =
{

ln( 1
n+1

)
}
if x ∈

(
1

n+1
, 1
n

]
where n = 1, 2,... Let W ∈ Bξ. Then we have AW = [(− exp(r)− ξ), exp(r) + ξ)]− {0}
and Cl(AW ) = Cl(Int(AW )) = Cl(Int(Cl(AW ))) = BW = [(− exp(r)− ξ), exp(r) + ξ)]
for some ξ ∈ [0, 1). So BW ⊂ Cl(Int(AW )) but BW∩ Cl(Int(Cl(AW ))) 6⊂ Int(Cl(AW )),
and thus F is is lu.q.c. but not Dlu(p,β)-continuous.

(vi) De�ne F by F(x) = (−∞,−x) for all x ∈ R and let W ∈ Bξ. Then AW = [−r,+∞),
BW = R, Int(AW ) = Int(Cl(AW )) = (−r,∞) and Cl(Int(AW )) = AW . Consequently,
BW∩ Int(Cl(AW ))⊂ Int(AW ) but BW∩Cl(Int(AW )) 6⊂ Int(Cl(Int(AW ))). So, F is Dlu(c,
p)-continuous but not Dlu(α, s)-continuous.

(vii) Let F be de�ned by F(0) = R, F(x) = {ln(x)} if x ∈ Q ∩ (0,∞), F(x) =
[ln(x),∞) if x ∈ (0,∞) \ Q and F(x) = {− ln(−x)} if x < 0. If W ∈ Bξ, then we
have AW = (−∞,− exp(−r))∪((0, exp(r))∩Q), Int(AW ) = (−∞,− exp(−r)), Cl(AW ) =
Cl(Int(Cl(AW )) = (−∞,− exp(−r)]∪[0, exp(r)] and BW = (−∞,− exp(−r))∪[0, exp(r)).
Thus BW ⊂ Cl(Int(Cl(AW )) but BW 6⊂ Cl(Int(AW )) ∪ Int(Cl(AW ), so F is lu.β.c. but
not lu.γ.c.
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