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Local convergence for composite Chebyshev-type
methods
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Abstract
We replace Chebyshev’s method for solving equations requiring the second derivative by a Chebyshev-type
second derivative free method. The local convergence analysis of the new method is provided using hypotheses
only on the first derivative in contrast to the Chebyshev method using hypotheses on the second derivative. This
way we extend the applicability of the method. Numerical examples are also used to test the convergence criteria
and to obtain error bounds and also the radius of convergence.
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1. Introduction
Let B1,B2 be Banach spaces, Ω⊆B1 be nonempty and convex set. Numerous problems can be written in the form

F(x) = 0, (1.1)

using mathematical modeling, where F : Ω−→B2 is a continuously Fréchet differentiable operator. Analytical solutions x∗
are not easy or impossible to find in general for equation (1.1). This leads researchers and practitioners to use iterative methods
to generate a sequence approximating x∗.

Newton’s method defined for x0 ∈Ω and for each n = 0,1,2, . . . by

xn+1 = xn−F ′(xn)
−1F(xn) (1.2)

is the most popular method for solving equation (1.1). Newton’s method converges quadratically under certain conditions
[1, 2, 3, 11]. Higher convergence order methods have also been suggested such as the cubically convergent Chebyshev’s method
defined for each n = 0,1,2, . . . by

xn+1 = xn− (I +Bn)F ′(xn)
−1F(xn), (1.3)

where Bn = F ′(xn)
−1F ′′(xn)F ′(xn)

−1F(xn). If one considers a system of k equations in k unknowns, then F ′(x) is a matrix with

k2 evaluations whereas F ′′(x) requires k2(k+1)
2 evaluations. That is Chebyshev’s method is expensive to implement. Moreover,

the convergence requires conditions of the form [6, 7, 8, 9, 10, 11, 12]

‖F ′(x∗)−1F ′′(x)‖ ≤ a for each x ∈Ω
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and

‖F ′(x∗)−1(F ′′(x)−F ′′(y))‖ ≤ b for each x,y ∈Ω.

These conditions limit the applicability of Chebyshev’s method. As a motivational example, let us define function F on
X = [− 1

2 ,
5
2 ] by

F(x) =
{

x3 lnx2 + x5− x4, x 6= 0
0, x = 0

Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 +5x4−4x3 +2x2, F ′(1) = 3,
F ′′(x) = 6x lnx2 +20x3−12x2 +10x

F ′′′(x) = 6lnx2 +60x2−24x+22.

Then, obviously function F does not have bounded third derivative in X . That is why we suggest the method defined for each
n = 0,1,2, . . . by

yn = xn−F ′(xn)
−1F(xn)

zn = yn−F ′(xn)
−1F(yn)

xn+1 = zn−CnF ′(xn)
−1F(zn), (1.4)

where Cn = 2I−F ′(xn)
−1[zn,yn;F ] and [., .;F ] : Ω×Ω−→B2 is a divided difference of order one.

The study of convergence of iterative algorithms is usually centered into two categories: semi-local and local convergence
analysis. The semi-local convergence is based on the information around an initial point, to obtain conditions ensuring the
convergence of these algorithms, while the local convergence is based on the information around a solution to find estimates of
the computed radii of the convergence balls. Local results are important since they provide the degree of difficulty in choosing
initial points.

Our local convergence analysis uses only hypotheses on the first Fréchet derivative, whereas the order of convergence is
established using (COC) and (ACOC) (see Remark 2.2). Hence, we expand the applicability of method (1.4).

Section 2 contains the local convergence of method (1.4), whereas in the concluding Section 3, we provide numerical
examples.

2. Local convergence

Let ϕ0 : I0 −→ I0 be a continuous and increasing function with ϕ0(0) = 0, where I0 = R+∪{0}. Suppose that equation

ϕ0(t) = 1. (2.1)

has at least one positive solution. Denote by ρ0 the smallest such solution. Let ϕ : [0,ρ0)−→ I0 be a continuous and increasing
function with ϕ(0) = 0. Define functions g1 and h1 on [0,ρ0) by

g1(t) =
∫ 1

0 ϕ((1−θ)t)dθ

1−ϕ0(t)

and

h1(t) = g1(t)−1.

We have that h1(0) =−1 and h1(t)−→+∞ as t −→ ρ
−
0 . It then follows from the intermediate value theorem that equation

h1(t) = 0 has at least one solution in the interval (0,ρ0). Denote by r1 the smallest such solution.
Suppose that

ϕ0(g1(t)t) = 1. (2.2)
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has at least one positive solution. Denote by ρ1 the smallest such solution. Let ϕ1 : [0,ρ0)−→ I0 be continuous and increasing
function. Moreover, define functions g2 and h2 on [0,ρ) by

g2(t) =

[∫ 1
0 ϕ((1−θ)g1(t)t)dθ

1−ϕ0(g1(t)t)

+
(ϕ(t)+ϕ0(g1(t)t))

∫ 1
0 ϕ1(θg1(t)t)dθ

(1−ϕ0(g1(t)t))(1−ϕ0(t))

]
g1(t)

and

h2(t) = g2(t)−1,

where ρ = min{ρ0,ρ1}. We get that h2(0) =−1 and h2(t)−→+∞ as t −→ ρ−. Denote by r2 the smallest solution of equation
h2(t) = 0 in the interval (0,ρ). Let ϕ2 : [0,ρ)× [0,ρ) −→ I0 be a continuous and increasing function. Furthermore, define
functions g3 and h3 on the interval [0,ρ) by

g3(t) =

[
1+
(

1+
ϕ0(t)+ϕ2(g2(t)t,g1(t)t)

1−ϕ0(t)

)
×
∫ 1

0 ϕ1(θg2(t)t)dθ

1−ϕ0(t)

]
g2(t)

and

h3(t) = g3(t)−1.

We obtain h3(t) =−1 and h3(t)−→+∞ as t −→ ρ−. Denote by r3 the smallest solution of equation h3(t) = 0 in (0,ρ). Define
the radius of convergence r by

r = min{ri} , i = 1,2,3. (2.3)

Then, for each t ∈ [0,r) we have

0≤ ϕ0(t)< 1 (2.4)

0≤ ϕ1(g1(t))< 1 (2.5)

and

0≤ gi(t)< 1. (2.6)

Let B(u,τ), B̄(u,τ) stand for the open and closed balls in B1, respectively with center u ∈B1 and of radius τ > 0.
The local convergence of method (1.2) is based on the conditions (A):

(a1) F : Ω ⊂B1 −→B2 is a continuously Fréchet-differentiable operator and [., .;F ] : Ω×Ω −→L (B1,B2) a divided
difference of order one for F.

(a2) There exists x∗ ∈Ω such that F(x∗) = 0 and F(x∗)−1 ∈L (B2,B1).

(a3) There exist a continuous and increasing function ϕ0 : I0 −→ I0 such that for each x ∈Ω,

‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ ϕ0(‖x− x∗‖).

Set Ω0 = Ω∩Ū(x∗,ρ0) where ρ0 is given by (2.1).

(a4) There exist functions ϕ : [0,ρ1) −→ I0,ϕ1 : [0,ρ1) −→ I0, ϕ2 : [0,ρ1)
2 −→ I0 continuous, increasing with ϕ(0) =

ϕ2(0,0) = 0 such that for each x,y,z ∈Ω0

‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤ ϕ(‖x− y‖),

‖F ′(x∗)−1F ′(x)‖ ≤ ϕ1(‖x− x∗‖)
and

‖F ′(x∗)−1([y,z;F ]−F ′(x∗))‖ ≤ ϕ2(‖x− x∗‖,‖z− x∗‖).



Local convergence for composite Chebyshev-type methods — 87

(a5) There exist r̄ ≥ r such that∫ 1

0
ϕ0(θ r̄)dθ < 1.

Set Ω1 = Ω∩ B̄(x∗, r̄). Next, the local convergence analysis of method (1.2) follows:

Theorem 2.1. Suppose that the conditions (A) hold. Then, sequence {xn} generated for x0 ∈ B(x∗,r)−{x∗} by method (1.2) is
well defined in B(x∗,r), remains in B(x∗,r) for each n = 0,1,2, . . . and converges to x∗, so that

‖yn− x∗‖ ≤ g1(‖xn− x∗‖)‖xn− x∗‖ ≤ ‖xn− x∗‖< ρ (2.7)

‖zn− x∗‖ ≤ g2(‖xn− x∗‖)‖xn− x∗‖ ≤ ‖xn− x∗‖ (2.8)

and

‖xn+1− x∗‖ ≤ g3(‖xn− x∗‖)‖xn− x∗‖ ≤ ‖xn− x∗‖, (2.9)

where functions gi, i = 1,2,3 are defined previously and the radius r is given in (2.3). Moreover, x∗ is the only solution of
equation F(x) = 0 in Ω1.

Proof. Inequations (2.7)-(2.9) are shown using mathematical induction. First, we shall show that iterates {xn} are well
defined and inequation (2.7)-(2.9) are satisfied for n = 0. Let x ∈ B(x∗,r)−{x∗}. Using (2.1), (2.3) and (2.4), we have in turn
that

‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ ϕ0(‖x− x∗‖)≤ ϕ0(r)< 1 (2.10)

which together with the Banach Lemma on invertible operators [1, 4, 11] imply that F ′(x)−1 ∈L (B2,B1) and

‖F ′(x)−1F ′(x∗)‖ ≤ 1
1−ϕ0(‖x− x∗‖)

. (2.11)

Notice that (2.11) holds for x = x0, since x0 ∈ B(x∗,r) and y0,z0 are well defined by the first and second sub-step of method
(1.2) for n = 0. We have by the first substep of method (1.2) for n = 0

y0− x∗
= x0− x∗−F ′(x0)

−1F(x0)

= F ′(x0)
−1
∫ 1

0
(F ′(x∗+θ(x0− x∗))−F ′(x0))(x0− x∗)dθ . (2.12)

By (a1)-(a4), (2.3), (2.6) (for i = 1), (2.11) and (2.12), we get in turn that

‖y0− x∗‖

≤ ‖F ′(x∗)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1(F ′(x∗+θ(x0− x∗))−F ′(x0))dθ‖‖x0− x∗‖

≤
∫ 1

0 ϕ((1−θ)‖x− x0)‖)dθ

1−ϕ0(‖x0− x∗‖)
‖x0− x∗‖

≤ ‖x0− x∗‖< r, (2.13)

which shows (2.7) for n = 0,y0 ∈ B(x∗,r) and (2.11) hold for x = y0. That is

‖F ′(y0)
−1F ′(x∗)‖ ≤

1
1−ϕ0(‖y0− x∗‖)

≤ 1
1−ϕ0(g1(‖x0− x∗‖)‖x0− x∗‖)

. (2.14)

We can write

F(x0) = F(x0)−F(x∗) =
∫ 1

0
F ′(x∗+θ(x0− x∗))(x0− x∗)dθ . (2.15)
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In view of (a4) (second condition) and (2.15), we obtain

‖F ′(x∗)−1F(x0)‖ = ‖
∫ 1

0
F ′(x∗)−1F ′(x∗+θ(x0− x∗))dθ(x0− x∗)‖

≤
∫ 1

0
ϕ1(θ‖x0− x∗‖)dθ‖x0− x∗‖. (2.16)

Then, using the second substep of method (1.2), (2.3), (2.6) (for i = 2), (2.13) (for x0 = y0), (2.14) and (2.16) (for y0 = x0), we
have in turn from

z0− x∗ = y0− x∗−F ′(y0)
−1F(y0)

+F ′(y0)
−1(F ′(x0)−F ′(y0))F ′(x0)

−1F(y0), (2.17)

so

‖z0− x∗‖ ≤ ‖y0− x∗‖+‖F ′(y0)
−1F ′(x∗)‖

×[‖F ′(x∗)−1(F ′(x0)−F ′(x∗))‖+‖F ′(x∗)−1(F ′(y0)−F ′(x∗))‖]
×‖F ′(x0)

−1F ′(x∗)‖‖F ′(x∗)−1F(y0)‖

≤

[∫ 1
0 ϕ((1−θ)‖y0− x∗‖)dθ

1−ϕ0(‖y0− x∗‖)

+
(ϕ0(‖x0− x∗‖)+ϕ0(‖y0− x∗‖))

∫ 1
0 ϕ1(θ‖y0− x∗‖)dθ

(1−ϕ0(‖y0− x∗‖))(1−ϕ0(‖x0− x∗‖))

]
‖y0− x∗‖

≤ g2(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r (2.18)

which shows (2.8) for n = 0 and z0 ∈ B(x∗,r). The third substep of method (1.4) together with (2.3), (2.6) (for i = 3), (2.15)
(for x0 = z0), the third hypothesis in (a4) and (2.18), we get

‖x1− x∗‖ ≤ ‖z0− x∗‖
+‖F ′(x0)

−1(2F ′(x0)− [z0,y0;F ])F ′(x0)
−1F(z0)‖

≤ ‖z0− x∗‖+[1+‖F ′(x0)
−1F ′(x∗)[(F ′(x∗)−1(F ′(x0)−F ′(x∗))

+F ′(x∗)−1(F ′(x∗)− [z0,y0;F ])]‖‖F ′(x0)
−1F ′(x∗)‖

×‖F ′(x∗)−1F(z0)‖

≤
[

1+
(

1+
ϕ0(‖x0− x∗‖)+ϕ2(‖z0− x∗‖,‖y0− x∗‖)

1−ϕ0(‖x0− x∗‖)

)
∫ 1

0 ϕ1(θ‖z0− x∗‖)dθ

1−ϕ0(‖x0− x∗‖)

]
‖z0− x∗‖

≤ g3(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.19)

which shows (2.9) and z0 ∈B(x∗,r). The induction for inequation (2.7)-(2.9) is completed replacing x0,y0,z0,x1 by xm,ym,zm,xm+1
in the preceding estimates. We then also have that

‖xm+1− x∗‖ ≤ q‖xm− x∗‖< r (2.20)

where q = g3(‖x0− x∗‖) ∈ [0,1), leading to limm−→+∞ xm = x∗ and xm+1 ∈ B(x∗,r). The, uniqueness part is shown as follows:
Let Q =

∫ 1
0 F ′(x∗+θ(y∗− x∗))dθ for some y∗ ∈Ω1 with F(y∗) = 0. The condition (a5) gives

‖F ′(x∗)−1(Q−F ′(x∗))‖ ≤
∫ 1

0
ϕ0(θ‖y∗− x∗‖)dθ ≤

∫ 1

0
ϕ0(θ r̄)dθ < 1, (2.21)

so Q−1 ∈L (B2,B1) and from the identity

0 = F(y∗)−F(x∗) = Q(y∗− x∗), (2.22)

we deduce that x∗ = y∗.
�
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Remark 2.2. 1. The second condition in (a4) can be dropped, since this condition follows from (a3), if we set

ϕ1(t) = 1+ϕ0(t).

2. The results obtained here can be used for operators F satisfying autonomous differential equations [11] of the form

F ′(x) = P(F(x))

where P is a continuous operator. Then, since F ′(x∗) = P(F(x∗)) = P(0), we can apply the results without actually
knowing x∗. For example, let F(x) = ex−1. Then, we can choose: P(x) = x+1.

3. The radius r was shown by us to be the convergence radius of Newton’s method [1, 2, 3, 4, 5]

xn+1 = xn−F ′(xn)
−1F(xn) for each n = 0,1,2, · · · (2.23)

under the conditions (a1)–(a4) for ϕ0(t) = L0t and ϕ(t) = Lt. It follows from the definition of r that the convergence
radius r1 of the method (1.4) cannot be larger than the convergence radius r1 of the second order Newton’s method
(2.23). As already noted in [11] r1 is at least as large as the convergence ball given by Rheinboldt [11]

rR =
2

3L
. (2.24)

In particular, for L0 < L we have that

rR < r1

and

rR

r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same value for rR was given by Traub
[13].

4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theorem 2.1 instead of the stronger
conditions used in [14]. Moreover, we can compute the computational order of convergence (COC) defined by

ξ = ln
(
|xn+1− x∗|
|xn− x∗|

)
/ ln
(
|xn− x∗|
|xn−1− x∗|

)
or the approximate computational order of convergence

ξ1 = ln
(
|xn+1− xn|
|xn− xn−1|

)
/ ln
(
|xn− xn−1|
|xn−1− xn−2|

)
.

This way we obtain in practice the order of convergence in a way that avoids the bounds involving estimates using
estimates higher than the first Fréchet derivative of operator F.

3. Numerical examples

In this Section the divided difference is given by [x,y;F ] =
∫ 1

0 F ′(y+θ(x− y))dθ .

Example 3.1. Returning back to the example in the introduction, we have for ϕ0(t) = ϕ(t) = 147t,ϕ1(t) = 1+ϕ0(t),ϕ2(s, t) =
1
2 (ϕ0(s)+ϕ0(t)). Using the definition of r we obtain

r1 = 0.0045,r2 = 0.0029 = r,r3 = 0.0039.

Example 3.2. Let X = Y = R3,Ω = Ū(0,1),x∗ = (0,0,0)T . Define function F on Ω for w = (x,y,z)T by

F(w) = (ex−1,
e−1

2
y2 + y,z)T .
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Then, the Fréchet-derivative is defined by

F ′(v) =

 ex 0 0
0 (e−1)y+1 0
0 0 1

 .
Then, we have ϕ0(t) = (e−1)t,ϕ(t) = e

1
e−1 t, ϕ1(t) = 1+ϕ0(t),ϕ2(s, t) = 1

2 (ϕ0(s)+ϕ0(t)). Using the definition of r we
obtain

r1 = 0.4977,r2 = 0.3731 = r,r3 = 0.4951.

Example 3.3. Let X = Y = C[0,1], be the space of continuous functions on [0,1] equipped with the max-norm. Let
Ω = Ū(0,1). Define F on Ω by

F(ϕ)(x) = ϕ(x)−10
∫ 1

0
xθϕ(θ)3dθ .

We have that

[F ′(ϕ(ξ ))](x) = ξ (x)−30
∫ 1

0
xθϕ(θ)2dθ , for each ξ ∈ D.

Then, we get that x∗ = 0, ϕ0(t) = 15t, ϕ(t) = 30t,ϕ1(t) = 1+ϕ0(t),ϕ2(s, t) = 1
2 (ϕ0(s)+ϕ0(t)). We obtain

r1 = 0.0333,r2 = 0.0197 = r,r3 = 0.0350.
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