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On converses of some comparison inequalities for
homogeneous means

Zhen-Hang Yang ∗

Abstract

In this paper, the necessary and su�cient conditions for the converses
of comparison inequalities for Stolarsky means and for Gini means to
hold are proved, and the necessary and su�cient conditions for some
companion inequalities for bivariate means to hold are given, which
unify, generalize and improve known results.
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1. Introduction

Let p, q ∈ R and a, b ∈ R+ := (0,∞) with a 6= b. The Stolarsky means Sp,q(a, b) were
de�ned by Stolarsky [30] as

(1.1) Sp,q(a, b) =



(
q(ap − bp)
p(aq − bq)

)1/(p−q)

if p 6= q, pq 6= 0,(
ap − bp

p(ln a− ln b)

)1/p

if p 6= 0, q = 0,(
aq − bq

q(ln a− ln b)

)1/q

if p = 0, q 6= 0,

exp

(
ap ln a− bp ln b

ap − bp − 1

p

)
if p = q 6= 0,

√
ab if p = q = 0.

Also, Sp,q(a, a) = a. The Stolarsky means contain many famous means, for example,
S1,0(a, b) = L(a, b) �the logarithmic mean, S1,1(a, b) = I(a, b) �the identric (exponential)
mean, S2,1(a, b) = A(a, b) �arithmetic mean, S3/2,1/2(a, b) = He(a, b) �Heronian mean,

Sp,0(a, b) = L1/p(ap, bp) = Lp �the p-order logarithmic mean, Sp,p(a, b) = I1/p(ap, bp) =
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Ip �the p-order identric (exponential) mean, S2p,p(a, b) = A1/p(ap, bp) = Ap �the p-order
power mean, etc.

Another well-known two-parameter family of bivariate means was introduced by C.
Gini in [8]. That is de�ned as

(1.2) Gp,q(a, b) =


(
ap + bp

aq + bq

)1/(p−q)

if p 6= q,

exp

(
ap ln a+ bp ln b

ap + bp

)
if p = q.

The Gini means also contain many famous means, for example, G1,0(a, b) = A(a, b) �

arithmetic mean, G1,1(a, b) = Z(a, b) �the power-exponential mean, Gp,0(a, b) = A1/p(ap, bp) =

Ap �the p-order power mean, Gp,p(a, b) = Z1/p(ap, bp) = Zp �the p-order power-exponential
mean, etc.

The comparison problem for Stolarsky means Sp,q(a, b) ≤ Sr,s(a, b) (a, b ∈ R+) was
�rst solved by Leach and Sholander [12]. Páles presented a new proof for this result in
[21] and dealt with the same comparison problem for Gini means Gp,q(a, b) in [20]. For
later use, we record the two comparison theorems as follows.

1.1. Theorem([12], [21]). The comparison inequality

(1.3) Sp,q(a, b) ≤ Sr,s(a, b)

holds for all a, b ∈ R+ if and only if

(1.4) p+ q ≤ r + s

and

(1.5)

{
(i) l(p, q) ≤ l(r, s) if min(p, q, r, s) ≥ 0 or max(p, q, r, s) ≤ 0,
(ii) µ(p, q) ≤ µ(r, s) if min(p, q, r, s) < 0 < max(p, q, r, s),

where

(1.6) l(u, v) =


u− v

ln(u/v)
if uv > 0,

0 if uv = 0;
µ(u, v) =

 |u| − |v|
u− v if u 6= v,

sgn(u) if u = v.

1.2. Theorem([20]). The comparison inequality

(1.7) Gp,q(a, b) ≤ Gr,s(a, b)

holds for all a, b ∈ R+ if and only if (1.4) holds and

(1.8)


(i) min(p, q) ≤ min(r, s) if min(p, q, r, s) ≥ 0,
(ii) max(p, q) ≤ max(r, s) if max(p, q, r, s) ≤ 0,
(iii) µ(p, q) ≤ µ(r, s) if min(p, q, r, s) < 0 < max(p, q, r, s),

where µ(u, v) is de�ned by (1.6).
Other references involving these comparison problems can be found in [6], [4], [2], [3],

[22], [14], [17], [5], [33].
There are many inequalities for bivariate means (see [13], [26], [31], [24], [29] [16],

[10], [18], [36], [37], [38], [39], [41], [42]). However, most of comparison inequalities for
bivariate means are derived from Theorem 1.1 and 1.2.

On the other hand, the converses of certain inequalities for bivariate means have also
attracted the attention of scholars.

Let M1(a, b) and M2(a, b) be two means of positive numbers a and b and inequality

(1.9) M1(a, b) ≤M2(a, b)
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holds for all a, b ∈ R+. If there exits a constant k > 1 such that inequality

(1.10) kM1(a, b) ≥M2(a, b) or M1(a, b) ≥ k−1M2(a, b)

holds for all a, b ∈ R+, then (1.10) is called a converse of (1.9). And inequalities (1.10)
and (1.9) are called a pair of companion inequalities for means M1(a, b) and M2(a, b) by
Neuman and Sándor [19].

For a, b ∈ R+ with a 6= b, it is known that

(1.11) I(a, b) < A(a, b).

In 1988, Alzer [1] gave a converse of inequality (1.11), that is,

(1.12) I(a, b) > 2e−1A(a, b)

(also see [27]). In 2002, Hästö derived two pairs of companion inequalities involving
Stolarsky means and Gini means from the strong inequalities. For convenience, we read
them as follows.

1.3. Theorem([9, Corollary 1.2]). Let p, q, r, s ∈ R+, r > s and p > q. If p+ q ≥ r+ s
and s ≥ q (note: there is a misprinted and it should be "q ≥ s" instead of "s ≥ q") then

(1.13) Sr,s(a, b) ≤ Sp,q(a, b) ≤ (q/p)1/(p−q)(r/s)1/(r−s)Sr,s(a, b).

Both inequalities are sharp.

1.4. Theorem([9, Corollary 1.2]). Let p, q, r, s ∈ R+, r > s and r + s ≤ 3(p + q).
Assume also that 1/3 ≤ p/q ≤ 3 or s ≤ p+ q. Then

(1.14) Sr,s(a, b) ≤ Gp,q(a, b) ≤ (r/s)1/(r−s)Sr,s(a, b).

Both inequalities are sharp.
Using di�erent methods and ideals, Neuman and Sándor [15, 19], Yang [35, 36, 40],

Du [7] also obtained some companion inequalities for bivariate means, which are all
special cases of Hästö's results above. For example, for a, b ∈ R+ with a 6= b, putting
(p, q) = (1, 1), (r, s) = (1, 1/2) in Theorem 1.3 yields

(1.15) A1/2(a, b) < I(a, b) < 4e−1A1/2(a, b),

where the second inequality of (1.15) was rediscovered by Neuman and Sándor [15];
putting (p, q) = (1, 1), (r, s) = (3/4, 2/3), (3/2, 1/2) in Theorem 1.3 lead to

(1.16) 1 < I(a, b)/He(a, b) < 3e−1 and 1 < I(a, b)/A2/3(a, b) < 2
√

2e−1

reobtained by Yang [36]; putting (p, q) = (1, 1), (r, s) = (2, 2) in Theorem 1.4 leads to

(1.17) A2(a, b) < Z(a, b) <
√

2A2(a, b)

given in [19]. It is clear that, however, the following companion inequalities

(1.18)
√
Ip(a, b)Iq(a, b) < Sp,q(a, b) < e1/A−1(p,q)−1/L(p,q)

√
Ip(a, b)Iq(a, b)

for p, q > 0 with p 6= q proved by Yang [36] do not follow from the results of Hästö.
It should be noted that Theorem 1.3 only gives a su�cient condition for the converse

of comparison inequalities for Stolarsky means (1.3) to hold. From the published relative
literatures, however, it is the best result. For this reason, in this paper we devote to
further investigate the necessary and su�cient condition such that the converse of (1.3)
is true. One of our main results is the following statement.
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1.5. Theorem. Let p, q, r, s ∈ R+. Then the converse of comparison inequality for
Stolarsky means

(1.19) e1/L(p,q)Sp,q(a, b) ≤ e1/L(r,s)Sr,s(a, b)

holds for all a, b ∈ R+ with a 6= b if and only if

(1.20) L(p, q) ≥ L(r, s) and min(p, q) ≥ min(r, s).

We also look for the condition so that the converse of comparison inequalities for Gini
means (1.7) holds, and obtain the other one of our main results as follows.

1.6. Theorem. Let p, q, r, s ∈ R+. Then the converse of comparison inequality for Gini
means

(1.21) e1/L(p,q)Gp,q(a, b) ≤ e1/L(r,s)Gr,s(a, b)

holds for all a, b ∈ R+ with a 6= b if

(1.22) p+ q ≥ r + s and min(p, q) ≥ min(r, s).

Based on our main results, in section 4 we shall give a necessary and su�cient condition
for (1.13) to hold, and prove this result is also true for Gini means. Additionally, we also
derive a necessary and su�cient condition for the companion inequalities for Gini mean
and power mean. Lastly, a simple proof of a part of Theorem 1.4 is presented.

2. Preliminary

In 1992 Páles [23] o�ered a uni�ed treatment for comparison problems on bounded
intervals of the positive real. For convenience, we recall it as follows.

2.1. Theorem([23, Theorem 2]). Let φ : R → R be a four times di�erentiable even
function such that φ′′(0) > 0 and

φ′′(x) > 0, φ′′′(x) < 0 and (xφ′′′(x)/φ′′(x))′ < 0

holds for all x > 0. De�ne Φp,q(t) by

(2.1) Φp,q(t) :=


φ(pt)− φ(qt)

p− q if p 6= q,

tφ′(pt) if p = q.

Let p, q, r, s and c > 0 be �xed real values. Then the inequality

Φp,q(t) ≤ Φr,s(t)

holds for all t ∈ [−c, c] if and only if

p+ q ≤ r + s and Φp,q(c) ≤ Φr,s(c).

To prove our main results in this paper, we also need another comparison theorem,
which is similar to Páles comparison theorem above.
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2.2. Theorem. Let φ : R+ → R be a three times di�erentiable function satisfying

(2.2) φ′′(x) > (<)0 and κ(x) = xφ′′′(x)/φ′′(x) is strictly monotone for all x > 0.

Then for �xed real values p, q, r, s ∈ R+ and c2 > c1 > 0 the comparison inequality

(2.3) Φp,q(t) ≤ Φr,s(t)

holds for all t ∈ [c1, c2] if and only if

(2.4) Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2).

The train of thoughts of proving Theorem 2.2 is to decompose one function into the
product of one positive function and another monotone one.

To prove Theorem 2.2, we need some lemmas.

2.3. Lemma. Suppose that the function f : [a, b] → R is continuous and monotone.
Then f(x) ≥ (≤)0 for all x ∈ [a, b] if and only if f(a) ≥ (≤)0 and f(b) ≥ (≤)0.

2.4. Lemma. Let x1, x2, x3 ∈ [a, b] and φ be two times di�erentiable on [a, b]. De�ne
that

[x1, x2;φ] : =

 φ(x1)− φ(x2)

x1 − x2
if x1 6= x2,

φ′(x2) if x1 = x2.
(2.5)

[x1, x2, x3;φ] : =


[x1, x2;φ]− [x2, x3;φ]

x1 − x3
if x1 6= x3,

∂[x1,x2;φ]
∂x1

∣∣∣
x1=x3

if x1 = x3.
(2.6)

Then we have
1) [x1, x2, x3;φ] are symmetric with respect to x1, x2 and x3, that is,

[x1, x2, x3;φ] = [x1, x3, x2;φ] = [x2, x3, x1;φ]

= [x2, x1, x3;φ] = [x3, x1, x2;φ] = [x3, x2, x1;φ].

2) [x1, x2, x3;φ] ≥ (≤)0 if and only if φ is convex (concave) on [a, b].
3) (Mean Value Theorem) If φ is two times di�erentiable on [a, b] and x1, x2, x3 ∈

[a, b], then there is a ξ between the smallest and the largest xi such that

(2.7) [x1, x2, x3;φ] =
φ′′(ξ)

2!
.

The following lemma will play an important role in the proof of Theorem 2.2.

2.5. Lemma. Let φ : R+ → R be a three times di�erentiable function which satis�es
(2.2). Then for �xed p, q, r, s ∈ R+ with p ≥ q, r ≥ s and (s−p)(q− r)(s− q)(r−p) 6= 0,
the function V : R+ → R de�ned by

(2.8) V (t) :=
Φr,s(t)− Φr,p(t)

s− p

/Φp,q(t)− Φp,r(t)

q − r
is monotone on R+, where Φp,q(t) is de�ned by (2.1).

Proof. To prove this lemma, it su�ce to show that sgn(V ′(t)) is a constant. Without
loss of generality, we assume that κ(x) = xφ′′′(x)/φ′′(x) is strictly monotone increasing
on R+. We stepwise prove this lemma.

Step 1. Finding an appreciate expression of V (t).
By (2.6) V (t) can be written as

(2.9) V (t) =
[rt, st, pt;φ]

[pt, qt, rt;φ]
,
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which implies that V (t) is symmetric with respect to p and r, and so we assume that
p > r. This together with assumption p ≥ q, r ≥ s implies that p = max(p, q, r, s).

On the other hand,

V (t) =
[rt, st, pt;φ]

[pt, qt, rt;φ]
=

1

st− rt ([st, pt;φ]− [rt, pt;φ])

1

qt− rt ([qt, pt;φ]− [rt, pt;φ])

=
Φs,p(t)− Φr,p(t)

s− r

/Φq,p(t)− Φr,p(t)

q − r if s 6= r,

V (t) = lim
s→r

Φs,p(t)− Φr,p(t)

s− r

/Φq,p(t)− Φr,p(t)

q − r if s = r.

Step 2. Calculating V ′(t) and treating the sgn (V ′(t)).
Denote by

h(x) : = Φx,p(t) =


φ(xt)− φ(pt)

x− p if x 6= p,

tφ′(pt) if x = p.
(2.10)

g(x) : =
∂Φx,p(t)

∂t
=


xφ′(xt)− pφ′(pt)

x− p if x 6= p,

φ′ (pt) + ptφ′′(pt) if x = p.
(2.11)

Some simple calculations lead to

h′(x) =

{
t2

∫ p
x (p−u)φ′′(ut)du

(p−x)2
if x 6= p,

t2

2
φ′′(pt) if x = p;

(2.12)

g′(x) =

{
t
∫ p
x (p−u)(2φ′′(ut)+utφ′′′(ut))du

(x−p)2 if x 6= p,
t
2

(2φ′′(pt) + ptφ′′′(pt)) if x = p.
(2.13)

Since φ′′(x) > (<)0 we see that h′(x) > (<)0, which implies that h(x) is strictly increasing
(decreasing), and so h(x) is reversible.

In the case of s 6= r. Applying logarithmic derivative yields

V ′(t)

V (t)
=

∂Φs,p(t)

∂t
− ∂Φr,p(t)

∂t

Φs,p(t)− Φr,p(t)
−

∂Φq,p(t)

∂t
− ∂Φr,p(t)

∂t

Φq,p(t)− Φr,p(t)

=
g(s)− g(r)

h(s)− h(r)
− g(q)− g(r)

h(q)− h(r)

= (h(s)− h(q))

g(s)−g(r)
h(s)−h(r)

− g(q)−g(r)
h(q)−h(r)

h(s)− h(q)
.(2.14)

Using notations given by (2.5) and (2.6) yield

h(s)− h(q) = Φs,p(t)− Φq,p(t) = t ([st, pt;φ]− [qt, pt;φ])

= t(st− qt) [st, pt;φ]− [qt, pt;φ]

st− qt = t2(s− q)[st, qt, pt;φ],(2.15)

(2.16)

g(s)−g(r)
h(s)−h(r)

− g(q)−g(r)
h(q)−h(r)

h(s)− h(q)
= [h(s), h(r), h(q); g ◦ h−1].

Thus, V ′(t)/V (t) can be expressed as

V ′(t)

V (t)
= t2(s− q) · [st, qt, pt;φ] · [h(s), h(r), h(q); g ◦ h−1](2.17)

: = V1(t) · V2(t) · V3(t),
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consequently,

(2.18) V ′(t) = V (t) · V1(t) · V2(t) · V3(t).

where,

V1(t) = t2(s− q),
V2(t) = [st, qt, pt;φ],

V3(t) = [h(s), h(r), h(q); g ◦ h−1].

It is easy to verify that (2.18) is also true in the case of s = r.
From (2.7) and φ′′(x) > (<)0 it follows that

(2.19) V (t) =
[rt, st, pt;φ]

[pt, qt, rt;φ]
> 0 and V2(t) = [st, qt, pt;φ] > (<)0;

while

(2.20) sgnV1(t) = sgn
(
t2(s− q)

)
= sgn(s− q).

Thus, to show that sgn(V ′(t)) is a constant, it is enough to show that sgn (V3(t)) is also
a constant.

Step 3. Treating the sgn (V3(t)).
By 3) of Lemma 2.4, there is a ξ between the smallest and largest among the h(s), h(r)

and h(q) such that

(2.21) V3(t) = [h(s), h(r), h(q); g ◦ h−1] =
1

2
(g(h−1(y)))′′|y=ξ.

Let F (y) := g(h−1(y)). Then

F ′(y) =
g′(x)

h′(x)
, where x = h−1(y),

F ′′(y) =

(
g′(x)

h′(x)

)′
· 1

h′(x)
, where x = h−1(y).(2.22)

From (2.13) and (2.12) we have

(2.23)
g′(x)

h′(x)
=

1

t

∫ p
x

(p− u) (2φ′′(ut) + utφ′′′(ut)) du∫ p
x

(p− u)φ′′(ut)du
.

Di�erentiating and simplifying yield

(2.24)

(
g′(x)

h′(x)

)′
=

−(p− x)φ′′(xt)

t
(∫ x

p
(u− p)φ′′(ut)du

)2

∫ p

x

(p− u)φ′′(ut) (κ(ut)− κ(xt)) du.

From φ′′(x) > (<)0 and assumption that κ(x) = xφ′′′(x)/φ′′(x) is strictly monotone
increasing for all x > 0 it follows that

(2.25)

(
g′(x)

h′(x)

)′
< 0 for 0 < x ≤ p.

This together with h′(x) > (<)0 yields

(2.26) F ′′(y) =

(
g′(x)

h′(x)

)′
· 1

h′(x)
< (>)0 for 0 < x ≤ p, where x = h−1(y).

Now we can treat the sgn (V3(t)).
That h′(x) > (<)0 implies that h−1(x) is reversible and strictly increasing (decreas-

ing), from

min(h(s), h(r), h(q)) < ξ < max(h(s), h(r), h(q))
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it follows that

0 < min(s, r, q) < x = h−1(ξ) < max(s, r, q) < p.

(2.25) together with h′(x) > (<)0, 0 < x < p yields

(2.27) V3(t) =
1

2
(g(h−1(y)))′′

∣∣∣
y=ξ

=

(
g′(x)

h′(x)

)′
· 1

h′(x)

∣∣∣∣
x=h−1(ξ)

< (>)0.

Step 4. Final conclusion.
(2.19), (2.20) in conjunction with (2.27) yield

sgn(V ′(t)) = sgn (V (t)) · sgn (V1(t)) · sgn (V2(t)) · sgn (V3(t)) = sgn(s− q).
This shows that, for �xed real values p, q, r, s > 0, V (t) is monotone on R+.

This lemma is proved.

Equipped with the above lemmas, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Since p and q, r and s both are symmetric, we assume that p ≥ q,
r ≥ s. Denote by ∆(t) := Φp,q(t)− Φr,s(t).

(i) In the case of (s− p)(q − r)(s− q)(r − p) = 0. For instance, if p = r, q 6= s then

∆(t) = Φp,q(t)− Φr,s(t) = Φp,q(t)− Φp,s(t)

= t2(q − s)

φ(pt)− φ(qt)

pt− qt − φ(pt)− φ(st)

pt− st
qt− st = t2(q − s)[pt, qt, st;φ].

If Φp,q(t) ≤ Φr,s(t) for all t ∈ [c1, c2], then Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2).
Conversely, if Φp,q(c1) ≤ Φr,s(c1) and Φp,q(c2) ≤ Φr,s(c2), then∆(c1) ≤ 0 and∆(c2) ≤

0. From ∆(c1) = c21(q − s)[pc1, qc1, sc1;φ] ≤ 0 and [pt, qt, st;φ] > (<)0 due to φ′′(x) >
(<)0 it follows that q − s ≤ 0. This yields ∆(t) ≤ 0 for all t ∈ [c1, c2].

In the same way, our required result is also true in other cases.
(ii) In the case of (s− p)(q − r)(s− q)(r − p) 6= 0. Then

∆(t) = Φp,q(t)− Φr,s(t) = (Φp,q(t)− Φp,r(t))− (Φr,s(t)− Φr,p(t))

=
Φp,q(t)− Φp,r(t)

q − r

q − r − (s− p)

Φr,s(t)− Φr,p(t)

s− p
Φp,q(t)− Φp,r(t)

q − r


: = t2[pt, qt, rt;φ]U(t),(2.28)

where

(2.29) U(t) = (q − r)− (s− p)V (t),

here V (t) is de�ned by (2.8). From Lemma 2.5, we see that U(t) is also monotone on
(0,∞).

On the other hand, by (2.28) U(t) can be written as

(2.30) U(t) =
∆(t)

t2[pt, qt, rt;φ]
=

Φp,q(t)− Φr,s(t)

t2[pt, qt, rt;φ]
.

That φ′′(x) > (<)0 implies that [pt, qt, rt;φ] > (<)0. It follows from (2.30) that the
inequality Φp,q(t) ≤ Φr,s(t) for all t ∈ [c1, c2], namely, ∆(t) ≤ 0 for all t ∈ [c1, c2] if and
only if U(t) ≤ (≥)0 for all t ∈ [c1, c2]. By Lemma 2.3 this is equivalent to U(c1) ≤ (≥)0
and U(c2) ≤ (≥)0, which are also equivalent to

∆(c1) = Φp,q(c1)− Φr,s(c1) = c21[pc1, qc1, rc1;φ]U(c1) ≤ 0,

∆(c2) = Φp,q(c2)− Φr,s(c2) = c2[pc2, qc2, rc2;φ]U(c2) ≤ 0.
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This shows that Φp,q(t) ≤ Φr,s(t) holds for all t ∈ [c1, c2] if and only if Φp,q(c1) ≤ Φr,s(c1)
and Φp,q(c2) ≤ Φr,s(c2).

This completes the proof.

2.6. Remark. From the part one of proof above, it is easy to see that Φp,q(t) de�ned
by (2.1) is strictly increasing (decreasing) with respect to either p or q if φ′′(x) > (<)0.

3. Proofs of Main Results

By Theorem 2.2 and the following simple lemma, we can prove Theorem 1.5.

3.1. Lemma([11]). The function (x, y) → L(x, y) (x, y ∈ R+) is strictly increasing in
either x or y.

Proof of Theorem 1.5. Since e1/L(p,q)Sp,q(a, b) is symmetric with respect to a and b, we

assume that a > b and denote by t := ln
√
a/b. Then t > 0. By some simple transfor-

mations and using sinhx =
(
ex − e−x

)
/2 we have

(3.1)ln
(
e1/L(p,q)Sp,q(a, b)

)
=

ln(ap − bp)− ln(aq − bq)
p− q = ln

√
ab+

ln sinh(pt)− ln sinh(qt)

p− q .

Let φ(t) = ln sinh t and

(3.2) Φp,q(t) :=

{
ln sinh(pt)−ln sinh(qt)

p−q if p 6= q,
t cosh pt
sinh pt

if p = q.

Then the comparison inequality (1.19) is equivalent to

(3.3) Φp,q(t) ≤ Φr,s(t) for all 0 < t <∞.

Some direct computations yield

φ′(t) =
cosh t

sinh t
, φ′′(t) = − 1

sinh2 t
< 0, φ′′′(t) =

2 cosh t

sinh3 t(
tφ′′′(t)

φ′′(t)

)′
=

(
−2t cosh t

sinh t

)′
= − sinh 2t− 2t

sinh2 t
< 0 for all t > 0.

According to Theorem 2.2, for �xed p, q, r, s > 0 and c2 > c1 > 0, the comparison
inequality (1.19) holds for all a, b ∈ R+ with a 6= b if and only if both the following

Φp,q(c1) ≤ Φr,s(c1), c1 → 0+,(3.4)

Φp,q(c2) ≤ Φr,s(c2), c2 →∞(3.5)

hold.
Letting c1 → 0+ yields

lim
c1→0+

Φp,q(c1) = lim
c1→0+

ln sinh(pc1)− ln sinh(qc1)

p− q =
ln p− ln q

p− q =
1

L(p, q)
.

Then (3.4) is equivalent to

(3.6) L(p, q) ≥ L(r, s),

which is the �rst inequality of (1.20).
Since Φp,q(t) is symmetric with respect to p and q, we assume that p ≥ q; likewise,

we can assume that r ≥ s; that is,

(3.7) q = min(p, q), s = min(r, s).

In order to obtain the second one of (1.20) from (3.5), we distinguish four cases.
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Case 1: (p− q)(r − s) 6= 0. A simple transformation yields

Φp,q(t) =
ln sinh(pt)− ln sinh(qt)

p− q =
ln
(
ept/2(1− e−pt)/2

)
− ln

(
eqt/2(1− e−qt)/2

)
p− q

=
t

2
+

ln(1− e−pt)− ln(1− e−qt)
p− q ,

so we have

lim
t→∞

Φp,q(t)− Φr,s(t)

e−tmin(q,s)
= lim

t→∞

ln(1−e−pt)−ln(1−e−qt)
p−q − ln(1−e−rt)−ln(1−e−st)

r−s

e−tmin(q,s)

= lim
t→∞

1
p−q

(
pe−pt

1−e−pt − qe−qt

1−e−qt

)
− 1

r−s

(
re−rt

1−e−rt − se−st

1−e−st

)
−min(q, s)e−tmin(q,s)

=


−1
r−s < 0 if q > s;
1
p−q −

1
r−s if q = s;

1
p−q > 0 if q < s.

(3.8)

By Lemma 3.1, the �rst inequality of (1.20) or (3.6) leads to p ≥ r if q = s, which yields
1
p−q −

1
r−s = r−p

(p−q)(r−s) ≤ 0. It follows from (3.8) that

(3.9) lim
t→∞

Φp,q(t)− Φr,s(t)

e−tmin(q,s)


< 0, q > s;
≤ 0, q = s;
> 0, q < s,

which implies that, in this case, (3.5) is equivalent to

(3.10) min(p, q) ≥ min(r, s).

Case 2: p = q, r > s. We claim that q 6= s. If not, that is, q = s, then from the �rst
inequality of (1.20) or (3.6) it follows that

s = L(s, s) = L(p, q) ≥ L(r, s),

which in conjunction with L(r, s) ≥ min(r, s) = s yields s = r. This is a contradiction.
Thus,

lim
t→∞

Φq,q(t)− Φr,s(t)

e−tmin(q,s)
= lim

t→∞

qe−qt

1−e−qt − ln(1−e−rt)−ln(1−e−st)
r−s

e−tmin(q,s)

= lim
t→∞

−q2e−qt

(1−e−qt)2
− 1

r−s

(
re−rt

1−e−rt − se−st

1−e−st

)
−min(q, s)e−tmin(q,s)

=

{ −1
r−s < 0 if q > s,

q > 0 if q < s.
(3.11)

This shows that (3.5) is equivalent to (3.10) in this case.
Case 3: p > q, r = s. If q 6= s, then

lim
t→∞

Φp,q(t)− Φs,s(t)

e−tmin(q,s)
= lim

t→∞

ln(1−e−pt)−ln(1−e−qt)
p−q − se−st

1−e−st

e−tmin(q,s)

= lim
t→∞

1
p−q

(
pe−pt

1−e−pt − qe−qt

1−e−qt

)
− −s2e−st

(1−e−st)2

−min(q, s)e−tmin(q,s)

=

{
−s < 0 if q > s,
1
p−q > 0 if q < s.

(3.12)
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If q = s, from φ′′(t) < 0 and Remark 2.6 it follows that Φp,q(t) < Φq,q(t), which yields

Φp,q(t)− Φs,s(t) < Φq,q(t)− Φs,s(t) = 0 for all t > 0.

These also show that (3.5) is equivalent to (3.10) in this case.
Case 4: p = q, r = s. We have

(3.13) lim
t→∞

Φq,q(t)− Φs,s(t)

e−tmin(q,s)
= lim
t→∞

qe−qt

1−e−qt − se−st

1−e−st

e−tmin(q,s)
=


−s < 0 if q > s,
0 if q = s,
q > 0 if q < s.

This shows that (3.5) is similarly equivalent to (3.10) in this case.
Consequently, (3.5) is equivalent to (3.10) in all cases, that is, the second inequality

of (1.20).
In conclusion, then necessary and su�cient condition for (1.19) to hold is: (3.6) and

(3.10), that is, (1.20).
This completes the proof.

It is regrettable that Theorem 2.2 is also not applicable to prove Theorem 1.6, because
when φ(x) = ln(x coshx) the condition "κ(x) = xφ′′′(x)/φ′′(x) is strictly monotone for
all x > 0" is not satis�ed. Fortunately, we can use Theorem 1.5 to prove Theorem 1.6.
To this end, we also need other two lemmas.

3.2. Lemma. For �xed m > 0 the function x → L(x,m − x) (0 < x < m) is strictly
increasing in x on (0,m/2] and strictly decreasing on [m/2,m).

Proof. A direct derivation yields

dL(x,m− x)

dx
=

2(lnx− ln(m− x))− m(2x−m)
x(m−x)

(lnx− ln(m− x))2 =
g(x)

(lnx− ln(m− x))2 ,

dg(x)

dx
= −m(2x−m)2

x2(m− x)2
< 0.

It follows that g(x) > g(m/2) = 0 if x ∈ (0,m/2) and g(x) < g(m/2) = 0 if x ∈ (m/2,m),
which completes the proof.

3.3. Lemma. Denote by

Ω1 = {(p, q; r, s) : p+ q ≥ r + s, p, q, r, s ∈ R+},(3.14)

Ω2 = {(p, q; r, s) : min(p, q) ≥ min(r, s), p, q, r, s ∈ R+},(3.15)

Ω3 = {(p, q; r, s) : L(p, q) ≥ L(r, s), p, q, r, s ∈ R+}.(3.16)

Then Ω1 ∩ Ω2 ⊆ Ω3.

Proof. Without loss of generality, we assume that p ≥ q, r ≥ s, that is, min(p, q) = q,
min(r, s) = s. We now prove that (p, q; r, s) ∈ Ω3 for every (p, q; r, s) ∈ Ω1 ∩ Ω2.

Indeed, (p, q; r, s) ∈ Ω1 implies that r ≤ p+ q− s, and from Lemma 3.1 it follows that

L(r, s) ≤ L(p+ q − s, s).

While (p, q; r, s) ∈ Ω2 together with assumption p ≥ q implies that 0 < s ≤ q ≤ (p+q)/2,
and from Lemma 3.2 it follows that

L(r, s) ≤ L(p+ q − s, s) ≤ L(p+ q − q, q) = L(p, q),

which shows that (p, q; r, s) ∈ Ω3.
This completes the proof.
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Proof of Theorem 1.6. First of all, we show that (1.21) holds if (p, q; r, s) ∈ Ω1∩Ω2∩Ω3.
Indeed, (p, q; r, s) ∈ Ω2 ∩ Ω3 implies that

L(p, q) ≥ L(r, s) and min(p, q) ≥ min(r, s),

which is equivalent to

L(2p, 2q) ≥ L(2r, 2s) and min(2p, 2q) ≥ min(2r, 2s).

Thus, by Theorem 1.5 the comparison inequality

(3.17) e1/L(2p,2q)S2p,2q(a, b) ≤ e1/L(2r,2s)S2r,2s(a, b)

holds for all a, b ∈ R+ with a 6= b if and only if (p, q; r, s) ∈ Ω2 ∩ Ω3.

Note S2p,2q(a, b) =
√
Sp,q(a, b)Gp,q(a, b), by a simple equivalent transformation in-

equality (3.17) can be written as

e1/L(p,q)Sp,q(a, b)Gp,q(a, b) ≤ e1/L(r,s)Sr,s(a, b)Gr,s(a, b),

which is equivalent to

(3.18) e1/L(p,q)Gp,q(a, b) ≤ e1/L(r,s)Gr,s(a, b)
Sr,s(a, b)

Sp,q(a, b)
.

Meanwhile, by Theorem 1.1 the comparison inequality Sr,s(a, b) ≤ Sp,q(a, b) or

(3.19)
Sr,s(a, b)

Sp,q(a, b)
≤ 1

holds for all a, b ∈ R+ with a 6= b if and only if (p, q; r, s) ∈ Ω1 ∩ Ω2.
It follows from (3.18) and (3.19) that

(3.20) e1/L(p,q)Gp,q(a, b) ≤ e1/L(r,s)Gr,s(a, b)
Sr,s(a, b)

Sp,q(a, b)
≤ e1/L(r,s)Gr,s(a, b)

hold if and only if (p, q; r, s) ∈ Ω1 ∩Ω2 ∩Ω3. This shows that (1.21) holds if (p, q; r, s) ∈
Ω1 ∩ Ω2 ∩ Ω3.

By Lemma 3.3, the proof is completed.

4. Companion Inequalities for Bivariate Means

In this section, we will give the companion inequalities for Stolarsky means and Gini
means.

Using Theorem 1.1 and 1.5, we �rst give the improvement of Theorem 1.3 as a corollary
of our main results.

4.1. Corollary. Let p, q, r, s ∈ R+. Then the following companion inequalities

(4.1) Sr,s(a, b) ≤ Sp,q(a, b) ≤ exp
(

1
L(r,s)

− 1
L(p,q)

)
Sr,s(a, b)

hold for all a, b ∈ R+ with a 6= b if and only if (1.22) holds.

Proof. By Theorem 1.1 the �rst inequality of (4.1) holds if and only if (p, q; r, s) ∈ Ω1∩Ω3.
The second one of (4.1) is equivalent to (1.19), which holds, by Theorem 1.5, if and only
if (p, q; r, s) ∈ Ω2 ∩ Ω3. Hence (4.1) hold if and only if (p, q; r, s) ∈ Ω1 ∩ Ω2 ∩ Ω3.

By Lemma 3.3 the assertion follows.

For the Gini means, we have the same result.
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4.2. Corollary. Let p, q, r, s ∈ R+. Then the following companion inequalities

(4.2) Gr,s(a, b) ≤ Gp,q(a, b) ≤ exp
(

1
L(r,s)

− 1
L(p,q)

)
Gr,s(a, b).

hold for all a, b ∈ R+ with a 6= b if and only if (1.22) holds.

Proof. Necessity. If (4.2) holds, then by comparison theorem for Gini means 1.2 the
�rst inequality of (4.2) implies that (p, q; r, s) ∈ Ω1 ∩ Ω2. In the second one of (4.2),

letting b → a yields a ≤ a exp
(

1
L(r,s)

− 1
L(p,q)

)
, which implies that L(p, q) ≥ L(r, s),

that is, (p, q; r, s) ∈ Ω3. Hence (4.2) holds implies that (p, q; r, s) ∈ Ω1 ∩ Ω2 ∩ Ω3. By
Lemma 3.3 (p, q; r, s) ∈ Ω1 ∩ Ω2.

Su�ciency. If (1.22) holds, by Theorem 1.2 and Theorem 1.6 we obtain that

Gp,q(a, b) ≥ Gr,s(a, b) and e1/L(p,q)Gp,q(a, b) ≤ e1/L(r,s)Gr,s(a, b),

respectively, which are equivalent to the �rst and second inequality of (4.2), respectively.
This completes the proof.

The following is a pair of companion inequalities for Gini means and power mean.

4.3. Corollary. Let t 6= 0. Then the companion inequalities

(4.3) At(a, b) ≤ Gp,q(a, b) < 21/tAt(a, b)

hold for all a, b ∈ R+ with a 6= b if and only if p, q ≥ 0 and p+ q ≥ t > 0.

Proof. Necessity. Firstly, we have t > 0. If not, that is, t < 0, then

At(a, b) ≤ Gp,q(a, b) < 21/tAt(a, b) < At(a, b),

which yields a contradiction. Therefore t > 0.
Secondly, note At(a, b) = Gt,0(a, b), by Theorem 1.2 the �rst inequality of (4.3) holds

if and only if both the inequalities

p+ q ≥ t+ 0,
(i) min(p, q) ≥ min(t, 0) if min(p, q, t, 0) ≥ 0,
(ii) max(p, q) ≤ max(t, 0) if max(p, q, t, 0) ≤ 0,
(iii) µ(p, q) ≥ µ(t, 0) if min(p, q, t, 0) < 0 < max(p, q, t, 0),

hold. Solving the inequalities in conjunction with t > 0 yields

(p, q, t) ∈ {(p, q, t) : p, q ≥ 0, p+ q ≥ t > 0} := E.

Su�ciency. If (p, q, t) ∈ E, then the �rst inequality of (4.3) follows from Theorem
1.2.

To prove the second one of (4.3), we �rst show that

(4.4) max(a, b) < 21/tAt(a, b) <∞
hold for t > 0.

For t1 > t2 > 0 we easily check that L(2t1, t1) > L(2t2, t2) and min(2t1, t1) >

min(2t2, t2). By Theorem 1.5 we have e1/L(2t1,t1)S2t1,t1(a, b) < e1/L(2t2,t2)S2t2,t2(a, b),

that is, 21/t1At1(a, b) < 21/t2At2(a, b), which implies that the function t → 21/tAt(a, b)
strictly decreases on R+. And, simple calculations lead to

lim
t→0,t>0

(
21/tAt(a, b)

)
=∞, lim

t→∞

(
21/tAt(a, b)

)
= max(a, b).

Hence (4.4) holds.
On the other hand, since Gp,q(a, b) is a mean of positive number a and b for every

(p, q), we have

(4.5) min(a, b) ≤ Gp,q(a, b) ≤ max(a, b).
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Inequality (4.4) in conjunction with (4.5) yields the second one of (4.3).
The proof is ended.

Lastly, we give a new proof of a part of Theorem 1.4. For clarity, we restate this part
as a corollary of our main results.

4.4. Corollary. Let p, q ≥ 0 and r, s > 0. Then the following companion inequalities

(4.6) Sr,s(a, b) ≤ Gp,q(a, b) < e1/L(r,s)Sr,s(a, b).

hold for all a, b ∈ R+ with a 6= b if p+ q ≥ max((r + s)/3,min(r, s)).

Proof. If p + q ≥ max((r + s)/3,min(r, s)), that is, 2(p + q) + (p + q) ≥ r + s and
min(2(p+ q), (p+ q)) ≥ min(r, s), then by Corollary 4.1, we have

(4.7) Sr,s(a, b) ≤ S2(p+q),(p+q)(a, b) ≤ exp
(

1
L(r,s)

− 1
L(2(p+q),(p+q))

)
Sr,s(a, b).

Note S2(p+q),p+q(a, b) = Ap+q(a, b), then (4.7) can be rewritten as

(4.8) Sr,s(a, b) ≤ Ap+q(a, b) and 21/(p+q)Ap+q(a, b) ≤ e1/L(r,s)Sr,s(a, b).

Putting t = p+ q in Corollary 4.3, since p, q ≥ 0 and p+ q ≥ t > 0, we get

Ap+q(a, b) ≤ Gp,q(a, b) < 21/(p+q)Ap+q(a, b),

which together with (4.8) leads to

Sr,s(a, b) ≤ Ap+q(a, b) ≤ Gp,q(a, b) < 21/(p+q)Ap+q(a, b) ≤ e1/L(r,s)Sr,s(a, b).

Our required result follows.

Acknowledgement

The author would like to thanks for the reviewer(s) who gave some important and
valuable advises.

References

[1] Alzer, H. Aufgabe 987, Elem. Math. 43, 93, 1988. (German)
[2] Brenner, J. L. A uni�ed treatment and extension of some means of classical analysis�I:

Comparison theorems, J. Combin. Inform. System Sci. 3, 175-199,1978.
[3] Burk, F. By all means, Amer. Math. Monthly 92, 50, 1985.
[4] Carlson, B. C. The logarithmic mean, Amer. Math. Monthly 79, 615-618, 1972.
[5] Czinder P. and Zs. Páles, Some comparison inequalities for Gini and Stolarsky means, Math.

Inequal. Appl. 9(4), 607�616, 2006.
[6] Dodd, E. L. Some generalizations of the logarithmic mean and of similar means of two

variates which become indeterminate when the two variates are equal, Ann. Math. Statist.

12, 422-428, 1971.
[7] Du, H.-X. Some inequalities for bivariate means, Commun. Korean Math. Soc. 24(4),

553�559, 2009; available online at http://icms.kaist.ac.kr/mathnet/thesisf ile/08C09−
025.pdf
http://icms.kaist.ac.kr/mathnet/thesis_file/08_C09-025.pdf.

[8] Gini, C. Diuna formula comprensiva delle media, Metron 13, 3�22, 1938.

[9] Peter A. Hästö, A Monotonicity property of ratios of symmetric homogeneous

means, J. Inequal. Pure Appl. Math. 3(5), Art. 71, 2002; available online at

http://jipam-old.vu.edu.au/v3n5/01302.pdfhttp://jipam-old.vu.edu.au/v3n5/013_02.pdf.

[10] Jia G. and Cao, J.-D. A new upper bound of the logarithmic mean, J.

Inequal. Pure Appl. Math. 4(4), Art. 80, 2003; available online at

http://jipam.vu.edu.au/

images/08803/08803.pdfhttp : //jipam.vu.edu.au/images/088_03/088_03.pdf.



643

[11] Leach E. B. and Sholander, M. C. Extended mean values, Amer. Math. Monthly 85,

84-90, 1978.

[12] Leach E. B. and Sholander, M. C. Extended mean values II, J. Math. Anal. Appl.

92, 207-223, 1983.

[13] Lin, T.-P. The power mean and the logarithmic mean, Amer. Math. Monthly 81,

879�883, 1974.

[14] Losonczi, L. On the Comparison of Cauchy Mean Values, J. Inequal. Appl. 7(1),

11-24, 2002.

[15] Neuman E. and Sándor, J. On certain means of two arguments and their

extensions, Intern. J. Math. Math. Sci. 2003(16), 981-983, 2003.

[16] Neuman E. and Sándor, J. Inequalities involving Stolarsky and Gini means,

Math. Pannonica 14(1), 29-44, 2003.

[17] Neuman E. and Páles, Zs. On comparison of Stolarsky and Gini means, J. Math.

Anal. Appl. 278(2), 274-284, 2003.

[18] Neuman, E. A generalization of an inequality of Jia and Cau, J.

Inequal. Pure Appl. Math. 5(1), Art. 15, 2004; available online at

http://jipam.vu.edu.au/images/01004JIPAM/01004.pdf
http://jipam.vu.edu.au/images/010_04_JIPAM/010_04.pdf.

[19] Neuman E. and Sándor, J. Companion inequalities for certain bivariate

means, Appl. Anal. Discrete Math. 3(1), 46-51, 2009; available online at

http://www.doiserbia.nb.rs/img/doi/1452-8630/2009/1452-86300901046N.pdf

http://www.doiserbia.nb.rs/img/doi/1452-8630/2009/1452-86300901046N.pdf.

[20] Páles, Zs. Inequalities for sums of powers, J. Math. Anal. Appl. 131, 265-270,

1988.

[21] Páles, Zs. Inequalities for differences of powers, J. Math. Anal. Appl. 131,

271-281, 1988.

[22] Páles, Zs. On comparison of homogeneous means, Annales Univ. Sci. 32, 261-266,

1989

[23] Páles, Zs. Comparison of two variables homogeneous means, Inter. Ser. Num.

Math. 103, 59-70, 1992.

[24] Pittinger, A. O. Inequalities between arithmetic and logarithmic means, Univ.

Beogard Publ. Elektr. Fak. Ser. Mat. Fiz, 680, 15-18, 1980.

[25] Sándor, J. A note on some inequalities for means, Arch. Math. (Basel) 56(5),

471-473, 1991.

[26] Sándor, J. On certain identities for means, Studia Univ. Babes-Bolyai, Math.

38(4), 7-14, 1993.

[27] Sándor, J. On certain inequalities for means, J. Math. Anal. Appl. 189,

602�606, 1995.

[28] Sándor, J. On certain inequalities for means, II, J. Math. Anal. Appl.

199(1996), no. 2, 629-635.

[29] Sándor J. and Rasa, I. Inequalities for certain means in two arguments, Nieuw

Arch. Wisk. 15, 51�55, 1997.

[30] Stolarsky, K. B. Generalizations of the Logarithmic Mean, Math. Mag. 48,

87-92, 1975.

[31] Stolarsky, K. B. The power and generalized logarithmic means, Amer. Math.

Monthly 87, 545�548, 1980, .

[32] Witkowski, A. Comparison theorem for generalization of Stolarsky

means, RGMIA Res. Rep. Coll. 8(1), Art. 6, 2005; available online at

http://rgmia.vu.edu.au/v8n1.html.http://rgmia.vu.edu.au/v8n1.html.

[33] Witkowski, A. Comparison theorem for two-parameter means, Math. Inequal.

Appl., 12(1), 11-20, 2009.

[34] Yang, Zh.-H. Some identities for means and applications,

RGMIA Res. Rep. Coll. 8(3), Art. 17, 2005; available online at

http://rgmia.vu.edu.au/v8n3.htmlhttp://rgmia.vu.edu.au/v8n3.html.

[35] Yang, Zh.-H. ON the homogeneous functions with two parameters and its

monotonicity, J. Inequal. Pure Appl. Math. 6(4), Art. 101, 2005; available



644

online at http://jipam.vu.edu.au/images/15505JIPAM/15505.pdf

http://jipam.vu.edu.au/images/155_05_JIPAM/155_05.pdf.

[36] Yang, Zh.-H. ON the log-convexity of two-parameter homogeneous functions,

Math. Inequal. Appl. 10(3), 499-516, 2007.

[37] Yang, Zh.-H. On the monotonicity and log-convexity of a four-parameter

homogeneous mean, J. Inequal. Appl. 2008, Art. ID 149286, 2008; available

online at http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/149286

http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/149286.

[38] Yang, Zh.-H. Some monotonictiy results for the ratio of two-parameter

symmetric homogeneous functions, Int. J. Math. Math. Sci. 2009, Art. ID

591382, 12 pages, 2009. doi:10.1155/2009/591382; available online at

http://www.hindawi.com/journals/ijmms/2009/591382.html

http://www.hindawi.com/journals/ijmms/2009/591382.html.

[39] Yang, Zh.-H. Log-convexity of ratio of the two-parameter symmetric homogeneous

functions and an application, J. Inequal. Spec. Func. 1(1), 16-29, 2010;

available online at http://www.ilirias.comhttp://www.ilirias.com

[40] Yang, Zh.-H. The log-convexity of another class of one-parameter means and its

applications, Bull. Korean Math. Soc. 49(1), 33-47, 2012; available online at

http://dx.doi.org/10.4134/BKMS.2012.49.1.033

http://dx.doi.org/10.4134/BKMS.2012.49.1.033.

[41] Yang, Zh.-H. New sharp bounds for identric mean in terms

of logarithmic mean and arithmetic mean, J. Math. Inequal.

6(4), 533�543, 2012, doi:10.7153/jmi-06-5; available online at

http://files.ele-math.com/articles/jmi-06-51.pdf

http://files.ele-math.com/articles/jmi-06-51.pdf.

[42] Yang, Zh.-H. The monotonicity results for the ratio of certain mixed

means and their applications, Int. J. Math. Math. Sci. 2012, Art. ID

540710, 13 pages, 2012, doi:10.1155/2012/540710; available online at

http://www.hindawi.com/journals/ijmms/2012/540710/

http://www.hindawi.com/journals/ijmms/2012/540710/.


