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 It is well known that high temperatures, which change the rheological properties of the drilling 

fluid and can frequently cause problems in deep wells, is a major problem during drilling. The 

importance of the estimation and control of the rheological parameters of the drilling fluid and the 

hydraulics of the well  increases as the depth of the well drilled is being increased to explore new 

oil, gas or geothermal reserves. Since it is difficult to measure these parameters with standard 

field and laboratory viscometers, different conventional measurements and regression-analysis 

techniques are routinely used to approximate the true rheological parameters. In this study,  

water-based drilling fluid was initially prepared and rheological properties of the fluids were 

measured under elevated temperatures using high temperature rheometer (Fann Model 50 SL). 

Then, the shear stresses of drilling fluid are predicted using artificial neural network (ANN) 

method depending on the elevated temperature and shear rate. The results obtained from the high 

temperature rheometer and artificial neural network were compared with each other and analyzed. 

Consequently, it is observed that the artificial neural network could be used with good 

engineering accuracy to directly estimate the shear stress of drilling fluids without complex 

procedures. The testing process shows that the average percentage error was found to be 

approximately 2% for the prediction of shear stress values. Hence, rheological parameters of the 

drilling fluid could be determined quickly and controllability was facilitated using artificial neural 

network structure developed.  
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1. Introduction 

Drilling fluid, also called drilling mud, is one of the 

most significant components in the drilling process. 

Drilling fluids perform several functions including 

controlling formation pressures, maintaining hole 

integrity and stability, cooling and lubricating the drill bit 

and the drill string, cleaning the bottom hole, and 

suspending cuttings in the annulus when circulation is 

stopped or carrying them to the surface during drilling 

[1], [2]. The rheological behavior of a drilling fluid 

directly affects all these functions and its knowledge 

enables better estimation of flow regimes, frictional 

pressure losses, equivalent circulating density under 

downhole conditions, hole-cleaning efficiency, 

swab/surge pressures, all of which have extreme 

importance to improve drilling efficiency [2]. As the 

depth of the drilled well increases, the drilling fluid is 

exposed to rising temperatures. Since the temperature 

changes during the drilling operation, proper planning 

and execution of drilling, especially for high pressure 

high temperature wells, takes precise and correct 

information of the behavior of the drilling fluid shear 

stress. This knowledge can only be obtained by 

measuring the shear stress of the drilling fluid at desired 

temperatures in real terms. Nevertheless, this takes 

specific material and laboratories to measure the 

rheological properties of the drilling fluid. These 

measurements take a lot of time and should be conducted 

frequently to ensure the quality of the drilling fluid. On 

the well site during the drilling operation, there is not 

enough time to conduct these tests [3]. A simple, reliable, 

and accurate methodology for predicting shear stress for 

flow of water-based drilling fluid is necessary and this is 

the aim of this paper. Prediction of the shear stresses of 

the drilling mud at various temperatures provides very 
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useful and practical solutions for mud and drilling 

engineers in planning drilling operations.  

Artificial neural networks (ANNs) are information 

processing systems, which are trained by using existing 

input/output data for obtaining the relationships between 

input/output of the process. The usage of ANN in 

engineering applications is rapidly increasing in recent 

years because of its processing capability when the 

process

has complex and nonlinear input/output relationships. In  

petroleum engineering applications, the popularity of the 

neural-network models increases for estimation and 

classification of the process parameters [4], [5]. The 

studies about the usage of ANN in petroleum engineering 

show that artificial neural-networks have better 

performance against conventional approaches in a variety 

of problems [5], [6], [7]. However, it is observed that 

there are few studies in the literature about the estimation 

of the rheological parameters of drilling mud by ANN. 

Furthermore, it is seen that the studies have been done 

especially in recent years. Elkatatny [3] estimated the 

rheological properties of KCl polymer mud by using 

ANN and improved empirical correlations. It was 

concluded that the average absolute error of the 

rheological parameters was less than 6 % and the 

correlation coefficient was estimated at 90 %. Elkatatny 

et al. [8] developed new empirical correlations for 

estimating the rheological parameters of invert emulsion 

based drilling fluid using ANN. The model developed 

determined the rheological parameters of drilling fluid 

with average absolute error less than 5 %. Da Silva Bispo 

et al. [9] developed a soft-sensor based on an ANN to 

prediction the apparent viscosity of the water-based 

drilling fluids. In a present study, an artificial neural 

network model was developed to estimate the shear stress 

of water-based drilling fluids composed of  xanthan gum, 

carboxy methyl cellulose and bentonite. To accomplish 

this task, a statistical study to define the impact of the 

shear rate and temperature on the shear stress of drilling 

fluids was carried out. Apparent viscosity, plastic 

viscosity, yield point, flow behavior index and 

consistency index values, which are used to determine 

hole cleaning efficiency, equivalent circulation density, 

hydraulic calculations, and surge and swab pressure 

calculations, are obtained by using shear stress values. 

Therefore, by estimating the shear stress values, the those 

parameters can be calculated using the estimated results 

obtained.  
 

2. Material and Method 

2.1. Preparation of Drilling Fluid Samples 

A water-based drilling fluid sample was prepared with 

xanthan gum, carboxy methyl cellulose and bentonite. 

Initially, bentonite was stirred with distilled water for 20 

minutes, then xantam gum and carboxy methyl cellulose 

were added gradually and mixed for 10 minutes using 

five- spindle multi-mixer (model 9B) as shown in Figure 

1(a). After homogenization, the bentonite dispersion was 

aged for 16 hours at ambient temperature conditions to  

ensure that the bentonite achieved the exact hydration. 

Table 1 shows the concentration of materials used in the 

formulated drilling muds and the temperature ranges 

studied. 

Table 1. Composition of the  drilling mud formulated and 

temperature ranges studied. 

 

2.2. Determination of Rheological Properties 

 

The rheological properties were measured using a High 

Temperature-High Pressure Rheometer (Fann-Model 50 

SL, Houston, TX, USA) given in Figure 1(b). The 

equipment is a rotary viscometer and capable of 

measuring the shear stress depending on the shear rate 

over a wide range from 500 °F (260 °C) temperature to 

1,000 psig (7,000 kPa) pressure. The shear stresses of the 

formulated  mud were measured under 600, 300, 200, 

100, 6 and 3 (rpm) shear rates and 25, 50, 75, 100, 125, 

150 (°C) temperatures using high pressure-high 

temperature rheometer.  

 

  
(a)                                           (b) 

Figure 1. Equipments used in the study a) Mud Mixer [10], b) 

Rheometer [11] 

2.3. Artificial Neural Network 

Artificial neural networks are computer systems that 

are designed to imitate the characteristics of the human 

Temperature 

(°C) 

Xantam Gum 

(g/350 ml 

H2O) 

Carboxy 

Methyl 

Cellulose 

 (g/350  

ml H2O) 

Bentonite  

(g/350 ml 

H2O) 

25 0.5 1 22.5 

50 0.5 1 22.5 

75 0.5 1 22.5 

100 0.5 1 22.5 

125 0.5 1 22.5 

150 0.5 1 22.5 
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brain and to automatically acquire new knowledge 

without any help by learning system behavior through 

existing data. In other words, artificial neural network 

systems are computer programs that mimic biological 

neural networks. They are able to solve problems that are 

too complicated for traditional techniques. Moreover, 

generalizations can be made in unexplored situations 

using familiar data through this learning ability. 

Therefore, artificial neural networks can be applied in 

many fields of our daily life such as financial issues, 

engineering and medical science applications and fault 

analysis and detection in production applications. 

Artificial neural network applications are generally used  

for prediction, classification, data association, data 

interpretation and data filtering [12,13]. There are 

basically three steps in the artificial neural network 

learning process; a-) to calculate the output, b-) compare 

outputs with target outputs and calculate the error, c-) 

repeat the process by changing weights. As a result of the 

training process, it is expected that the error calculated in 

artificial neural network reduces to an acceptable error 

rate. Artificial neural networks usually contain at least 

three layers such as input layer, hidden layer and output 

layer. All layers are composed of neurons, which are the 

most basic component of artificial neural networks. The 

input layer contains neurons that receive inputs from the 

outside. The output layer contains the neurons that 

transmit the results of the neural network. When the input 

and output layers are composed of a single layer, there 

can be more than one hidden layer between these two 

layers. These hidden layers contain a large number of 

neurons, which are all connected to other neurons in the 

network. In most network types, a neuron in the hidden 

layer only receives signals from all neurons of the 

previous layer. After neuron processing, it sends the 

output to all the neurons of the next layer. The output 

signal of each neuron is determined by applying 

activation function to its input data. The information flow 

takes place with the connection links from one neuron to 

the other neuron, and each link has a weight to create the 

desired input-output relationship. These weights are 

updated based on the error margin between the net output 

and the expected output [14], [15], [16]. 

Although there are differences in the structure of an 

artificial neural network and the number of neurons, there 

are no accepted rules for the formation of artificial neural 

networks. Artificial neural networks that have fewer 

hidden layers than the required number of layers may be 

inadequate for the resolution of complex functions. 

However, undesirable instabilities may be seen when 

artificial neural networks with many hidden layers are 

used. After the number of hidden layers is determined, 

the problem is how many neurons will be present in each 

layer. The input and output layers have specific neuron 

numbers depending on the number of inputs and outputs 

of the problem. However, there are no mathematical tests 

on how many neurons will be found most efficiently in 

the hidden layer. It should be decided by trials [13], [17]. 

The neural-network model was developed using 198 

different  experimental data sets for training, validation 

and testing of the network. These data sets are given in 

the Appendix. The network consists of two inputs and an 

output. The shear rate and temperature are determined as 

inputs and the output is shear stress. The network uses a 

back propagation algorithm which is the classical feed-

forward artificial neural network and it uses this to 

calculate the error contribution of each neuron after a 

group of data is processed. ANN includes some 

parameters such as the number of hidden layers, number 

of neurons in each hidden layer in addition to applying 

different training algorithms which should be optimized 

in order to determine the most precise consequences. The 

optimal configuration of the artificial neural network is 

found out by a trial and error method. In this work, the 

number of neurons in the hidden layer is determined by 

an optimization procedure which minimizes some error 

indexes. The performance of training and testing of 

ANNs are appraised by the average absolute percent 

relative error (AAPE) and R
2
, which are given as follows: 

 

AAPE =
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Where n represents the number of data,   is 

experimental value,    denotes calculated value by ANN, 

and   ̅  is average value. 
In this study, one hidden layer with twelve neurons is 

used in the developed network. The neuron number of 

hidden layers is obtained at the end of several trials to 

maximize the correlation coefficient R. Figure 2 shows 

the structure of  the neural network architecture used for 

estimating the shear stress depending on the shear rate 

and temperature.  



 

 

 

 
Figure 2. The structure of the Neural Network 

Wij and Woj denote the weights of the synapse of the 

network. The desired input/output relationship of the 

network during the training process with these 198 data 

sets is provided by adjusting the weight of the 

connections.   After the training process, the neural 

network architecture developed was tested with  20 

experimental data points which were not used in the 

training process of the network due to validation of its 

estimation performance. 

3. Results and Discussion 

The main goal of this study  is the estimation of the 

drilling mud shear stresses without the need for long-

running experiments. For this reason a neural network 

architecture was developed. The performance and 

accuracy of the developed neural network model was 

checked by comparing the predicted shear stress values 

with actual shear stress values. The neural network was 

designed with ANN Toolbox of MATLAB. The 

efficiency of the network was evaluated using statistical 

parameters such as the correlation coeeficient (R) for 

training and mean absolute error (MAE) for testing with 

different data. Figure 3 shows the performance results of 

the ANN toolbox depending on the 198 training sets. The 

training, validation and testing performances were 

evaluated depending on the R correlation error. The large 

value of R means that the mean square error value of the 

estimator is much smaller than the average target 

variance and this shows that modeling of most of the 

variation in the input-target transformation is managed 

successfully by the net. In other words, the closer R is to 

1.00 then the better the regression model is able to 

reproduce the target data.  

 

 
Figure 3. Results of ANN Toolbox for training, validation 

and test  

 

The training data, validation data and test data sets are 

used for adjusting the weights of connections, validate 

the input-output relationship, finding the best 

configuration and testing the generated network to 

evalute the trained neural network parameters, 

respectively.  

Neural network used about 70 % of these sets for 

training, 15 % for validation and 15 % for testing. The 

results show that  the correlation coefficient value R of 

training, validation and testing subsets shown in the 

diagram is 0.99544, 0.98688, and 0.99322, respectively. 

The overall correlation coefficient R is 0.99317. This 

means that developed neural network model represents 

the drilling mud process for estimating the actual shear 

stress depending on the shear rate and temperature 

succesfully. 

  

Figure 4. The predicted shear stress versus experimental values 
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for the testing data sets 

As mentioned above, 20 different data sets were used 

for testing the estimation performance of the neural 

network architecture developed. Table 2 illustrates the 

results of percentage errors between values estimated by 

ANN and  the experimental values corresponding to the 

inputs such as shear rate and temperature. The results 

show that the absolute average percentage error (AAPE) 

values vary between 0.0282 and 6.3330. Consequently, 

when the total error for estimation is calculated, the shear 

stress values of the drilling mud are estimated with an 

mean the absolute average percentage error of 2.0431 

using ANN. In the previous literature, any study isnt 

found regarding the estimation of shear stress of drilling 

mud using artificial neural networks due to shear rate and 

temperature. However, Elkatatny [3] estimated the dial 

reading values with % 3.51 and % 3.27 errors at 600 and 

300 (rpm), respectively. Also, Elkatatny et al [20] 

predicted viscometer readings with an average absolute 

error 3.7 and 3.48 at 600 rpm and 300 rpm, respectively. 

The developed neural network model illustrates that it 

can predict shear stress values of water-based drilling 

muds with high accuracy. This error performance is 

acceptable for the prediction of shear stress and this 

performance provides us with the means to reduce 

spending time and data collection effort since the neural 

network gives approximate results quickly instead of 

doing long-term experiments. 

In order to facilitate the analysis of results, comparison 

between data estimated by the ANN and experimental 

data approach is also showed in Figure 4 clearly. The x-

axis of the graph shows the number of the data sets which 

are given in the first column in Table 2 and y-axis 

denotes the shear stresses of the sample water-based mud. 

It can be clearly seen that the estimated and real data are 

very close to each other for each test data set. 

Nevertheless, it can be said that predicted values 

relatively far away from the actual values at 600 rpm 

comparatively to the other shear rate.

Table 2. Accuracy of ANN and correlations for shear stress—testing set 

 

4. Conclusions 

In this study, an alternative way to achieve reliable 

results for the determination of shear stress values of 

water-based drilling fluids was proposed because the 

experiments take a very long time, high effort and high 

cost. A neural network architecture was designed for 

prediction of the shear stress depending on the shear rate 

and temperature. A feed-forward back propagation 

method was used for estimation and the correlation 

coeffcient error performance of the network was 

observed depending on the training data used. The 

correlation coefficient of train validation and test data 

were approximately equal to 0.99 and as a result the 

overall  performance of the ANN was calculated as 

0.99317.  After that 20 different test data were used to 

 Inputs Output  

 
Shear Rate 

(rpm) 
Temperature (°F) 

Shear Stress (dynes/cm
2
)  

Number of 

test data sets 
Experimental  Neural Network AAPE (%) 

1 600,069339 76,280001 220,711418 227,116433397176 2.902 

2 199,961992 122,179997 130,139046 129,124913019282 0.7793 

3 300,014671 77,9 156,09928 156,051258251427 0.0308 

4 100,044328 169,340005 109,370859 108,689632943637 0.6229 

5 6,089757 259,7 56,296603 59,6344213054872 5.9290 

6 2,949049 304,880011 59,181073 56,3201907967738 4.8341 

7 599,989346 166,820003 195,328078 201,783034843783 3.3047 

8 300,054668 121,639999 146,292081 147,740418497273 0.99 

9 199,95534 78,260001 131,292835 134,874179821297 2.7278 

10 99,939331 78,8 110,524647 110,702923516035 0.1613 

11 6,048092 78,980001 68,988273 68,5600630654917 0.6207 

12 3,057378 169,520003 81,103049 84,3658863884235 4.0231 

13 600,015997 256,820003 155,522386 158,881879212880 2.1601 

14 299,948003 214,7 131,292835 131,990017687632 0.5310 

15 199,975338 214,879997 111,678436 111,709956036522 0.0282 

16 99,892672 259,879997 70,718955 71,0000093695075 0.3974 

17 5,90643 215,240005 65,526908 65,4469514928737 0.1220 

18 3,144874 78,980001 73,026532 68,4017784749716 6.3330 

19 600,082644 302,9 116,870482 120,745531748773 3.3157 

20 199,862 259,7 86,87199 87,7832372946993 1.049 

    AAPE total (%) 
2.0431 

    

128 



 

 

 

test the developed neural network algorithm and the 

average error  of test data was  2.0431 %. These results 

show that the developed neural network model provided 

very good predictions of the shear stress values. Thus, 

this model presents excellent performance when 

estimating the shear stress of drilling fluids  with 

temperature changes under different shear rate values 

depending on the ranges of the training input data. This 

inexpensive technique, which can  determine shear stress 

values quickly, will lead to  a reduction in the total cost 

and time loss of the drilling operations. In addition, it will 

help drilling engineers to better control the drilling 

operation. 

Nomenclature 
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Appendix 

The used experimental data for training are as follows [21] 

 Inputs Output  Inputs Output 

No 
Shear Rate 

(rpm) 

Temperature 

(°F) 

Shear Stress 

(dynes/cm
2
) 

No 
Shear Rate 

(rpm) 

Temperature 

(°F) 

Shear Stress 

(dynes/cm
2
) 

1 599,576032 74,6600010 247,825441 101 100,012662 122,360001 109,947753 

2 599,909352 74,8399990 235,710665 102 99,9693390 122,360001 109,947753 

3 599,962654 75,7399990 224,172783 103 99,9076650 169,159995 108,217071 

4 599,936003 75,9199990 223,018995 104 100,022661 169,159995 107,063283 

5 599,962654 76,8199990 218,403842 105 100,089329 169,340005 108,793965 

6 599,989346 77,1800010 218,403842 106 100,179322 169,340005 109,947753 

7 599,602683 164,479997 224,749677 107 99,9660020 169,340005 109,947753 
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ANN : Artificial Neural Network 

MAE : Mean Absolute Error  
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8 599,989346 165,200000 208,596643 108 100,064326 169,340005 109,370859 

9 599,909352 166,279997 198,789443 109 99,7110080 214,879997 86,2950960 

10 599,989346 167 193,597396 110 100,022661 215,059995 89,7564600 

11 599,962654 167,720003 191,866714 111 99,9026710 215,059995 89,7564600 

12 599,936003 168,259995 190,136032 112 99,7976740 215,059995 88,6026720 

13 599,456001 209,659995 222,442101 113 99,8826720 215,240005 89,7564600 

14 600,135987 210,920003 197,058761 114 99,9393310 215,240005 90,3333540 

15 600,135987 211,820003 190,712926 115 100,029334 305,600000 59,1810730 

16 599,962654 212,540005 186,674667 116 99,9776700 305,600000 59,1810730 

17 599,962654 213,079997 184,367091 117 100,061000 305,600000 59,1810730 

18 599,962654 213,800000 182,059514 118 99,6926780 305,600000 55,7197090 

19 599,629334 254,479997 184,943985 119 100,130994 305,780011 57,4503910 

20 599,762670 255,920003 161,868221 120 99,8826720 305,780011 58,6041790 

21 600,362663 256,459995 158,406857 121 6,01892600 78,8 60,9117560 

22 600,042648 257,540005 152,061022 122 5,78143500 78,8 51,6814500 

23 600,015997 258,079997 149,753445 123 6,06142400 78,9800010 73,6034260 

24 599,936003 258,800000 147,445869 124 6,03559200 78,9800010 73,6034260 

25 599,709328 299,480011 151,484128 125 5,98642700 78,9800010 73,0265320 

26 600,109336 301,100000 122,639423 126 5,96642800 78,9800010 66,6806970 

27 599,962654 302,359995 118,024271 127 6,08475600 122,360001 71,2958490 

28 600,069339 303,440005 115,716694 128 5,96892800 122,360001 74,7572140 

29 599,909352 304,159995 113,986012 129 6,03559200 122,539999 77,0647900 

30 599,962654 304,700000 112,832224 130 6,01475900 122,539999 77,6416840 

31 300,194657 77,3600010 153,214810 131 5,90143100 122,539999 78,2185780 

32 300,014671 77,5399990 154,368598 132 5,87726500 122,539999 79,3723670 

33 299,961329 77,7199990 156,099280 133 5,84726600 169,340005 60,3348620 

34 299,948003 77,7199990 154,945492 134 6,00809300 169,520003 80,5261550 

35 299,974675 77,9 156,099280 135 5,98892700 169,520003 82,2568370 

36 299,961329 78,0800010 156,099280 136 5,96892800 169,520003 81,1030490 

37 300,774630 121,639999 145,138293 137 5,94476200 169,520003 78,2185780 

38 300,081339 121,639999 147,445869 138 5,92143000 169,520003 75,9110020 

39 300,081339 121,820003 148,022763 139 6,14475400 259,700000 59,7579680 

40 299,961329 121,820003 148,022763 140 6,11058900 259,700000 58,6041790 

41 300,041322 122 148,022763 141 6,07475700 259,700000 55,1428150 

42 300,027997 122 148,599657 142 5,90143100 259,700000 56,8734970 

43 300,547975 168,440005 141,100034 143 5,87643100 259,700000 56,8734970 

44 300,041322 168,440005 142,830716 144 5,76893600 259,700000 38,9897800 

45 299,988000 168,440005 143,407610 145 6,03725800 305,240005 52,2583440 

46 299,848011 168,620003 143,407610 146 5,96226200 305,240005 53,4121330 

47 300,014671 168,800000 143,984505 147 5,76060300 305,240005 55,7197090 

48 299,888008 168,979997 143,984505 148 6,00226000 305,419989 50,5276620 

49 300,014671 214,159995 129,562152 149 5,67810600 305,419989 35,5284160 

50 299,948003 214,159995 130,139046 150 5,94726200 305,600000 44,1818270 

51 300,014671 214,340005 131,292835 151 3,17154000 78,9800010 74,1803200 

52 299,928005 214,340005 131,292835 152 3,13987400 78,9800010 74,7572140 

53 299,914679 214,520003 131,292835 153 3,02071300 78,9800010 73,0265320 

54 299,948003 214,700000 131,869729 154 2,97654800 78,9800010 74,1803200 

55 300,307995 259,159995 102,448130 155 2,94238200 78,9800010 66,1038030 

56 300,101338 259,159995 103,025024 156 2,91571700 78,9800010 68,4113790 

57 300,014671 259,340005 103,601918 157 3,06154400 122,360001 78,7954720 

58 299,874662 259,340005 103,601918 158 2,94488200 122,360001 78,2185780 

59 300,041322 259,520003 103,025024 159 3,03904500 122,539999 77,0647900 

60 299,961329 259,520003 103,601918 160 3,02071300 122,539999 77,6416840 

61 200,135325 122,179997 130,139046 161 2,98571400 122,539999 77,0647900 

62 200,025324 122,179997 126,677682 162 2,91321700 122,539999 76,4878960 

63 200,005325 122,179997 129,562152 163 3,03154500 214,879997 68,9882730 

64 199,995336 122,179997 129,562152 164 2,89405100 214,879997 66,6806970 

65 199,975338 122,179997 130,139046 165 3,00988000 215,059995 65,5269080 

66 199,961992 122,179997 128,985258 166 2,99154700 215,059995 66,6806970 

67 200,065321 168,979997 127,831470 167 2,86571900 215,240005 61,4886500 

68 200,058668 168,979997 126,100788 168 2,84905300 215,240005 60,3348620 

69 200,045322 168,979997 127,831470 169 3,07987700 259,159995 64,9500140 
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70 200,025324 168,979997 127,254576 170 3,05571100 259,159995 64,9500140 

71 199,872010 168,979997 124,947000 171 3,04654500 259,340005 62,0655440 

72 200,045322 169,159995 127,831470 172 2,83572000 259,340005 61,4886500 

73 199,955340 214,700000 111,678436 173 3,02987900 259,520003 59,1810730 

74 200,025324 214,879997 111,678436 174 2,81655400 259,520003 55,7197090 

75 200,011998 214,879997 111,678436 175 3,01987900 304,519989 61,4886500 

76 199,995336 214,879997 111,678436 176 2,97321400 304,519989 60,9117560 

77 199,961992 214,879997 111,678436 177 2,96738100 304,700000 59,7579680 

78 199,795332 214,879997 109,947753 178 2,98738000 305,059995 54,5659210 

79 200,038670 259,520003 87,4488840 179 2,93321600 305,059995 55,7197090 

80 200,548639 259,700000 86,2950960 180 2,71489200 305,059995 51,6814500 

81 200,075330 259,700000 86,8719900 181 599,602683 119,479997 238,018241 

82 200,068657 259,700000 87,4488840 182 599,909352 120,379997 209,173537 

83 199,998673 259,700000 87,4488840 183 599,962654 121,100000 201,673913 

84 199,862000 259,700000 87,4488840 184 300,447983 305,240005 79,3723670 

85 200,075330 305,600000 70,1420610 185 300,114663 305,600000 81,1030490 

86 200,068657 305,600000 70,1420610 186 299,948003 305,600000 81,1030490 

87 200,045322 305,600000 69,5651670 187 200,128652 78,2600010 133,600411 

88 200,005325 305,600000 69,5651670 188 200,145335 78,4399990 134,177305 

89 199,842002 305,600000 68,4113790 189 199,955340 78,4399990 134,754199 

90 199,828676 305,600000 70,1420610 190 99,8960080 259,700000 70,7189550 

91 99,9976680 78,6199990 105,909495 191 99,9876690 259,700000 71,2958490 

92 100,102665 78,8 111,101541 192 100,054327 259,879997 70,1420610 

93 99,9560030 78,8 109,947753 193 6,18475300 215,240005 66,1038030 

94 100,029334 78,8 110,524647 194 5,90393000 215,240005 64,9500140 

95 99,8643420 78,8 110,524647 195 6,09725600 215,420003 63,7962260 

96 100,007667 78,8 110,524647 196 3,12487500 169,340005 83,4106250 

97 100,029334 122,179997 107,640177 197 3,01238000 169,340005 83,9875190 

98 100,061000 122,360001 109,370859 198 3,04904500 169,520003 82,2568370 

99 99,9243370 122,360001 109,370859     

100 99,8410070 122,360001 108,793965     
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