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Forcing linearity humbers for coatomic modules
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Abstract
We show that an integer n € NU {0} is the forcing linearity number of a coatomic module over an arbitrary
commutative ring with identity if and only if n € {0,1,2,} U{q+2|q is a prime power }.
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1. Introduction

Throughout this paper R shall denote a commutative ring with identity and V a unital right R-module. Consider the set
Mg (V):={f:V = V|f(vr) = f(v)rforall r € R,v € V}. Under the operations of pointwise addition and composition of
functions, Mg (V) is a near-ring with identity, called the near-ring of homogeneous functions. Note that Mg (V) contains the
endomorphism ring Endg (V) . The question arises how much linearity is needed on a function f € Mg (V) to ensure that f is
linear on all of V, i.e. f € Endg (V). More precisely, we say that a collection {W;|i € I} of proper submodules forces linearity
on V, if whenever f € Mg (V) and f is linear on each W;,i € I, then f € Endg (V). Thus Mg(V) = Endg(V) if and only if the
empty collection forces linearity on V. The smallest number of modules which force linearity on V gives rise to the forcing
linearity number of V.

Definition 1.1. [3] Let V be an R—module. The forcing linearity number fIn(V) € NU{0,o0} of V is defined as follows:
1. If Mg(V) = Endg(V), then fIn(V) =0.

2. If Mg(V) # Endg(V), and there is some finite collection {W;|1 < i <n},n € N, of proper submodules of V which forces
linearity on V, but no collection of fewer than n proper submodules forces linearity, then we say that fln(V) = n.

3. If neither 1. or 2. holds, then we say that f1n(V) = co.

Forcing linearity numbers have been found for several classes of rings and modules, see for example [3], [4], [5] and their
references. In section 2 we determine the forcing linearity number of coatomic modules over an arbitrary commutative ring R
with identity. An R—module V is called coatomic, if every proper submodule is contained in a maximal submodule of V. For
example a finitely generated module or a semisimple module over any ring is coatomic. For a commutative noetherian local
ring, the coatomic modules have been characterized in [7].

2. Forcing linearity numbers of coatomic modules

For an R-module V and subsets S1,S5 of V let (S; : S2) = {r € R|S2r C S;}. Forv € V let Ann(v) = {r € R|vr = 0}.
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Theorem 2.1. LetV be an R—module and let M,N be maximal submodules of V, M # N. The following are equivalent:
1. The collection {M,N} does not force lineariry.
2. Aw#£0€V:(M:V)=(N:V)=Ann(w).

Proof. 1 = 2: Since {M,N} does not force linearity on V, there exists a function f € Mg(V) such that f is linear on
the submodules M,N, but f ¢ Endg(V). Let u,v € V be such that w := f(u+v) — f(u) — f(v) # 0. Since M # N, and
M,N are maximal, we have that M +N = V. For every veV —M, (M :v) = (M : V), therefore (M : V) and (N : V) are
maximal ideals. If (M :V)# (N:V), then (M :V)+(N:V) =R, hence r+s=1forsome r€ (M:V),s€ (N:V).
Now wr = f(ur+vr) — f(ur) — f(vr) = f(ur) + f(vr) — f(ur) — f(vr) = 0, since f is linear on M. Similarly, ws = 0, hence
w=w.l =w(r+s) =0, a contradiction. Thus (M : V)= (N:V), and since (M : V) C Ann(w) and (M : V) is a maximal ideal,
it follows that (M : V) = Ann(w).

2=1:LetveV —M.Then (M:v)=(M:V)=Ann(w)and h:V /M — Rw, h(vr/M) := wr is an isomorphism. Define a
function f: V — V as follows: Form € M,n € N let

Foman) = {h(n/M) ifmtn ¢ MUN
0 otherwise

Since M +N =V, f is defined on V. We show that f is well-defined. Suppose m| +n| =my +ny, my,my € M,ny,ny € N. If
m)+n; € MUN, then f(m1 +n1) = f(mz —|—l’l2) =0.If m +mn ¢ MUN, then nl/M = nz/M, hence f(m1 +n1) = h(nl/M) =
h(ny/M) = f(my +ny). Next we show that f is homogeneous. Let S:=V — (MUN). If m+n € S, then (N:m)=(N:V)
and (M :n) = (M : V). By our assumption (M : V) = (N :V) = Ann(w) #R, hence (N :m) = (M :n). If r ¢ (M : n),
then r ¢ (N : m), which implies that (m +n)r = mr+nr € S, hence f((m+n)r) = h(nr/M) = h(n/M)r = f(m+n)r. If
r€ (M :n), then (m+n)r ¢S, hence f(m+n)r=h(n/M)r=h(nr/M) = h(0) =0= f((m+n)r). Now suppose m+n ¢ S.
Then m+n € MUN, hence (m+n)r € MUN for all r € R. Thus f(m-+n)r=0= f((m+n)r). It now follows that f € Mg(V).
Since f|M = f|N = 0, f is linear on M and N. However, for m € M — N and n € N — M, we have that m+n € S, thus
f(m+n) =h(n/M) # 0, since h is an isomorphism, whereas f(m)+ f(n) =0, so f ¢ Endg(V).Therefore the collection
{M,N} does not force linearity on V. O

For an R—module V let Rad (V') denote the Jacobson radical of V and let J := Rad(R). Recall that an R—module V is called
local, if V contains a unique maximal submodule.

Theorem 2.2. For a noncyclic coatomic module V, the following are equivalent:
1. fIn(V) > 2.

2. I:=(Rad(V) : V) is a maximal ideal and I = Ann(w) for some
0#weV.

Proof. 1= 2:Let M denote the collection of all maximal submodules of V. Since V is coatomic, M # @. If there exist My, M, €
M such that (M, : V) # (M, : V), then by Theorem 2.1 the collection {M;,M,} forces linearity on V. Thus (M; : V) = (M, : V)
forall M|,M, e Mand I = ({(M:V)|M €M} = (M:V) forall M € M, hence I = (Rad(V) : V) is a maximal ideal. Like in
the proof of Theorem 1, we see that I = Ann(w) for some w # 0.

2 = 1: Suppose that V is a local module with unique maximal submodule M. Let v € V — M. If vR # V, then vR is contained
in a maximal submodule, which implies vR C M, a contradiction. Consequently vR =V for all v € V — M, which contradicts
our assumption that V is noncyclic. Therefore there exist at least two maximal submodules. Suppose f1n(V) < 2. Then there
exists a collection of submodules {S},S,} which forces linearity on V. Since V is coatomic, there exist maximal submodules
M, M, such that S1 C M, S, C M,. Without loss of generality we may assume that M| # M, (otherwise we can choose another
maximal submodule, since V is not local). Then {M,, M, } also forces linearity on V. We have (Rad(V) : V) C (M; : V) #R. By
our assumptions (Rad(V) : V) is a maximal ideal, hence (Rad(V) : V) = (M, :V)= (M, :V). Also, (Rad(V) : V) = Ann(w)
for some 0 £ w € V. Therefore {M|, M} does not force linearity by Theorem 1, a contradiction. O

Theorem 2.3. Let V be coatomic. Suppose I := (Rad(V) : V) is a maximal ideal of R and there exists 0 #w € V such that
I =Ann(w). Then

fing(V) = flng);(V/Rad(V))
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Proof. We first show that flng/(V/Rad(V)) < flng(V). Let {Wj|i € I} be a collection of proper submodules which forces
linearity on V. Since V is coatomic, we may assume that each W;, i € I, is maximal. We show that the collection {W;/Rad(V)|i €
I} forces linearity on V /Rad (V). Suppose that this is not the case. Then there exists a homogeneous function f : V/Rad (V) —
V/Rad(V), which is linear on each submodule W;/Rad(V), i € I, but not linear on V /Rad (V). Let my : V /Rad(V) — V /M
denote the projection of V /Rad(V) onto V /M for a maximal submodule M. Since f is not linear, there exists a maximal
submodule M of V such that my, f : V /Rad (V) — V /M is not linear. Since [ is a maximal ideal, / = (M : V), hence w(M : V) =0,
which implies V /M ~ wR. Thus we obtain a homogeneous map f; : V/Rad(V) — wR, which is linear on each submodule
Wi/Rad(V), i€ 1. If g: V — V is defined by g(v) := fi(v/Rad(V)), then g € Mg(V) and linear on each W;, i € I, but not
linear on V, a contradiction to our assumption that {W;|i € I'} forces linearity on V. For the reverse inequality suppose first
that flng/;(V/Rad(V)) < 1. Since V /Rad (V) is a vector space over the field R/I, it follows from Theorem 3.1 in [3] that
dimg/;(V/Rad(V)) = 1. Note that Rad (V) is a superfluous submodule, since V is coatomic. It follows that V is cyclic, hence
flng/;(V/Rad(V)) = 0 = fIn(V). If dimg;;(V/Rad(V)) =2 or flng;;(V/Rad(V)) > 2 and R/I is infinite, we have that
flIng/;(V/Rad(V)) = e by Theorem 3.1 in [3]. So suppose that fIng/;(V /Rad(V)) > 3 and |R/I| =: g € N. By [3], 3.8 and
3.10, flng/;(V/Rad(V)) = g +2. Choose {ri,...,rs} C R such that R/I = {r1/I,...,r,/I}. It suffices to give a collection of
g+ 2 proper submodules which forces linearity on V. Let {b;|i € I} C V be such that {b;/Rad(V)|i € I} is a basis of the vector
space V /Rad(V). As we have seen above, |I| > 3, so we can choose pairwise different elements iy,i,,i3 € I. Let (X) denote the
submodule generated by a subset X C V, and define S| := (b;,,b;,) + Rad(V), Sy := (bi, +bjy ) + (bili ¢ {i1,i3}) + Rad(V),
and for r € {ry,...,ry} define S, := (b;, +rbi,, bi, +biy) + (b;li ¢ {i1,i2,i3}) + Rad(V). Note that all submodules are proper,
since Rad (V) is superfluous. Similarly as in Theorems 3.8,3.10 in [3], one can prove that the collection {S;,S5>} U {S;,]
ie€{l,...,q}} forces linearity on V. O

For R local and J T-nilpotent, Theorem 2.3 has been proved in [4], Theorem 5.1. The following example shows that
Theorem 2.3 is not true in general, if / is not the annihilator of some 0 #w € V.

Example 2.4. Let R := F[[x]] denote the ring of formal power series over a field F and let V := R X R. Since R is local
with radical J = (x), Rad(V) =VJ = (x) X (x) and I = (Rad(V) : V) = (x) is maximal. By [3], Corollary 2.4, fIng(V) = 1.
However, fIng;;(V /Rad(V)) = fIng(F?) = eo, by [3], Theorem 3.1.

Theorem 2.5. Let n € NU{0,c0}. Then n is the forcing linearity number of a coatomic module over a commutative ring if and
only ifn € {0,1,2,00} U{g+2| q is a prime power}.

Proof. tis well-known that there exist coatomic modules V over a commutative ring R such that fIng(V) € {0, 1,2, 0}, see for
example [5]. If V is a cyclic module, then Mg(V) = Endg(V), hence fIng(V) = 0. Now suppose f1lng(V) > 2. By Theorem
2.2,1=(Rad(V):V) is a maximal ideal and / = Ann(w) for some 0 # w € V. By Theorem 2.3, f1Ing(V) = flng/;(V /Rad(V))
and as we have remarked previously, fIng/;(V /Rad(V)) € {eo} U{q+2| q is a prime power}. O

It is not known to the author, whether Theorem 2.5 is true for every module over a commutative ring.
There is a class of rings which have the property that every right module is coatomic, or which is easily seen to be equivalent,
every nonzero right module has a maximal submodule.

Definition 2.6. A ring R is called a right max—ring, if every right R—module is coatomic. See [6].
Theorem 2.7. [2] For a commutative ring R, the following are equivalent:

1. Ris a max—ring.

2. J is T-nilpotent and R/J is von Neumann regular.
Theorem 2.8. Let V be a module over a commutative max—ring R. If R is not local, then flng(V) < 2.

Proof. Suppose that R is not local, but fIn(V') > 2. Since R is a max-ring, it follows from Theorem 2.7 and from [1], Proposition
18.3 that Rad(V) = VJ. By Theorem 2.2, (Rad(V) : V) = (VJ : V) is a maximal ideal. We have J C (VJ : V). Suppose that
there exists an element r € (VJ : V) —J. Then r ¢ M for some maximal ideal M of R. Let Ry, V), denote the localisations of
R,V at M. By [1], Proposition 18.3, Rad(Vy;) = VyJuy. Since R is a max-ring J is T-nilpotent, thus J3; is T-nilpotent. It follows
from Theorem 2.5 that Ry is a max-ring, hence Rad (Vi) = VagJyr # V. So let w/1 € Viy — Rad(Viy). From r € (VJ : V),
w/l-r/1=wr/1 € VyJuy. Since r ¢ M, r/1 is invertible in Ry, hence w/1 € Vi, Jyy = Rad(Viy), a contradiction. It now follows
that J = (VJ : V) is a maximal ideal of R, which contradicts our assumption that R is not local. O
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