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1. Introduction

The proportional hazards model (PHM) has been one of the most frequently applied ones for the
analysis of the life-time data. Since Cox (1972) has proposed the PHM for the right censored data,
the PHM has been developed and modified successfully in many various situations such as the mul-
tivariate and interval censoring cases. However when the proportionality among hazard functions
may be suspicious, one may as well consider an alternative model rather than clinging to the PHM.
Then the additive hazards model (AHM) may be a candidate for any possible alternatives. Let
λ0 be the baseline hazard function and z, the p× 1 regression vector, which is independent of the
time t. Then the hazard function λ(t, z) for the AHM can be presented with the p× 1 regression
coefficient vector β as follows:

λ(t, z) = λ0(t)+β′z, (1.1)

where the prime represents the transpose of a vector or matrix. Then the corresponding cumulative
hazard function, Λ(t, z) and survival function, S(t, z) under the AHM (1.1) can be written as follows
with the facts that Λ0(t) =

∫ t

0
λ0(x)dx,

∫ t

0
β′zdx= tβ′z and S(t, z) = exp [−Λ(t, z)]:

Λ(t, z) =

∫ t

0

(λ0(x)+β′z)dx=Λ0(t)+ tβ′z

and
S(t, z) = exp [−Λ0(t)] exp [−tβ′z] . (1.2)

As an alternative model to the PHM, the AHM has not been widely used. The main reason for
this may come from the fact that the conditional likelihood proposed by Cox (1972) can not be
applied to the AHM because of the structure of the hazard function. The AHM (1.1) was initiated
by Aalen (1980, 1989), who considered an inference procedure for λ0 and β applying the least
squares method. McKeague (1988) and Huffer and McKeague (1991) considered the weighted least
squares estimates under some optimality consideration. Also Lin and Ying (1994) proposed an
estimate procedure for β using the counting process as an ad hoc approach. McKeague and Sasieni
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(1994) developed partly parametric AHM. Also Scheike (2002) worked the AHM in this direction.
For the multivariate data, Yin and Cai (2004) considered inferences based on the marginal AHM
approach. However there has not been proposed a test procedure for β explicitly under the AHM
(1.1).
Sometimes one cannot help observing the objects whether they fail or not periodically with

time-schedule for some reasons. For example, after being exposed to the HIV virus, the observation
must be carried out periodically since it usually takes several months for blood test results from
HIV negative to HIV positive. In this case, the data set contains lots of tied value observations
even though the underlying life-time distribution is continuous. This type of data set is called the
grouped data and can be analyzed by the data-specific method. Heitjan (1989) reviewed extensively
the methodology and suggested several research directions for the grouped data. For the right
censored data, Prentice and Gloeckler (1978) considered the inferences about β under the PHM.
Park (1993) proposed a class of nonparametric tests for the linear model while Neuhaus (1993)
considered weighted log-rank tests for the two-sample problem.
In this study, we propose a nonparametric test procedure for β under the AHM (1.1) using

the score function based on the likelihood principle for the grouped and right censored data. The
scores will be derived using the discrete model approach (cf. Kalbfleisch and Prentice, 1980) and
estimated consistently. First of all, we consider a simple score test statistic for the scalar case and
then extend this procedure to the vector covariate. Then we illustrate our test with an example
and compare our test with that of Prentice and Gloeckler (1978) by obtaining empirical powers
through simulation study. Finally we discuss some peculiar aspects about our test as concluding
remarks.

2. A simple nonparametric score test

Suppose that we observe life time Ti for the ith individual with some specific scalar covariate, zi,
i= 1, · · · , n. We assume that each subject is prone to be censored. In this way, the data set can be
represented as {(Ti, δi, zi) , i=1, · · · , n}, where δi stands for the censoring status with values 0 or 1
if censored or not. Since we are concerned with the grouped data, we assume that the positive half
real line, [0,∞) is partitioned into k sub-intervals such as [0,∞) =

⋃k

l=1[al−1, al), with a0 = 0 and
ak =∞. Then one can only have the information that Ti is contained in one of the k sub-intervals
for all i. We denote Dl and Cl as the indicate sets for the uncensored and censored observations in
the lth sub-interval [al−1, al), respectively. Thus i ∈Dl or i∈Cl means that Ti is uncensored(δi= 1)
or censored(δi = 0) observation in the lth sub-interval. Also let Rl =

⋃k

m=l {Dm ∪Cm} for each l,
l=1, · · · , k. Then we note that Rl is the risk set of the lth sub-interval. Finally we denote dl and rl
as the sizes of Dl and Rl, respectively, l= 1, . . . , k. In this grouped continuous data, we assume that
all the censorings occur at the end of a sub-interval and all the deaths proceed any censoring in the
same sub-interval. Also we will assume that all the observations in the last sub-interval [ak−1,∞)
are censored at ak−1 for some technical reason, which we will see later. Finally we assume that the
survival and censoring distributions are independent to avoid the so-called identifiability problem.
Then based on the discrete model for the grouped data used for PHM in Kalbfleisch and Prentice
(1980), with all the assumptions and notation introduced up to now, we have under AHM (1.1)
with (1.2) that for each l, l= 1, · · · , k− 1

Pr{Ti ∈ [al−1, al), δi =1, zi} ∝ exp [−Λ0(al−1)] exp [−al−1βzi]− exp [−Λ0(−al)] exp [−alβzi]

and
Pr{Ti ∈ [al−1, al), δi = 0, zi} ∝ exp [−Λ0(al)] exp [−alβzi] .

For l= k, we have that

Pr{Ti ∈ [ak−1,∞), δi = 0, zi} ∝ exp [−Λ0(ak−1)] exp [−ak−1βzi] .
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Also we note that

exp [−Λ0(al−1)] exp [−al−1βzi]− exp [−Λ0(al)] exp [−alβzi]
= (exp [Λ0(al)−Λ0(al−1)] exp [(al − al−1)βzi]− 1) exp [−Λ0(al)] exp [−alβzi] .

Then under the AHM (1.1), the likelihood function L(β) for the data {(Ti, δi, zi), i= 1, · · · , n} based
on the discrete model becomes as

L(β) =
k−1
∏

l=1

{

∏

i∈Dl

(exp [Λ0(al)−Λ0(al−1)] exp [(al − al−1)βzi]− 1)

×
∏

i∈Dl∪Cl

exp [−Λ0(al)] exp [−alβzi]

}

∏

i∈Ck

exp [−Λ0(ak−1)] exp [−ak−1βzi]×C(I),

where C(I) denotes the portion of L(β) contributed by censoring. We assume that C(I) contains
no information about β (i.e., non-informative censoring). Then by taking logarithm to L(β) and
differentiating the log-likelihood function l(β) with respect to β, we have that

∂l(β)

∂β
=

k−1
∑

l=1

{

∑

i∈Dl

exp[Λ0(al)−Λ0(al−1)] exp[(al − al−1)βzi](al − al−1)zi
exp[Λ0(al)−Λ0(al−1)] exp[(al − al−1)βzi]− 1

−
∑

i∈Dl∪Cl

alzi

}

−
∑

i∈Ck

ak−1zi.

By substituting 0 for β in ∂l(β)/∂β, we have that

W 0
n =

k−1
∑

l=1

{

∑

i∈Dl

exp[Λ0(al)−Λ0(al−1)]

exp[Λ0(al)−Λ0(al−1)]− 1
(al − al−1)zi −

∑

i∈Dl∪Cl

alzi

}

−
∑

i∈Ck

ak−1zi.

One may use W 0
n for testing H0 : β = 0 against H1 : β 6= 0 if the baseline hazard function λ0 were

fully known. Then the resulting test would be optimal in the local sense since W 0
n has been derived

by the likelihood principle with the specification of λ0. However since we have assumed that λ0 is
unknown, we consider to use a suitable estimate for λ0 or Λ0. For this matter, first of all, we note
that since under H0 : β =0,

S(t) = exp[−Λ0(t)],

we have that under H0 : β = 0,

exp[Λ0(al)−Λ0(al−1)]

exp[Λ0(al)−Λ0(al−1)]− 1
=

exp[−Λ0(al−1)]

exp[−Λ0(al−1)]− exp[−Λ0(al)]
=

S(al−1)

S(al−1)−S(al)
.

Also we note that from the assumption of the precedence of death observations over censored ones
in the same sub-interval, the Kaplan-Meier estimate Ŝ(al) of S(al) under H0 : β = 0 is of the form

Ŝ(al) =
l

∏

j=1

(

1− dj

rj

)

,

for each l, l= 1, · · · , k− 1. Then under H0 : β = 0,

exp[Λ0(al)−Λ0(al−1)]

exp[Λ0(al)−Λ0(al−1)]− 1
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can be consistently estimated by
Ŝ(al−1)

Ŝ(al−1)− Ŝ(al)
=

rl
dl

. (2.1)

Also we note that for each l, l= 1, . . . , k− 1

al = (al − al−1)+ (al−1 − al−2)+ · · ·+(a1 − a0) =
l

∑

j=1

(aj − aj−1).

Therefore we see that

k−1
∑

l=1

∑

i∈Dl∪Cl

alzi +
∑

i∈Ck

ak−1zi =
k−1
∑

l=1

al

∑

i∈Dl∪Cl

zi + ak−1

∑

i∈Ck

zi

=
k−1
∑

l=1

l
∑

j=1

(aj − aj−1)
∑

i∈Dl∪Cl

zi +
k−1
∑

j=1

(aj − aj−1)
∑

i∈Ck

zi

=
k−1
∑

l=1

(al − al−1)
∑

i∈Rl

zi. (2.2)

Then from (2.1) and (2.2), we may have the following estimated score Wn for W 0
n as

Wn =
k−1
∑

l=1

(al − al−1)
rl
dl

{

∑

i∈Dl

zi −
dl

rl

∑

i∈Rl

zi

}

. (2.3)

We note that under H0 : β = 0, Wn is a martingale with discrete compensators (cf. Flemming and
Harrington, 1991). One may confirm this by re-expressing Wn in (2.3) as a stochastic integral with
identifying w= (al − al−1)rl/dl in the equation (4) of Jones and Crowley (1990). Therefore we see
that

E (Wn) = 0.

under H0 : β = 0.
Then for testing H0 : β = 0 against H1 : β 6= 0, one may reject H0 : β = 0 for large values of |Wn|.

For any given significance level, in order to decide the critical value, we need the distribution of Wn

under H0 : β = 0. However the derivation of the exact distribution of Wn would be difficult because
of the involvement of censoring distribution into the distribution of Wn even under H0 : β = 0.
Therefore it is natural to consider the null distribution of Wn in an asymptotic manner. In the
following theorem, we state the asymptotic normality for Wn. One may find the proof in Jones
and Crowley (1990) and Flemming and Harrington (1991), whose proofs use the martingale central
limit theorem based on the counting process theory. Before stating the theorem, we provide a
consistent estimate of the variance of Wn (cf. Jones and Crowley, 1990) under H0 : β = 0 in the
following:

σ̂2
n =

k−1
∑

l=1

(al − al−1)
2 rl(rl − dl)

(rl − 1)d2
l

∑

i∈Rl

(zi − z̄l)
2
,

where z̄l = (1/rl)
∑

i∈Rl
zi. Also we note that σ̂2

n is known to be unbiased (cf. Jones and Crowley,
1990).
Theorem 1. Under all the assumptions used up to now and with the following condition that

max
1√
n
{z1, . . . , zn}→ 0, (2.4)
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we have that under H0 : β = 0
Wn
√

σ̂2
n

converges in distribution to a standard normal random variable as n→∞.
We note that the condition (2.4) is called Lindeberg-type condition (cf. Andersen and Gill, 1982)

and is equivalent to the Noether’s condition (cf. Randles and Wolfe, 1979). When there is at most
one uncensored observation in each sub-interval, we note that Wn becomes

Wn =
k−1
∑

l=1

(al − al−1)rl

{

zl −
1

rl

∑

i∈Rl

zi

}

.

Also we note that when the lengths of sub-intervals [al−1, al) are all equal for all l, l=1, . . . , k− 1,
then the quantity al − al−1 becomes a constant and so can be removed from the expression in Wn

such as

Wn =
k−1
∑

l=1

rl
dl

{

∑

i∈Dl

zi −
dl

rl

∑

i∈Rl

zi

}

. (2.5)

Especially, when each covariate zi takes values only 0 or 1 as the indices of the populations for the
two-sample problem, Wn has been called a generalized (or weighted) log-rank statistic.

3. Vector covariate case

We now consider the extension to the p×1 covariate vector case, p≥ 2. Then for the ith individual,
the p× 1 covariate vector may be denoted as zi = (zi1, . . . , zip)

′, i= 1, . . . , n. Also β = (β1, . . . , βp)
′

denotes the corresponding regression coefficient vector. Then for the model (1.1), using the relation
(1.2) with the same arguments for the scalar case, the likelihood function can be expressed as

L(β) =
k−1
∏

l=1

{

∏

i∈Dl

(exp [Λ0(al)−Λ0(al−1)] exp [(al − al−1)β
′zi]− 1)

×
∏

i∈Dl∪Cl

exp [−Λ0(al)] exp [−alβ
′zi]

}

∏

i∈Ck

exp [−Λ0(ak−1)] exp [−ak−1β
′zi]×C(I),

where C(I) is the portion of L(β) contributed by censoring. Also we assume the non-informative
censoring scheme. Then for each j, j = 1, . . . , p, by differentiating partially the log-likelihood func-
tion, l(β), with respect to βj and manipulating ∂l(β)/∂βj with the same arguments for the scalar
case, one may obtain the following score statistic Wjn:

Wjn =
k−1
∑

l=1

(al − al−1)
rl
dl

{

∑

i∈Dl

zij −
dl

rl

∑

i∈Rl

zij

}

.

Then we note that for each for j, j = 1, . . . , p, Wjn is a martingale with discrete compensator
under H0 : β = 0. Therefore Wjn can be used as a test statistic for testing H0 : βj = 0. This fact in
turn, suggests that we may consider a quadratic form based on (W1n, . . . ,Wpn)

′
for a test statistic

for testing H0 : β = 0. To this end, we need a null consistent estimate, V̂n = (σ̂jj′n)j,j′=1,...,p, of

the covariance matrix of (W1n, . . . ,Wpn)
′
. In the sequel, let z̄lj = (1/rl)

∑

i∈Rl
zij , l = 1, . . . , k and

j =1, . . . , p. Then from the previous section, it is obvious that for each j, j = 1, . . . , p, a consistent
and unbiased null variance estimate σ̂2

jn = σ̂jjn for Wjn is

σ̂2
jn = σ̂jjn =

k−1
∑

l=1

(al − al−1)
2 rl(rl − dl)

(rl − 1)d2
l

∑

i∈Rl

(zij − z̄lj)
2
.
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Also a null covariance estimate σ̂jj′n of the covariance between Wjn and Wj′n for j 6= j′ can be
obtained by the same arguments used for the null variance estimate by noticing that the covariance
between observations with zij and zi′j′ is 0 whenever i 6= i′. Thus σ̂jj′n becomes of the form

σ̂jj′n =

k−1
∑

l=1

(al − al−1)
2 rl(rl − dl)

(rl − 1)d2
l

∑

i∈Rl

(zij − z̄lj) (zij′ − z̄lj′) .

We note that σ̂jj′n is also a consistent estimate. Then with the assumption that V̂n is nonsingular,
one may propose the following quadratic form for a test statistic for testing H0 : β =0

Qn =







W1n

...
Wpn







′

V̂ −1
n







W1n

...
Wpn






,

where V̂ −1
n is the inverse of V̂n. Then one may reject H0 : β = 0 in favor of H1 : β 6=0 for large values

of Qn. Also in order to have the critical value for any given significance level, we need the null
distribution of Qn. Since the null distribution of Qn contains the unknown censoring distribution,
also we consider to obtain the limiting distribution of Qn as for the scalar covariate case. Then
with all the notation introduced up to now, we state the following main result.
Theorem 2. With the assumption that V̂n is nonsingular and the condition that

max
1√
n
{z1j , . . . , znj}→ 0, for each j, j = 1, . . . , p, (3.1)

under H0 : β = 0, distribution of Qn converges to a central chi-square distribution with p degrees
of freedom.
Proof. From Theorem 1 with condition (3.1), we see under H0 : β = 0 that for each j j = 1, · · · , p

Wjn/
√

σ̂2
jn

converges in distribution to a standard normal random variable as n→∞. Also from the Cramèr-
Wold device (cf. Billingsley, 1986) and the Slutsky’s theorem with the assumption that V̂n is a
nonsingular consistent estimate, we note that under H0 : β = 0

(W1n, · · · ,Wpn) V̂
−1/2
n

converges in distribution to a p-variare normal random vector with 0 mean vector and covariance
matrix Ip, where Ip is the p× p identity matrix. Thus the result follows easily.
When V̂n is singular, i.e., |V̂n|= 0, Wei and Lachin (1984) recommended to add some number bn

such that bn = o(n−1) to each σ̂2
jn, j = 1, . . . , p, where bn = o(n−1) means that nbn → 0 as n→∞.

4. An example and simulation results

In order to illustrate our test procedure, we consider the data reported by Embury et al. (1977) for
the length of remission (in weeks) for the two groups (maintenance chemotherapy and control) with
acute myelogenous leukemia patients. Since the length of remission for each patient was measured
by week, the data set contains several tied observations. Therefore a sub-interval may be designated
by each week. Then we note that the lengths of sub-intervals are all the same with unity. Thus
we may use the statistic (2.5) rather than (2.3) for this problem with the corresponding variance
estimate. The objective of the experiment was to see if the maintenance chemotherapy prolongs
the length of remission. The data has been summarized as follows:
Control group: 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
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Maintenance group: 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+,
where + indicates censored observation. We note that this is a two-sample problem. Therefore by
allocating 0 or 1 to covariate zi for the ith individual according as from the control or maintenance
chemotherapy group in (2.5), we obtain the following necessary quantities.

Wn = 27.5 and σ̂2
n = 253.5183.

Thus we have that
Wn
√

σ̂2
n

=1.73

The corresponding p-value is 0.042, which shows the strong evidence against H0 : β = 0 in favor of
H1 : β 6= 0. In passing, we note that the procedure proposed by Prentice and Gloeckler (1978) gives
0.065 as its p-value.
The following tables are the simulation results under the two-sample problem setting. In this

study, we considered two cases of models such that for any two random variables X and Y , we
have that for some real number β,

Y = β+X (4.1)

and

Y = (1+β)X. (4.2)

Tables 1-4 summarizes the results under the model (4.1) and Tables 5-8, those under the model
(4.2). We note that β in (4.1) is the location translation parameter while β in (4.2) plays the
role of a kind of scale parameter. We compare our proposed test (AHM) with that of Prentice
and Gloeckler (1978) (PHM) through obtaining empirical powers by varying the values of β. For
the underlying distributions, we considered the Weibull and gamma distributions. For the Weibull
distribution, we considered three different values of the shape parameter α, α= 1,2 and 4/5 with
the scale parameter θ = 1. For the gamma distribution, we only considered the case that α= 1/2
and θ = 2. For the Weibull distribution, we note that α= 1 implies the exponential distribution.
For the censored distribution, we considered the exponential distribution with mean 2 in order to
avoid excessive censoring. The sample size is 20 for each sample and we varied the value of β from
0 to 0.5 by increment with 0.1 for the first sample while fixed as 0 for the second. Therefore we
note that when β = 0 in the tables for the first sample, the two distributions F and G coincides. In
other words, the null hypothesis holds when β = 0. Also we chose a partition of [0,∞) for grouping
as [0,0.2), · · · , [1.8,2.0), [2.0,∞), i.e., 11 sub-intervals. For each case, we obtained empirical power
based on 1000 simulations. The simulations have been carried out by SAS/IML on PC version and
the nominal significance level is 0.05.
First of all, we should note here that we cannot compare the empirical powers among distributions

since the random numbers for each case have not been generated under a unified standard because
the mean and variance of the Weibull distribution cannot be obtained explicitly. In general, we
see that AHM achieves high performance under the location translation model (4.1) whereas PHM
shows better performance for (4.2) as we might expect. Therefore our test may be a reliable
alternative when the proportional hazards assumption fails, especially when the location shift holds.
The reason for this will be more examined in the next section.

5. Some concluding remarks

In this section, we discuss some interesting aspects for the test under the model (1.1). For this, we
consider the case of equal length of sub-intervals. Then under the two-sample problem setting, we
note that Wn in (2.5) can be re-written as
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Wn =
k−1
∑

l=1

r2ld1l −
k−1
∑

l=1

r1ld2l, (5.1)

where rjl and djl denote the size of risk set and the number of deaths in the lth sub-interval of
the jth sample, respectively, j = 1,2. We note that Wn in (5.1) is just the Gehan statistic for the
grouped data. Therefore one may consider that (2.5) is a modification of the Gehan statistic for
the grouped case. Since the Gehan test is an extension of the Wilcoxon test for the censored data,
the Gehan test must be locally most powerful against the location translation alternatives (cf. Gill,
1980). Therefore it is no wonder that AHM has more empirical power than PHM under the model
(4.1) and PHM does more power under (4.2) in the previous section.
In section 2, we assumed that all the observations in the last sub-interval [ak−1,∞) are censored

at ak−1, which is the beginning point of the last sub-interval. The reason for this is as follows.
First of all, we note that the length of the last sub-interval is infinity. If there is any uncensored
observation in the last sub-interval, then the length of the last sub-interval should be included in
Wn, which is an absurd expression. Also if we maintain the assumption that the censoring occurs
at the end of each sub-interval, then the derivation of (2.2) becomes impossible for the censored
observations in the last sub-interval. However in the real experiment, since always a researcher
observes the objects during a finite time period, such assumption becomes insignificant and cannot
be applied for the real world.
For the null distribution, we derived the asymptotic normality using the large sample approx-

imation. Also one may consider a re-sampling approach such as the permutation principle (cf.
Good, 2000) to obtain a null distribution. Park (1993) and Neuhaus (1993) considered to apply
the permutation principle for obtaining the null distribution of the test statistics for the right cen-
sored and grouped data. However if one applies the permutation principle for the censored data,
then one must include the equality of unknown censoring distributions, which are of nuisance, in
the null hypothesis. The resulting permutation test is known as exact but conditional. Also as
another re-sampling method, one may use the bootstrap method (cf. Efron and Tibshirani, 1993).
For the censored data, you may refer to Efron (1981) and Reid (1981). Unlike the permutation
principle, the bootstrap method does not require the equality among censoring distributions for
the null hypothesis. However because of the computational amount of work, the application of the
re-sampling methods always take the Monte-Carlo approach.
We note that when there is at most one uncensored observation in each sub-interval, then this cor-

responds to the no tied-value case and the assumption for the allowance of discontinuity of hazard
function disappears. Also in this research, only we considered the case that the covariate is indepen-
dent of time. For the time-dependent case, the likelihood function would not be tractable because
of the involvement of time into the cumulative covariate function such as Z(t) =

∫ t

0
z(x)d(x), which

in turn requires some specific functional form of z(t). However in the light of applicability, this
research should be done in the near future.
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β AHM PHM
0.0 0.045 0.046
0.1 0.071 0.071
0.2 0.189 0.116
0.3 0.279 0.198
0.4 0.533 0.319
0.5 0.607 0.543

Table 1. exponential

β AHM PHM
0.0 0.040 0.062
0.1 0.083 0.106
0.2 0.208 0.209
0.3 0.403 0.373
0.4 0.608 0.565
0.5 0.802 0.727

Table 2. Weibull(α=2)

β AHM PHM
0.0 0.059 0.056
0.1 0.074 0.085
0.2 0.183 0.145
0.3 0.243 0.201
0.4 0.498 0.306
0.5 0.546 0.392

Table 3. Weibull(α=4/5)

β AHM PHM
0.0 0.052 0.074
0.1 0.087 0.085
0.2 0.170 0.150
0.3 0.332 0.249
0.4 0.487 0.389
0.5 0.663 0.521

Table 4. gamma(λ=2 and α=1/2)

� � � � � � � � � � � � �

β AHM PHM
0.0 0.045 0.046
0.1 0.051 0.060
0.2 0.069 0.073
0.3 0.080 0.101
0.4 0.106 0.131
0.5 0.140 0.163

Table 5. exponential

β AHM PHM
0.0 0.040 0.062
0.1 0.057 0.093
0.2 0.098 0.154
0.3 0.149 0.261
0.4 0.218 0.391
0.5 0.287 0.490

Table 6. Weibull(α=2)

β AHM PHM
0.0 0.059 0.056
0.1 0.063 0.064
0.2 0.066 0.073
0.3 0.087 0.092
0.4 0.106 0.117
0.5 0.122 0.144

Table 7. Weibull(α=4/5)

β AHM PHM
0.0 0.052 0.074
0.1 0.061 0.080
0.2 0.085 0.103
0.3 0.131 0.170
0.4 0.182 0.245
0.5 0.233 0.324

Table 8. gamma(λ=2 and α=1/2)


