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Forcing linearity numbers for coatomic modules
Peter R. Fuchs1*

Abstract
We show that an integer n ∈ N∪{0} is the forcing linearity number of a coatomic module over an arbitrary
commutative ring with identity if and only if n ∈ {0,1,2,∞}∪{q+2 |q is a prime power} .
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1. Introduction
Throughout this paper R shall denote a commutative ring with identity and V a unital right R-module. Consider the set
MR (V ) := { f : V →V | f (vr) = f (v)r for all r ∈ R,v ∈V}. Under the operations of pointwise addition and composition of
functions, MR (V ) is a near-ring with identity, called the near-ring of homogeneous functions. Note that MR (V ) contains the
endomorphism ring EndR (V ) . The question arises how much linearity is needed on a function f ∈MR (V ) to ensure that f is
linear on all of V, i.e. f ∈ EndR (V ) . More precisely, we say that a collection {Wi|i ∈ I} of proper submodules forces linearity
on V, if whenever f ∈MR (V ) and f is linear on each Wi, i ∈ I, then f ∈ EndR (V ) . Thus MR(V ) = EndR(V ) if and only if the
empty collection forces linearity on V. The smallest number of modules which force linearity on V gives rise to the forcing
linearity number of V.

Definition 1.1. [3] Let V be an R–module. The forcing linearity number f ln(V ) ∈ N∪{0,∞} of V is defined as follows:

1. If MR(V ) = EndR(V ), then f ln(V ) = 0.

2. If MR(V ) 6= EndR(V ), and there is some finite collection {Wi|1≤ i≤ n},n ∈ N, of proper submodules of V which forces
linearity on V, but no collection of fewer than n proper submodules forces linearity, then we say that f ln(V ) = n.

3. If neither 1. or 2. holds, then we say that f ln(V ) = ∞.

Forcing linearity numbers have been found for several classes of rings and modules, see for example [3], [4], [5] and their
references. In section 2 we determine the forcing linearity number of coatomic modules over an arbitrary commutative ring R
with identity. An R–module V is called coatomic, if every proper submodule is contained in a maximal submodule of V. For
example a finitely generated module or a semisimple module over any ring is coatomic. For a commutative noetherian local
ring, the coatomic modules have been characterized in [7].

2. Forcing linearity numbers of coatomic modules

For an R–module V and subsets S1,S2 of V let (S1 : S2) = {r ∈ R|S2r ⊆ S1}. For v ∈V let Ann(v) = {r ∈ R|vr = 0}.
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Theorem 2.1. Let V be an R–module and let M,N be maximal submodules of V, M 6= N. The following are equivalent:

1. The collection {M,N} does not force linearity.

2. ∃ w 6= 0 ∈V : (M : V ) = (N : V ) = Ann(w).

Proof. 1⇒ 2 : Since {M,N} does not force linearity on V, there exists a function f ∈ MR(V ) such that f is linear on
the submodules M,N, but f /∈ EndR(V ). Let u,v ∈ V be such that w := f (u+ v)− f (u)− f (v) 6= 0. Since M 6= N, and
M,N are maximal, we have that M +N = V. For every v ∈ V −M, (M : v) = (M : V ), therefore (M : V ) and (N : V ) are
maximal ideals. If (M : V ) 6= (N : V ), then (M : V ) + (N : V ) = R, hence r + s = 1 for some r ∈ (M : V ), s ∈ (N : V ).
Now wr = f (ur+ vr)− f (ur)− f (vr) = f (ur)+ f (vr)− f (ur)− f (vr) = 0, since f is linear on M. Similarly, ws = 0, hence
w = w.1 = w(r+ s) = 0, a contradiction. Thus (M : V ) = (N : V ), and since (M : V )⊆ Ann(w) and (M : V ) is a maximal ideal,
it follows that (M : V ) = Ann(w).
2⇒ 1 : Let v ∈ V −M. Then (M : v) = (M : V ) = Ann(w) and h : V/M→ Rw, h(vr/M) := wr is an isomorphism. Define a
function f : V →V as follows: For m ∈M,n ∈ N let

f (m+n) :=

{
h(n/M) if m+n /∈M∪N
0 otherwise

Since M+N =V, f is defined on V. We show that f is well–defined. Suppose m1+n1 = m2+n2, m1,m2 ∈M, n1,n2 ∈N. If
m1+n1 ∈M∪N, then f (m1+n1) = f (m2+n2) = 0. If m1+n1 /∈M∪N, then n1/M = n2/M, hence f (m1+n1) = h(n1/M) =
h(n2/M) = f (m2 + n2). Next we show that f is homogeneous. Let S := V − (M∪N). If m+ n ∈ S, then (N : m) = (N : V )
and (M : n) = (M : V ). By our assumption (M : V ) = (N : V ) = Ann(w) 6= R, hence (N : m) = (M : n). If r /∈ (M : n),
then r /∈ (N : m), which implies that (m+ n)r = mr + nr ∈ S, hence f ((m+ n)r) = h(nr/M) = h(n/M)r = f (m+ n)r. If
r ∈ (M : n), then (m+n)r /∈ S, hence f (m+n)r = h(n/M)r = h(nr/M) = h(0) = 0 = f ((m+n)r). Now suppose m+n /∈ S.
Then m+n ∈M∪N, hence (m+n)r ∈M∪N for all r ∈ R. Thus f (m+n)r = 0 = f ((m+n)r). It now follows that f ∈MR(V ).
Since f |M = f |N = 0, f is linear on M and N. However, for m ∈ M−N and n ∈ N −M, we have that m+ n ∈ S, thus
f (m+ n) = h(n/M) 6= 0, since h is an isomorphism, whereas f (m)+ f (n) = 0, so f /∈ EndR(V ).Therefore the collection
{M,N} does not force linearity on V.

For an R−module V let Rad(V ) denote the Jacobson radical of V and let J := Rad(R). Recall that an R−module V is called
local, if V contains a unique maximal submodule.

Theorem 2.2. For a noncyclic coatomic module V, the following are equivalent:

1. f ln(V )> 2.

2. I := (Rad(V ) : V ) is a maximal ideal and I = Ann(w) for some
0 6= w ∈V.

Proof. 1⇒ 2 : Let M denote the collection of all maximal submodules of V. Since V is coatomic, M 6= /0. If there exist M1,M2 ∈
M such that (M1 : V ) 6= (M2 : V ), then by Theorem 2.1 the collection {M1,M2} forces linearity on V. Thus (M1 : V ) = (M2 : V )
for all M1,M2 ∈M and I =

⋂
{(M : V )|M ∈M}= (M : V ) for all M ∈M, hence I = (Rad(V ) : V ) is a maximal ideal. Like in

the proof of Theorem 1, we see that I = Ann(w) for some w 6= 0.
2⇒ 1 : Suppose that V is a local module with unique maximal submodule M. Let v ∈V −M. If vR 6=V, then vR is contained
in a maximal submodule, which implies vR⊆M, a contradiction. Consequently vR =V for all v ∈V −M, which contradicts
our assumption that V is noncyclic. Therefore there exist at least two maximal submodules. Suppose f ln(V )≤ 2. Then there
exists a collection of submodules {S1,S2} which forces linearity on V. Since V is coatomic, there exist maximal submodules
M1,M2 such that S1 ⊆M1, S2 ⊆M2. Without loss of generality we may assume that M1 6= M2 (otherwise we can choose another
maximal submodule, since V is not local). Then {M1,M2} also forces linearity on V. We have (Rad(V ) : V )⊆ (M1 : V ) 6= R. By
our assumptions (Rad(V ) : V ) is a maximal ideal, hence (Rad(V ) : V ) = (M1 : V ) = (M2 : V ). Also, (Rad(V ) : V ) = Ann(w)
for some 0 6= w ∈V. Therefore {M1,M2} does not force linearity by Theorem 1, a contradiction.

Theorem 2.3. Let V be coatomic. Suppose I := (Rad(V ) : V ) is a maximal ideal of R and there exists 0 6= w ∈V such that
I = Ann(w). Then

f lnR(V ) = f lnR/I(V/Rad(V ))
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Proof. We first show that f lnR/I(V/Rad(V ))≤ f lnR(V ). Let {Wi|i ∈ I} be a collection of proper submodules which forces
linearity on V. Since V is coatomic, we may assume that each Wi, i∈ I, is maximal. We show that the collection {Wi/Rad(V )| i∈
I} forces linearity on V/Rad(V ). Suppose that this is not the case. Then there exists a homogeneous function f : V/Rad(V )→
V/Rad(V ), which is linear on each submodule Wi/Rad(V ), i ∈ I, but not linear on V/Rad(V ). Let πM : V/Rad(V )→V/M
denote the projection of V/Rad(V ) onto V/M for a maximal submodule M. Since f is not linear, there exists a maximal
submodule M of V such that πM f : V/Rad(V )→V/M is not linear. Since I is a maximal ideal, I = (M : V ), hence w(M : V ) = 0,
which implies V/M ' wR. Thus we obtain a homogeneous map f1 : V/Rad(V )→ wR, which is linear on each submodule
Wi/Rad(V ), i ∈ I. If g : V → V is defined by g(v) := f1(v/Rad(V )), then g ∈ MR(V ) and linear on each Wi, i ∈ I, but not
linear on V, a contradiction to our assumption that {Wi|i ∈ I} forces linearity on V. For the reverse inequality suppose first
that f lnR/I(V/Rad(V )) ≤ 1. Since V/Rad(V ) is a vector space over the field R/I, it follows from Theorem 3.1 in [3] that
dimR/I(V/Rad(V )) = 1. Note that Rad(V ) is a superfluous submodule, since V is coatomic. It follows that V is cyclic, hence
f lnR/I(V/Rad(V )) = 0 = f ln(V ). If dimR/I(V/Rad(V )) = 2 or f lnR/I(V/Rad(V )) ≥ 2 and R/I is infinite, we have that
f lnR/I(V/Rad(V )) = ∞ by Theorem 3.1 in [3]. So suppose that f lnR/I(V/Rad(V ))≥ 3 and |R/I|=: q ∈ N. By [3], 3.8 and
3.10, f lnR/I(V/Rad(V )) = q+2. Choose {r1, ...,rq} ⊆ R such that R/I = {r1/I, ...,rq/I}. It suffices to give a collection of
q+2 proper submodules which forces linearity on V. Let {bi|i ∈ I} ⊆V be such that {bi/Rad(V )|i ∈ I} is a basis of the vector
space V/Rad(V ). As we have seen above, |I| ≥ 3, so we can choose pairwise different elements i1, i2, i3 ∈ I. Let 〈X〉 denote the
submodule generated by a subset X ⊆V, and define S1 := 〈bi1 ,bi2〉+Rad(V ), S2 :=

〈
bi1 +bi3

〉
+ 〈bi|i /∈ {i1, i3}〉+Rad(V ),

and for r ∈ {r1, ...,rq} define Sr :=
〈
bi1 + rbi2 , bi1 +bi3

〉
+ 〈bi|i /∈ {i1, i2, i3}〉+Rad(V ). Note that all submodules are proper,

since Rad(V ) is superfluous. Similarly as in Theorems 3.8,3.10 in [3], one can prove that the collection {S1,S2}∪ {Sri |
i ∈ {1, ...,q}} forces linearity on V.

For R local and J T-nilpotent, Theorem 2.3 has been proved in [4], Theorem 5.1. The following example shows that
Theorem 2.3 is not true in general, if I is not the annihilator of some 0 6= w ∈V.

Example 2.4. Let R := F [[x]] denote the ring of formal power series over a field F and let V := R×R. Since R is local
with radical J = (x), Rad(V ) =V J = (x)× (x) and I = (Rad(V ) : V ) = (x) is maximal. By [3], Corollary 2.4, f lnR(V ) = 1.
However, f lnR/I(V/Rad(V )) = f lnF(F2) = ∞, by [3], Theorem 3.1.

Theorem 2.5. Let n ∈ N∪{0,∞}. Then n is the forcing linearity number of a coatomic module over a commutative ring if and
only if n ∈ {0,1,2,∞}∪{q+2| q is a prime power}.

Proof. It is well-known that there exist coatomic modules V over a commutative ring R such that f lnR(V )∈ {0,1,2,∞}, see for
example [5]. If V is a cyclic module, then MR(V ) = EndR(V ), hence f lnR(V ) = 0. Now suppose f lnR(V )> 2. By Theorem
2.2, I = (Rad(V ) : V ) is a maximal ideal and I = Ann(w) for some 0 6= w ∈V. By Theorem 2.3, f lnR(V ) = f lnR/I(V/Rad(V ))
and as we have remarked previously, f lnR/I(V/Rad(V )) ∈ {∞}∪{q+2| q is a prime power}.

It is not known to the author, whether Theorem 2.5 is true for every module over a commutative ring.
There is a class of rings which have the property that every right module is coatomic, or which is easily seen to be equivalent,

every nonzero right module has a maximal submodule.

Definition 2.6. A ring R is called a right max–ring, if every right R−module is coatomic. See [6].

Theorem 2.7. [2] For a commutative ring R, the following are equivalent:

1. R is a max–ring.

2. J is T–nilpotent and R/J is von Neumann regular.

Theorem 2.8. Let V be a module over a commutative max–ring R. If R is not local, then f lnR(V )≤ 2.

Proof. Suppose that R is not local, but f ln(V )> 2. Since R is a max-ring, it follows from Theorem 2.7 and from [1], Proposition
18.3 that Rad(V ) =V J. By Theorem 2.2, (Rad(V ) : V ) = (V J : V ) is a maximal ideal. We have J ⊆ (V J : V ). Suppose that
there exists an element r ∈ (V J : V )− J. Then r /∈M for some maximal ideal M of R. Let RM,VM denote the localisations of
R,V at M. By [1], Proposition 18.3, Rad(VM) =VMJM. Since R is a max-ring J is T-nilpotent, thus JM is T-nilpotent. It follows
from Theorem 2.5 that RM is a max-ring, hence Rad(VM) = VMJM 6= VM. So let w/1 ∈ VM −Rad(VM). From r ∈ (V J : V ),
w/1 ·r/1 = wr/1∈VMJM. Since r /∈M, r/1 is invertible in RM , hence w/1∈VMJM = Rad(VM), a contradiction. It now follows
that J = (V J : V ) is a maximal ideal of R, which contradicts our assumption that R is not local.
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