Sakarya University Journal of Science, 22 (6), 1878-1885, 2018.

Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator

Nimet Özbay^{*1}, Selma Toker²

ABSTRACT

The use of biased estimation techniques is inevitable in connection with multicollinearity in simultaneous equations model. Two stage ridge estimator is a pioneer biased estimator which is used to recover the problems that are originated from the multicollinearity. The noteworthy issue regarding two stage ridge estimator is selection of its biasing parameter. Based on the works in the literature related to ridge estimator in a linear regression model, several methods on selection of the biasing parameter of the two stage ridge estimator are investigated in this paper. To demonstrate the best estimators of the biasing parameter, a Monte Carlo experiment is conducted. The utility of the proposed estimators of the biasing parameter for two stage ridge estimator is observed in terms of mean square error criterion.

Keywords: biasing parameter, multicollinearity, ridge estimator, two stage least squares

^{*} Corresponding Author

¹ Çukurova University, Department of Statistics, nturker@cu.edu.tr

² Çukurova University, Department of Statistics, stoker@cu.edu.tr

^{© 2018} Sakarya Üniversitesi Fen Bilimleri Enstitüsü http://www.saujs.sakarya.edu.tr

1. INTRODUCTION

Let $Y_{T \times M}$ and $X_{T \times K}$ be matrices of observations, $\Gamma_{M \times M}$ and $B_{K \times M}$ be the matrices of structural coefficients and $U_{T \times M}$ be the matrix of structural disturbances. Then, simultaneous equations model is shown in the matrix form below:

$$Y\Gamma + XB = U \tag{1}$$

where the elements of *X* are nonstochastic and fixed with $rank(X) = K \le T$ and the structural disturbances have zero mean and they are homoscedastic. The reduced form of the model (1) can be written as follows:

$$Y = X\Pi + V. \tag{2}$$

In equation (2)

$$\Pi = -B\Gamma^{-1} \tag{3}$$

and

 $V = U\Gamma^{-1} \tag{4}$

are the reduced form coefficients.

$$y_1 = Y_1 \gamma_1 + X_1 \beta_1 + u_1 \tag{5}$$

is the first equation of the system which is derived according to zero restrictions criterion. For $m_1 + 1$ included and $m_1^* = M - m_1 - 1$ excluded jointly dependent variables and K_1 and $K_1^* = K - K_1$ included excluded predetermined variables, $Y = \begin{bmatrix} y_1 & Y_1 & Y_1^* \end{bmatrix}$ and $X = \begin{bmatrix} X_1 & X_1^* \end{bmatrix}$ are assumed to be variables with the size of $T \times m_1$, $T \times m_1^*$, $T \times K_1$ and $T \times K_1^*$ corresponding to Y_1 , Y_1^* , X_1 and X_1^* . $\gamma_{.1} = \begin{bmatrix} 1 & -\gamma_1 & 0 \end{bmatrix}'$ and $\beta_{.1} = \begin{bmatrix} -\beta_1 & 0 \end{bmatrix}'$ are assumed to be variables with the size of $m_1 \times 1$ and $K_1 \times 1$ corresponding to γ_1 and β_1 and u_1 is the first column of U. $[y_1 \quad Y_1 \quad Y_1^*] = [X_1 \quad X_1^*] \begin{bmatrix} \pi_{11} & \Pi_{11} & \Pi_{11} \\ \pi_{21} & \Pi_{21} & \Pi_{21}^* \end{bmatrix}$ $+[v_1 \quad V_1 \quad V_1^*],$

is the partition of the reduced form equation (2) with the variables

 $y_1 = X\pi_1 + v_1$

and

$$Y_1 = X\Pi_1 + V_1, (6)$$

where $\pi_1 = [\pi_{11} \quad \pi_{21}]'$ and $\Pi_1 = [\Pi_{11} \quad \Pi_{21}]'$ are assumed to be variables having

the size of $K_1 \times 1$, $K_1^* \times 1$, $K_1 \times m_1$, $K_1^* \times m_1$, $T \times 1$ and $T \times m_1$ corresponding to π_{11} , π_{21} , Π_{11} , Π_{21} , v_1 and V_1 . Three subsequent equations show the identifiability relationship between the structural parameters and the reduced form parameters for the first equation:

$$\pi_{11} = \Pi_{11}\gamma_1 + \beta_1,$$

$$\pi_{21} = \Pi_{21}\gamma_1$$

and

$$v_1 = V_1\gamma_1 + u_1$$
(7)

by taking account of only the first column of Γ , *B* and U in the reduced form coefficients (3) and (4).

With the notations

$$Z_1 = [\begin{array}{cc} Y_1 & X_1 \end{array}]_{T \times p_1},$$

and

$$\delta_1 = \begin{bmatrix} \gamma_1 & \beta_1 \end{bmatrix}'_{p_1 \times 1}$$

where $p_1 = m_1 + K_1$, the first equation of the system (5) is obtained as

$$y_1 = Z_1 \delta_1 + u_1. \tag{8}$$

The structural equation (8) is formed as below by replacing the equations (6) and (7),

$$y_1 = [X\Pi_1 \ X_1] \begin{bmatrix} \gamma_1 \\ \beta_1 \end{bmatrix} + v_1.$$
 (9)

Reconsidering the equation (9), the final form reveals as follows:

$$y_1 = \bar{Z}_1 \delta_1 + v_1, \tag{10}$$

where $\bar{Z}_1 = E(Z_1) = [X\Pi_1 \ X_1], E(v_1) = 0$ and $E(v_1v_1') = \sigma^2 I$.

As a most common technique, two stage least squares (TSLS) estimation is applied to simultaneous equations model to estimate the structural parameters. The way for this purpose in the first stage is to replace explanatory endogenous variables by their instrumental variables which are ordinary least squares (OLS) estimates that are obtained by using the exogenous variables. Next for the second stage, the regression coefficients are estimated again by the OLS estimator. TSLS estimator is defined as follows

$$\delta_1^{LS} = (\bar{Z}_1' \bar{Z}_1)^{-1} \bar{Z}_1' y_1. \tag{11}$$

Since \overline{Z}_1 is unknown,

Determining the effect of some biasing parameter selection methods for the two stage ridge regression estimator..."

 $\widehat{\Pi}_1 = (X'X)^{-1}X'Y_1$

is used at the first stage to constitute

$$\hat{\bar{Z}}_1 = \begin{bmatrix} X \hat{\Pi}_1 & X_1 \end{bmatrix}.$$

By substituting this estimation of \overline{Z}_1 in the equation (11), the operational form of the TSLS estimator is derived as follows:

$$\hat{\delta}_{1}^{LS} = \left(\hat{Z}_{1}'\hat{Z}_{1}\right)^{-1}\hat{Z}_{1}'y_{1}$$

Despite ease of computation of the TSLS estimator, running into multicollinearity in simultaneous equations model leads us to find alternative biased estimation methods to the TSLS estimation. Within this context, widely used estimator is ridge estimator (RE) (Hoerl and Kennard [1]) which is recommended for estimating parameters in simultaneous equations model by Vinod and Ullah [2]. Thus, two stage RE of Vinod and Ullah [2] plays a role eliminate prominent to the multicollinearity. Ordinary and operational forms of the two stage RE are

$$\delta_1^{RE} = (\bar{Z}_1'\bar{Z}_1 + kI)^{-1}\bar{Z}_1'y_1,$$

$$\hat{\delta}_1^{RE} = \left(\hat{Z}_1'\hat{Z}_1 + kI\right)^{-1}\hat{Z}_1'y_1,$$

where k > 0.

2. MATERIAL AND METHOD

The model (10) can be written in a canonical form as follows

 $y_1 = Z\alpha_1 + v_1,$

where $Z = \overline{Z}_1 P$, $\alpha_1 = P' \delta_1$ and P is an orthogonal matrix such that $Z'Z = P' \overline{Z}'_1 \overline{Z}_1 P = \Lambda_1 = diag(\lambda_{11}, ..., \lambda_{1p_1})$ where λ_{1i} are the eigenvalues of $\overline{Z}'_1 \overline{Z}_1$. By using this canonical form, the TSLS estimator can be written as

$$\alpha_1^{LS} = \Lambda_1^{-1} Z' y_1.$$

In practice, this estimator is used as follows

$$\hat{\alpha}_1^{LS} = \widehat{\Lambda}_1^{-1} \widehat{Z}' y_1,$$

where Λ_1 is substituted by $\hat{\Lambda}_1 = P'\hat{Z}'_1\hat{Z}_1P$ for the unknown Λ_1 and $\hat{Z} = \hat{Z}_1P$ is put in the place of Z.

Let us write the two stage RE in the canonical form as

$$\alpha_1^{RE} = (\Lambda_1 + kI)^{-1} Z' y_1$$

This estimator is used practically as follows:

$$\widehat{\alpha}_1^{RE} = \left(\widehat{\Lambda}_1 + kI\right)^{-1} \widehat{Z}' y_1$$

As for comparing the performance of the estimators, the scalar mean square error (mse) is the most practical and efficient tool of measure. The *mse* of the TSLS estimator and the two stage RE are

$$mse(\alpha_{1}^{LS}) = \sigma^{2} \sum_{i=1}^{p_{1}} \frac{1}{\lambda_{1i}},$$

$$mse(\alpha_{1}^{RE}) = \sigma^{2} \sum_{i=1}^{p_{1}} \frac{\lambda_{1i}}{(\lambda_{1i}+k)^{2}}$$

$$+k^{2} \sum_{i=1}^{p_{1}} \frac{\alpha_{1i}^{2}}{(\lambda_{1i}+k)^{2}},$$
(12)

where the first part of the equation (12) represents the function of variance while the second part shows the function of squared bias.

Two stage RE is preferable to the TSLS estimator with regard to more reliable calculations in the existence of multicollinearity. In the meantime, there is a difficulty in using the two stage RE depending on the selection of its biasing parameter. To eliminate this problem, we consider various methods which are also examined for linear regression model in the literature: Hoerl and Kennard [1], Hoerl et al. [3], Lawless and Wang [4], Hocking et al. [5], Kibria [6], Khalaf and Shukur [7], Alkhamisi et al. [8], Alkhamisi and Shukur [9], Muniz and Kibria [10] and Muniz et al. [11]. The aforementioned studies are broadly summarized in Mansson et al. [12], hence we follow this article to estimate the biasing parameter of the two stage RE.

We mainly investigate the estimators of the biasing parameter of the two stage RE below:

Hoerl and Kennard [1]:

$$\hat{k}_1 = \frac{\hat{\sigma}^2}{\hat{\alpha}_{1max}^2}$$

where $\hat{\sigma}^2$ is the unbiased estimator of σ^2 and $\hat{\alpha}_{1max}$ is the maximum element of $\hat{\alpha}_1$.

Hoerl et al. [3]:

$$\hat{k}_2 = \frac{p_1 \hat{\sigma}^2}{\sum_{i=1}^{p_1} \hat{\alpha}_{1i}^2}.$$

Lawless and Wang [4]:

"Nimet Özbay, Selma Toker

Determining the effect of some biasing parameter selection methods for the two stage ridge regression estimator..."

$$\hat{k}_3 = \frac{p_1 \hat{\sigma}^2}{\sum_{i=1}^{p_1} \lambda_{1i} \hat{\alpha}_{1i}^2}.$$

Hocking et al. [5]:

$$\hat{k}_{4} = \hat{\sigma}^{2} \frac{\sum_{i=1}^{p_{1}} (\lambda_{1i} \hat{\alpha}_{1i})^{2}}{(\sum_{i=1}^{p_{1}} \lambda_{1i} \hat{\alpha}_{1i}^{2})^{2}}$$

Kibria [6]:

$$\hat{k}_{5} = \frac{1}{p_{1}} \sum_{i=1}^{p_{1}} \frac{\hat{\sigma}^{2}}{\hat{\alpha}_{1i}^{2}}, \ \hat{k}_{6} = \frac{\hat{\sigma}^{2}}{(\prod_{i=1}^{p_{1}} \hat{\alpha}_{1i}^{2})^{\frac{1}{p_{1}}}},$$
$$\hat{k}_{7} = Median \left\{ \frac{\hat{\sigma}^{2}}{\hat{\alpha}_{1i}^{2}} \right\}.$$

Khalaf and Shukur [7]:

$$\hat{k}_8 = \frac{\lambda_{1max}\hat{\sigma}^2}{(T-p_1)\hat{\sigma}^2 + \lambda_{1max}\hat{\alpha}_{1max}^2}$$

where λ_{1max} is the maximum eigenvalue of $\bar{Z}'_1 \bar{Z}_1$.

Alkhamisi et al. [8]:

$$\begin{aligned} \hat{k}_{9} &= max \left(\frac{\lambda_{1i} \hat{\sigma}^{2}}{(T - p_{1}) \hat{\sigma}^{2} + \lambda_{1i} \hat{\alpha}_{1i}^{2}} \right), \\ \hat{k}_{10} &= Median \left(\frac{\lambda_{1i} \hat{\sigma}^{2}}{(T - p_{1}) \hat{\sigma}^{2} + \lambda_{1i} \hat{\alpha}_{1i}^{2}} \right) \end{aligned}$$

Muniz and Kibria [10]:

$$\begin{split} \hat{k}_{11} &= \left(\prod_{i=1}^{p_1} \frac{\lambda_{1i} \hat{\sigma}^2}{(T - p_1) \hat{\sigma}^2 + \lambda_{1i} \hat{\alpha}_{1i}^2} \right)^{\frac{1}{p_1}}, \\ \hat{k}_{12} &= max \left(\frac{1}{\sqrt{\hat{\sigma}^2 / \hat{\alpha}_{1i}^2}} \right), \\ \hat{k}_{13} &= \left(\prod_{i=1}^{p_1} \frac{1}{\sqrt{\hat{\sigma}^2 / \hat{\alpha}_{1i}^2}} \right)^{\frac{1}{p_1}}, \\ \left(\prod_{i=1}^{p_1} \sqrt{\hat{\sigma}^2 / \hat{\alpha}_{1i}^2} \right)^{\frac{1}{p_1}}, \\ \hat{k}_{15} &= Median \left(\frac{1}{\sqrt{\hat{\sigma}^2 / \hat{\alpha}_{1i}^2}} \right). \end{split}$$

Muniz et al. [11]:

$$\begin{split} \hat{k}_{16} &= max \left(\frac{(T-p_1)\hat{\sigma}^2 + \lambda_{1max} \hat{\alpha}_{1i}^2}{\lambda_{1max} \hat{\sigma}^2} \right), \\ \hat{k}_{17} &= max \left(\frac{\lambda_{1max} \hat{\sigma}^2}{(T-p_1)\hat{\sigma}^2 + \lambda_{1max} \hat{\alpha}_{1i}^2} \right), \\ \hat{k}_{18} &= \left(\prod_{i=1}^{p_1} \frac{(T-p_1)\hat{\sigma}^2 + \lambda_{1max} \hat{\alpha}_{1i}^2}{\lambda_{1max} \hat{\sigma}^2} \right)^{\frac{1}{p_1}}, \end{split}$$

$$\hat{k}_{19} = \left(\prod_{i=1}^{p_1} \frac{\lambda_{1max}\hat{\sigma}^2}{(T-p_1)\hat{\sigma}^2 + \lambda_{1max}\hat{\alpha}_{1i}^2}\right)^{\frac{1}{p_1}},$$
$$\hat{k}_{20} = Median\left(\frac{(T-p_1)\hat{\sigma}^2 + \lambda_{1max}\hat{\alpha}_{1i}^2}{\lambda_{1max}\hat{\sigma}^2}\right).$$

3. AN APPLICATION: A MONTE CARLO SIMULATION

A Monte Carlo simulation is a prominent way to demonstrate how the estimators of the biasing parameter effect the mastery of the two stage RE. These are the papers in which some Monte Carlo studies are handled in the simultaneous equations model: Wagnar [13], Hendry [14], Park [15], Capps Jr and Grubbs [16], Johnston and Dinardo [17], Geweke [18], Agunbiade [19,20] and Agunbiade and Iyaniwura [21].

The structural form of the model built by Agunbiade and Iyaniwura [21] corresponding to three structural equations Equation 1, Equation 2 and Equation 3 is as follows:

$$y_{1t} = y_{3t}\gamma_{13} + x_{1t}\beta_{11} + x_{2t}\beta_{12} + u_{1t},$$

$$y_{2t} = y_{1t}\gamma_{21} + x_{1t}\beta_{21} + x_{3t}\beta_{23} + u_{2t},$$

$$y_{3t} = y_{2t}\gamma_{32} + x_{2t}\beta_{32} + x_{3t}\beta_{33} + u_{3t}.$$

Arbitrary model parameters for this structural model are also given as:

$$\gamma_{13} = 1.8, \ \beta_{11} = 0.2, \ \beta_{12} = 1.2,$$

 $\gamma_{21} = 1.5, \ \beta_{21} = 2.5, \ \beta_{23} = 2.1,$
 $\gamma_{32} = 0.9, \ \beta_{32} = 0.4, \ \beta_{33} = 3.3.$

Taking account of different levels of error variance (κ) and multicollinearity degree (ρ) with sample size T = 60 and using the root mean square error (*rmse*) criterion, the TSLS estimator and the two stage RE are compared empirically.

We generate predetermined variables having $N_3(0,\Sigma)$ where Σ is assumed to be as a correlation matrix with a given correlation ρ . Similarly, multivariate normal distribution is used to generate the error terms according to variance-covariance matrix below with the parameter κ :

	[7.0	5.0	4.0]
$\kappa \times$	5.0	4.5	3.5
	4.0	3.5	3.0

Different choices of values that are used for the parameters are $\rho = 0.70, 0.80, 0.90, 0.99$ and $\kappa = 0.1, 1, 10, 100$. The experiment is repeated 10000 times by using MATLAB program. After the sample is generated, the estimated *rmse* is calculated by

$$\widehat{rmse}(\widehat{\theta}) = \sqrt{\frac{1}{10000} \sum_{j=1}^{10000} (\widehat{\theta}_j - \theta)' (\widehat{\theta}_j - \theta)},$$

where θ is the parameter vector of a given structural equation, $\hat{\theta}$ is the estimator of this parameter vector and $\hat{\theta}_j$ is the estimation of the parameter vector in the *j*-th replication. The results are summarized in Tables 1-3 corresponding to Equation 1, Equation 2 and Equation 3 for the TSLS estimator and the two stage RE.

4. RESULTS AND DISCUSSION

According to Tables 1-3, to outperform the TSLS estimator is a general conclusion for the two stage RE with different estimations of the biasing parameter. At the same time, for the smallest value of the error variance ($\kappa = 0.1$) the superiority of the TSLS estimator may be observed. The point need to focus on is the noteworthy influence of the proposed estimators of the biasing parameter on efficiency of the two stage RE. By virtue of this simulation study, which estimator of the biasing parameter will be preferred is demonstrated. Thus, the difficulty in the selection of the biasing parameter of the two stage RE is dispelled. In consequence, \hat{k}_3 , \hat{k}_6 , \hat{k}_{11} and \hat{k}_{20} seem to be the best performed biasing parameters for the efficiency of the two stage RE. In connection to the variation in the level of the error variance and multicollinearity, the estimation ability of the two stage RE changes through the recommended estimators of the biasing parameter. Increasing both the level of multicollinearity and the error variance has a positive effect on the estimated *rms* values of the two stage RE.

Based on Tables 1-3, let us comment on the Equations 1-3 separately. Considering Table 1,

two stage RE with \hat{k}_3 gives the smallest estimated *rmse* values in general. However, we cannot reach a certain conclusion for a quite high level of multicollinearity. When the level of multicollinearity is lower the results are convincing for \hat{k}_{11} according to Table 2, in contrast \hat{k}_6 is preferable when the level of multicollinearity is higher. In Table 3, taking into consideration of the estimators of the biasing parameter, it is deduced that \hat{k}_3 and \hat{k}_{20} surpass their competitors. Moreover, Equation 1 yields the smallest estimated *rmse* values among all the equations.

5. CONCLUDING REMARKS

The usage of the two stage RE in order to estimate the exogenous variables of a structural equation compels us to concentrate on the selection of its biasing parameter. We clarify this problem in this article since there are not too many papers that are prone to this issue in the literature. We find out the best estimator of the biasing parameter within \hat{k}_1 to \hat{k}_{20} by a comprehensive application.

As for summarizing the outcomes of the Monte Carlo experiment, it is inferred that the level of the error variance and multicollinearity is an indicator which alters the estimated *rmse* values of the estimators. An increment in the magnitude of the error variance and multicollinearity results in an increment in the estimated *rmse* values of the two stage RE.

Generally, each estimator of the biasing parameter provides its own effect for two stage RE to be outperform the TSLS estimator. But, especially \hat{k}_3 , \hat{k}_6 , \hat{k}_{11} and \hat{k}_{20} give the smallest estimated rmse values for two stage RE. As a result, we advise researchers, who confront with simultaneous equations model exposed to multicollinearity, that one of the proposed estimators of the biasing parameter for two stage RE can be preferred.

						Equatio	on 1								
			Two stage RE with different \hat{k} values												
ρ	к	TSLS estimator	\hat{k}_1	k ₂	\hat{k}_3	\hat{k}_4	\hat{k}_5	\hat{k}_6	\hat{k}_7	\hat{k}_8	ĥ9	\hat{k}_{10}			
0.70	0.1	0.3190	0.4580	0.3667	0.1891	0.2881	0.4140	0.3920	0.4580	0.4306	0.2848	0.2155			
	1	1.5333	1.2525	1.0873	0.5251	0.9142	1.1970	1.1533	1.2455	1.0176	0.8359	0.5426			
	10	246.3471	1.8468	1.4123	1.1244	1.3533	1.7830	1.5962	1.8468	1.2808	1.2654	1.1284			
	100	152.8417	2.1725	1.4335	2.0220	1.4356	2.1725	2.0964	1.4359	1.3220	1.3214	1.9960			
0.80	0.1	0.3884	0.5853	0.4748	0.2271	0.3706	0.5381	0.5089	0.5853	0.5533	0.3657	0.2543			
	1	26.8411	1.3493	1.2031	0.6179	1.0455	1.3046	1.2665	1.3326	1.1541	0.9734	0.6342			
	10	202.8415	2.1717	1.4345	1.2748	1.3908	2.1701	2.0605	2.0590	1.3550	1.3468	1.2762			
	100	2329.8874	2.1446	1.3877	2.6943	1.4420	2.0938	1.6165	1.4424	1.3586	1.3591	2.6750			
0.90	0.1	0.5625	0.8613	0.7015	0.3113	0.5520	0.7928	0.7522	0.8613	0.8208	0.5442	0.3375			
	1	35.1412	1.4507	1.3443	0.8101	1.2315	1.4235	1.3972	1.4238	1.3240	1.1792	0.8226			
	10	278.8939	2.1251	1.4494	1.5941	1.4296	2.0455	1.6333	1.5294	1.4339	1.4376	1.5832			
	100	302.7489	2.0248	1.3840	3.8961	1.4486	1.8450	1.4593	1.4492	1.3950	1.3967	4.0281			
0.99	0.1	146.6652	1.4852	1.3721	0.8381	1.2544	1.4689	1.4375	1.4419	1.4684	1.2480	0.8501			
	1	176.0489	1.6970	1.4860	1.7629	1.4938	1.5468	1.4857	1.4843	1.4859	1.4989	1.7470			
	10	121.6339	1.5018	1.5609	3.3718	1.4687	1.4679	1.4773	1.4687	1.5120	1.5278	3.5032			
	100	801.3517	1.7149	1.6326	4.0039	1.4572	1.5579	1.4094	1.4581	1.7184	1.4364	5.6537			
			Two sta	ge RE wit	h different	t \widehat{k} contin	ued values								
ρ	к	TSLS estimator	\hat{k}_{11}	<i>k</i> ₁₂	\hat{k}_{13}	\hat{k}_{14}	\hat{k}_{15}	\hat{k}_{16}	\hat{k}_{17}	\hat{k}_{18}	\hat{k}_{19}	\hat{k}_{20}			
0.70	0.1	0.3190	0.2188	0.2429	0.2256	0.3076	0.2198	0.2348	0.4452	0.2115	0.3738	0.2053			
	1	1.5333	0.5601	0.5337	0.5297	0.7494	0.5284	0.5277	1.0176	0.5263	0.9550	0.5258			
	10	246.3471													
			1.1352	1.1235	1.1230	1.2786			1.2809		1.2757	1.1230			
	100		1.1352 1.7921	1.1235 2.2490	1.1230 2.2591	1.2786 1.3348	1.1229	1.1230	1.2809 1.3220	1.1230	1.2757 1.3214	1.1230 2.2573			
0.80		152.8417	1.7921	2.2490	2.2591	1.3348	1.1229 2.2523	1.1230 2.2571	1.3220	1.1230 2.2573	1.3214	2.2573			
0.80	100	152.8417 0.3884	1.7921 0.2624	2.2490 0.3062	2.2591 0.2808	1.3348 0.3973	1.12292.25230.2727	1.1230 2.2571 0.2943	1.3220 0.5820	1.1230 2.2573 0.2598	1.3214 0.4859	2.2573 0.2512			
0.80	100 0.1	152.8417 0.3884 26.8411	1.7921 0.2624 0.6555	2.2490 0.3062 0.6299	2.2591 0.2808 0.6239	1.3348 0.3973 0.8959	1.1229 2.2523 0.2727 0.6222	1.1230 2.2571 0.2943 0.6215	1.3220 0.5820 1.1541	1.1230 2.2573 0.2598 0.6194	1.3214 0.4859 1.0928	2.2573 0.2512 0.6188			
0.80	100 0.1 1 10	152.8417 0.3884 26.8411 202.8415	1.7921 0.2624 0.6555 1.2792	2.2490 0.3062 0.6299 1.2743	2.2591 0.2808 0.6239 1.2740	1.3348 0.3973 0.8959 1.3894	1.12292.25230.27270.62221.2740	1.12302.25710.29430.62151.2741	1.3220 0.5820 1.1541 1.3550	1.12302.25730.25980.61941.2740	1.3214 0.4859 1.0928 1.3523	2.2573 0.2512 0.6188 1.2740			
0.80	100 0.1 1	152.8417 0.3884 26.8411 202.8415 2329.8874	1.7921 0.2624 0.6555 1.2792 2.2707	2.2490 0.3062 0.6299 1.2743 3.2301	2.2591 0.2808 0.6239 1.2740 3.2668	1.33480.39730.89591.38941.3646	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576	1.1230 2.2571 0.2943 0.6215 1.2741 3.2696	1.3220 0.5820 1.1541 1.3550 1.3586	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712	1.3214 0.4859 1.0928 1.3523 1.3596	2.2573 0.2512 0.6188 1.2740 3.2716			
	100 0.1 1 10 100	152.8417 0.3884 26.8411 202.8415 2329.8874 0.5625	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545	2.2490 0.3062 0.6299 1.2743 3.2301 0.4502	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049	1.33480.39730.89591.38941.36460.5957	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576 0.3888	1.12302.25710.29430.62151.2741	1.32200.58201.15411.35501.35860.8351	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676	1.3214 0.4859 1.0928 1.3523 1.3596 0.7220	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506			
	100 0.1 1 10 100 0.1	152.8417 0.3884 26.8411 202.8415 2329.8874	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545 0.8460	2.2490 0.3062 0.6299 1.2743 3.2301	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049 0.8173	1.33480.39730.89591.38941.3646	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576	1.12302.25710.29430.62151.27413.26960.4301	1.3220 0.5820 1.1541 1.3550 1.3586	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676 0.8120	1.3214 0.4859 1.0928 1.3523 1.3596	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506 0.8111			
	100 0.1 1 10 100 0.1 1	152.8417 0.3884 26.8411 202.8415 2329.8874 0.5625 35.1412 278.8939	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545 0.8460 1.5567	2.2490 0.3062 0.6299 1.2743 3.2301 0.4502 0.8279 1.6015	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049 0.8173 1.6064	1.3348 0.3973 0.8959 1.3894 1.3646 0.5957 1.1429 1.4348	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576 0.3888 0.8154 1.6057	1.1230 2.2571 0.2943 0.6215 1.2741 3.2696 0.4301 0.8154 1.6060	1.3220 0.5820 1.1541 1.3550 1.3586 0.8351 1.3240 1.4339	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676 0.8120 1.6064	1.3214 0.4859 1.0928 1.3523 1.3596 0.7220 1.2771 1.4352	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506 0.8111 1.6065			
0.90	100 0.1 1 10 100 0.1 1 10	152.8417 0.3884 26.8411 202.8415 2329.8874 0.5625 35.1412 278.8939 302.7489	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545 0.8460 1.5567 3.1621	2.2490 0.3062 0.6299 1.2743 3.2301 0.4502 0.8279 1.6015 5.4807	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049 0.8173 1.6064 5.7750	1.3348 0.3973 0.8959 1.3894 1.3646 0.5957 1.1429 1.4348 1.4358	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576 0.3888 0.8154 1.6057 5.7703	$\begin{array}{c} 1.1230\\ 2.2571\\ 0.2943\\ 0.6215\\ 1.2741\\ 3.2696\\ 0.4301\\ 0.8154\\ 1.6060\\ 5.7953\\ \end{array}$	1.3220 0.5820 1.1541 1.3550 1.3586 0.8351 1.3240 1.4339 1.3950	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676 0.8120 1.6064 5.8239	1.3214 0.4859 1.0928 1.3523 1.3596 0.7220 1.2771 1.4352 1.4037	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506 0.8111 1.6065 5.8323			
	$ \begin{array}{c} 100\\ 0.1\\ 1\\ 10\\ 0.1\\ 100\\ 0.1\\ 1\\ 10\\ 100\\ \end{array} $	152.8417 0.3884 26.8411 202.8415 2329.8874 0.5625 35.1412 278.8939 302.7489 146.6652	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545 0.8460 1.5567 3.1621 0.8783	2.2490 0.3062 0.6299 1.2743 3.2301 0.4502 0.8279 1.6015 5.4807 1.1492	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049 0.8173 1.6064 5.7750 1.0159	1.3348 0.3973 0.8959 1.3894 1.3646 0.5957 1.1429 1.4348 1.4358 1.3452	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576 0.3888 0.8154 1.6057 5.7703 1.0104	$\begin{array}{c} 1.1230\\ 2.2571\\ 0.2943\\ 0.6215\\ 1.2741\\ 3.2696\\ 0.4301\\ 0.8154\\ 1.6060\\ 5.7953\\ 1.1206\end{array}$	1.3220 0.5820 1.1541 1.3550 1.3586 0.8351 1.3240 1.4339 1.3950 1.4684	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676 0.8120 1.6064 5.8239 0.9390	1.3214 0.4859 1.0928 1.3523 1.3596 0.7220 1.2771 1.4352 1.4037 1.4123	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506 0.8111 1.6065 5.8323 0.9204			
0.90	100 0.1 1 100 0.1 1 100 100 0.1	152.8417 0.3884 26.8411 202.8415 2329.8874 0.5625 35.1412 278.8939 302.7489	1.7921 0.2624 0.6555 1.2792 2.2707 0.3545 0.8460 1.5567 3.1621	2.2490 0.3062 0.6299 1.2743 3.2301 0.4502 0.8279 1.6015 5.4807	2.2591 0.2808 0.6239 1.2740 3.2668 0.4049 0.8173 1.6064 5.7750	1.3348 0.3973 0.8959 1.3894 1.3646 0.5957 1.1429 1.4348 1.4358	1.1229 2.2523 0.2727 0.6222 1.2740 3.2576 0.3888 0.8154 1.6057 5.7703	$\begin{array}{c} 1.1230\\ 2.2571\\ 0.2943\\ 0.6215\\ 1.2741\\ 3.2696\\ 0.4301\\ 0.8154\\ 1.6060\\ 5.7953\\ \end{array}$	1.3220 0.5820 1.1541 1.3550 1.3586 0.8351 1.3240 1.4339 1.3950	1.1230 2.2573 0.2598 0.6194 1.2740 3.2712 0.3676 0.8120 1.6064 5.8239	1.3214 0.4859 1.0928 1.3523 1.3596 0.7220 1.2771 1.4352 1.4037	2.2573 0.2512 0.6188 1.2740 3.2716 0.3506 0.8111 1.6065 5.8323			

 Table 1. Estimated rmse values of the estimators in Equation 1

T٤	ble 2. Estimated rmse values of the estimato	ors	s in	Eq	uation 2
	E State Stat			•	

	Equation 2													
			Two stage RE with different \hat{k} values											
ρ	к	TSLS estimator	\hat{k}_1	\hat{k}_2	\hat{k}_3	\hat{k}_4	\hat{k}_5	\hat{k}_6	\hat{k}_7	\hat{k}_8	ĥ9	\hat{k}_{10}		
0.70	0.1	1.7328	2.4038	1.5714	1.0048	2.7424	2.4438	2.1268	2.4038	2.3885	2.7291	0.4568		
	1	139.4882	3.2571	2.4577	4.8516	3.3082	3.2587	3.1719	3.2571	3.2423	3.2796	1.9585		
	10	68.1909	3.4147	3.4153	4.7518	3.4141	3.4148	3.4150	3.4147	3.4340	3.4321	4.7233		
	100	37.4451	3.3788	3.3808	4.0811	3.3853	3.3814	3.3811	3.3809	3.4435	3.4404	4.0905		
0.80	0.1	35.1409	2.6655	1.8982	1.2808	2.9073	2.6926	2.4313	2.6655	2.6547	2.8968	0.5330		
	1	308.9423	21.9702	9.8668	4.0395	3.3469	3.3096	3.3177	3.3079	21.9704	3.3261	3.4147		
	10	161.9416	3.4166	3.4151	4.3654	3.4144	3.4139	3.4142	3.4143	3.4295	3.4332	4.3700		
	100	218.0851	3.3761	3.3763	4.0589	3.3826	3.3779	3.3771	3.3791	3.4325	3.4260	4.0787		
0.90	0.1	905.6709	2.9698	2.3482	2.0754	3.0989	2.9812	2.8107	2.9698	2.9644	3.0921	0.6846		
	1	127.8484	3.5823	3.4065	7.5497	3.3907	3.3716	3.3572	3.3694	3.5856	3.3804	5.4459		
	10	296.5322	3.4187	3.4131	3.9617	3.4124	3.4181	3.4120	3.4124	3.4358	3.4285	3.9695		
	100	240.9072	3.3794	3.3714	4.1613	3.3788	3.3770	3.3728	3.3789	3.4209	3.4061	4.2422		
0.99	0.1	169.8761	3.5599	3.3837	7.4558	3.3875	3.3623	3.3398	3.3587	3.5602	3.3859	5.2985		
	1	248.7308	3.4291	3.4254	3.8590	3.4246	3.4233	3.4241	3.4246	3.4303	3.4257	3.8724		
	10	215.3956	3.4913	3.4044	3.8136	3.4039	3.4383	3.4049	3.4039	3.4044	3.4050	4.0347		
	100	579.4789	3.4869	3.3788	4.5570	3.3726	3.4221	3.3655	3.3726	3.3730	3.3741	5.5796		

Table 2 continued

	Equation 2												
			Two stag	e RE with	different	\widehat{k} continue	ed values						
ρ	к	TSLS estimator	\hat{k}_{11}	\hat{k}_{12}	\hat{k}_{13}	\hat{k}_{14}	\hat{k}_{15}	\hat{k}_{16}	\hat{k}_{17}	\hat{k}_{18}	\hat{k}_{19}	\hat{k}_{20}	
0.70	0.1	1.7328	0.2842	2.3125	1.6939	1.9928	1.4974	2.6415	2.7291	1.5578	2.1062	1.1447	
	1	139.4882	0.9873	3.1098	2.4657	3.0907	1.7203	3.1891	3.2796	1.8527	3.1568	1.5822	
	10	68.1909	4.4597	4.8340	4.8432	3.5721	4.8446	4.8718	3.4321	4.8730	3.4350	4.8733	
	100	37.4451	4.0466	4.1006	4.1007	3.6164	4.1007	4.1010	3.4404	4.1010	3.4419	4.1010	
0.80	0.1	35.1409	0.3618	2.6305	2.1256	2.3385	1.9354	2.8751	2.8968	2.0274	2.4154	1.6033	
	1	308.9423	4.2634	3.3318	3.3151	3.3168	3.3974	3.4251	3.3261	3.3075	3.3251	3.6322	
	10	161.9416	4.2090	4.4047	4.4139	3.5265	4.4134	4.4249	3.4295	4.4259	3.4342	4.4260	
	100	218.0851	4.0054	4.1000	4.1005	3.5938	4.1006	4.1013	3.4260	4.1013	3.4284	4.1014	
0.90	0.1	905.6709	0.5167	2.9919	2.7126	2.7803	2.5743	3.1352	3.0921	2.6865	2.8019	2.3591	
	1	127.8484	5.0335	3.6549	4.1843	3.4092	4.4624	3.6782	3.3804	5.1432	3.3577	6.1487	
	10	296.5322	3.9140	3.9719	3.9755	3.4821	3.9745	3.9776	3.4242	3.9779	3.4290	3.9780	
	100	240.9072	4.0185	4.3300	4.3359	3.5440	4.3372	4.3403	3.4052	4.3406	3.4103	4.3408	
0.99	0.1	169.8761	4.8314	3.3739	3.3399	3.3398	3.3393	3.4056	3.3859	3.3402	3.3395	3.3477	
	1	248.7308	3.7827	3.7012	3.7746	3.4360	3.7604	3.8136	3.4238	3.8515	3.4256	3.8510	
	10	215.3956	3.6011	3.8614	4.1275	3.4119	4.0974	4.1603	3.4044	4.2188	3.4058	4.2308	
	100	579.4789	4.2689	7.0720	8.2100	3.4409	8.2841	8.2728	3.3730	8.4380	3.3850	8.4737	

 Table 3. Estimated rmse values of the estimators in Equation 3

Equation 3												
			Two sta	ge RE wit	th differen	t <i>k</i> values						
ρ	к	TSLS estimator	\hat{k}_1	\hat{k}_2	\hat{k}_3	\hat{k}_4	\hat{k}_5	\hat{k}_6	\hat{k}_7	\hat{k}_8	ĥ9	\hat{k}_{10}
0.70	0.1	0.8464	3.3219	1.4327	0.3946	2.9240	3.2077	2.7137	2.9301	3.2828	2.9008	1.1065
	1	134.3958	3.4250	2.9649	0.9547	3.3232	3.4096	3.3662	3.3242	3.3458	3.2766	1.3593
	10	5261.5765	3.3870	3.3368	1.7763	3.3714	3.3783	3.3663	3.3717	3.3090	3.2994	1.8970
	100	77.9728	3.3743	3.3721	2.7899	3.3658	3.3748	3.3735	3.3743	3.3102	3.3092	2.7982
0.80	0.1	1.7157	3.3436	1.7013	0.4664	3.0263	3.2606	2.8731	3.0297	3.3145	3.0067	1.0946
	1	514.3002	3.4434	3.0861	1.0880	3.3384	3.4425	3.3898	3.3389	3.3576	3.3034	1.4187
	10	272.4579	3.3834	3.3522	1.9536	3.3730	3.3762	3.3684	3.3731	3.3243	3.3175	2.0408
	100	83.0514	3.3805	3.3770	3.0741	3.3659	3.4314	3.4007	3.3805	3.3225	3.3214	3.0748
0.90	0.1	31.9403	3.3701	2.2007	0.6066	3.1702	3.3279	3.0975	3.1713	3.3534	3.1570	1.1274
	1	142.9223	3.3990	3.2329	1.3311	3.3585	3.3924	3.3703	3.3587	3.3706	3.3378	1.5675
	10	362.4192	3.3803	3.3686	2.2808	3.3752	3.3756	3.3728	3.3753	3.3422	3.3388	2.3211
	100	94.7380	3.3618	3.3660	3.6151	3.3662	3.3697	3.3676	3.3662	3.3331	3.3340	3.6302
0.99	0.1	166.4569	3.4011	3.2376	1.3090	3.3615	3.3952	3.3839	3.3615	3.3916	3.3594	1.5551
	1	65.6271	3.3860	3.3764	2.3546	3.3823	3.3824	3.3800	3.3823	3.3809	3.3773	2.3759
	10	225.4804	3.3666	3.3738	3.5326	3.3777	3.3762	3.3752	3.3777	3.3509	3.3603	3.6387
	100	252.5844	3.2694	3.3161	4.5658	3.3663	3.3664	3.3571	3.3663	3.2648	3.3430	5.3532
			Two sta	ge RE wit	th differen	t \widehat{k} continu	ied values	5				
ρ	к	TSLS estimator	\hat{k}_{11}	<i>k</i> ₁₂	\hat{k}_{13}	\hat{k}_{14}	\hat{k}_{15}	\hat{k}_{16}	\hat{k}_{17}	\hat{k}_{18}	\hat{k}_{19}	\hat{k}_{20}
0.70	0.1	0.8464	1.0678	2.1807	1.1539	2.2325	1.0267	2.6362	3.2828	0.8628	2.6203	0.6755
	1	134.3958	1.6437	1.3952	0.9967	3.0480	1.0403	1.2012	3.3458	0.9593	3.1978	0.9411
	10	5261.5765	2.1444	1.7272	1.7031	3.0630	1.7010	1.6945	3.3090	1.6912	3.2798	1.6904
	100	77.9728	2.8800	2.7391	2.7389	3.2412	2.7389	2.7384	3.3107	2.7384	3.3100	2.7384
0.80	0.1	1.7157	1.1487	2.3837	1.3627	2.4544	1.2362	2.7747	3.3145	1.0306	2.7941	0.8249
	1	514.3002	1.7494	1.5706	1.0918	3.2532	1.1929	1.3490	3.3576	1.0933	3.2488	1.0738
	10	272.4579	2.2885	1.8988	1.8770	3.1254	1.8744	1.8656	3.3243	1.8628	3.3052	1.8620
	100	83.0514	3.0938	3.0620	3.0619	3.3017	3.0619	3.0618	3.3233	3.0618	3.3224	3.0618
0.90	0.1	31.9403	1.3151	2.7055	1.7665	2.8006	1.6603	2.9797	3.3534	1.3715	3.0418	1.1474
	1	142.9223	1.9512	1.8909	1.4428	3.1851	1.4791	1.6164	3.3706	1.3374	3.3098	1.3144
	10	362.4192	2.5452	2.2103	2.1950	3.2118	2.1926	2.1788	3.3422	2.1771	3.3345	2.1766
	100	94.7380	3.4682	3.7871	3.7885	3.2850	3.7882	3.7912	3.3348	3.7913	3.3340	3.7913
0.99	0.1	166.4569	2.0174	3.2507	2.6857	3.3476	2.9361	3.2938	3.3916	2.5141	3.3608	2.5367
	1	65.6271	2.7011	2.7847	2.6490	3.3236	2.6190	2.4656	3.3809	2.3484	3.3742	2.3243
	10	225.4804	3.3801	3.7603	3.8286	3.2855	3.8555	3.9546	3.3604	3.9657	3.3576	3.9702
	100	252.5844	4.3857	7.1006	9.1136	3.2635	9.4450	9.1312	3.3435	9.6483	3.3263	9.7321

Determining the effect of some biasing parameter selection methods for the two stage ridge regression estimator..."

ACKNOWLEDGMENTS

This paper is supported by Çukurova University Scientific Research Projects Unit Project Number: FBA-2018-9770.

REFERENCES

- A. E. Hoerl and R. W. Kennard. "Ridge regression: biased estimation for nonorthogonal problems". *Technometrics*. vol. 12. no. 1. pp. 55-67. 1970.
- [2] H. D. Vinod and A. Ullah. "Recent advances in regression methods". Marcel Dekker. New York. Inc., 1981.
- [3] A. E. Hoerl. R. W. Kennard and K. F. Baldwin. "Ridge regression: some simulations". *Communications in Statistics-Simulation and Computation*. vol. 4. pp. 105– 123. 1975.
- [4] J. F. Lawless and P. A. Wang. "Simulation study of ridge and other regression estimators". *Communications in Statistics-Theory and Methods*. vol. 5. no. 4. pp. 307-323. 1976.
- [5] R. R. Hocking. F. M. Speed and M. J. Lynn. "A class of biased estimators in linear regression". *Technometrics*. vol. 18. no. 4. pp. 425-437. 1976.
- [6] B. M. G. Kibria. "Performance of some new ridge regression estimators". *Communications in Statistics-Simulation and Computation*. vol. 32. no. pp. 419–435. 2003.
- [7] G. Khalaf and G. Shukur. "Choosing ridge parameters for regression problems". *Communications in Statistics-Theory and Methods.* vol. 34. pp. 1177-1182. 2005.
- [8] M. Alkhamisi. G. Khalaf and G. Shukur. "Some modifications for choosing ridge parameters". *Communications in Statistics-Theory and Methods*. vol. 35. pp. 2005-2020. 2006.
- [9] M. Alkhamisi and G. Shukur. "Developing ridge parameters for SUR model". *Communications in Statistics-Theory and Methods*. vol. 37. no. 4. pp. 544-564. 2008.
- [10] G. Muniz and B. M. G. Kibria. "On some ridge regression estimators: an empirical comparisons". *Communications in Statistics-Simulation and Computation*. vol. 38. pp. 621-630. 2009.

- [11] G. Muniz. B. M. G. Kibria. G. Shukur and K. Mansson. "On developing ridge regression parameters: a graphical investigation". SORT. vol. 36. no. 2. pp. 115-138. 2012.
- [12]K. Mansson. G. Shukur and B. M. G Kibria. "A simulation study of some ridge regression estimators under different distributional assumptions". *Communications in Statistics-Simulation and Computation*. vol. 39. no. 8. pp. 1639-1670. 2010.
- [13] H. M. Wagnar. "A monte carlo study of estimates of simultaneous linear structural equations". *Econometrica*. vol. 26. pp. 117-133. 1958.
- [14] D. F. Hendry. "The structure of simultaneous equation estimators". *Journal of Econometrics*. vol. 4. pp. 51-88. 1976.
- [15] S. B. Park. "Some sampling properties of minimum expected loss (MELO) estimates of structural coefficients". *Journal of Econometrics*. vol. 18. pp. 295–311. 1982.
- [16] O. Capps Jr and W. D. Grubbs. "A monte carlo study of collinearity in linear simultaneous equation models". *Journal of Statistical Computation and Simulation*. vol. 39. pp. 139-162. 1991.
- [17] J. Johnston and J. E. Dinardo. "Econometric methods". McGraw-Hill. New York. 1997.
- [18] J. Geweke. "Using simulation methods for bayesian econometric models: inference. development and communication". *Econometric Reviews*. vol. 18. no. 1. pp. 1-73. 1999.
- [19] D. A. Agunbiade. "A monte carlo approach to the estimation of a just identified simultaneous three-equations model with three multicollinear exogenous variables". Unpublished Ph.D. Thesis. University of Ibadan. 2007.
- [20] D. A. Agunbiade. "Effect of multicollinearity and the sensitivity of the estimation methods in simultaneous equation model". *Journal of Modern Mathematics and Statistics*. vol. 5. no. 1. pp. 9-12. 2011.
- [21] D. A. Agunbiade and J. O. Iyaniwura. "Estimation under multicollinearity: a comparative approach using monte carlo methods". *Journal of Mathematics and Statistics*. vol. 6 no. 2. pp. 183-192. 2010.