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Summability factors between the absolute Cesàro methods 

G. Canan Hazar Güleç* 

Abstract 

If  ∑ ���� is summable by the method � whenever ∑ �� is summable by the method �, then we say that the factor 
� = (��) is of type (�, �) and denote by (�, �). In this study we characterize the sets (|�, �|�, |�, −1|) , � > 1 and 
(|�, −1|, |�, �|�) , � ≥ 1 for � > −1. Also, in the special case, we give some inclusion relations between methods, 
which completes some open problems in literature. 
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1. INTRODUCTION 

Let ∑ �� be  an infinite series with partial sum (��), 
and by (��

�) and (��
�) we denote the �-th Cesàro means 

of order � with � > −1 of the sequences (��) and 
(���), respectively, i.e., 
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where ��
� = 1,  ��

� = ����
�

�, ���
� = 0, � ≥ 1. The 

series ∑ �� is said to be summable |�, �|�, � ≥ 1, if 
(see [4]) 

� ����
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|��
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� |� < ∞.               (1.2) 

On the other hand, by the well known identity ��
� =

�(��
� − ����

� ) [8], the condition (1.2) can be stated by 

�
1

�

�

���

|��
�|� < ∞. 

Note that the definition of Flett [4] doesn't include the 
case � = −1, although the Cesàro summability (�, �) 
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is studied usually for range � ≥ −1 (see [5]). Hence, 
Thorpe [22] gave the seperate definition for � = −1 as 
follows. If the series to sequence transformation 

�� = � ��

���

���

+ (� + 1)��            (1.3) 

tends to a finite number  � as � tends to infinity, then 
the series  ∑ ��  is summable by Cesàro summability 
(�, −1) to the number � [22]. 

Also, by the definition of Sarıgöl [16] and Thorpe [22], 
the series ∑ �� is said to be summable |�, −1|�, � ≥ 1, 
if (see [6]) 

� ����

�

���

|�� − ����|� < ∞. 

In this context the series spaces |��|�, � ≥ 1, have 
been defined as the set of all series summable by the 
absolute Cesàro summability method |�, �|� in [14] 
and [6] for � > −1 and � = −1, respectively. 

    If ∑ ���� is summable by the method � whenever 
∑ �� is summable by the method �, then the sequence 
� = (��)  is said to be a summability factor of type 
(�, �) and we write it by � ∈ (�, �). In the special case 
if it is taken as � = 1, then 1 ∈ (�, �) leads to the 
comparisons of these methods, where 1 =
(1,1, . . . ) i.e.,  � ⊂ �. 
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    Such types of factors were investigated in detail by 
several authors [1-3, 10-13, 15, 17-21], and recently 
some well known results in [10-13, 15] have been 
extended by Sarıgöl [15] and Sarıgöl & Hazar  [7]. 

    In this study, we deal with the problem of absolute 
Cesàro summability factors. More precisely, we 
characterize the sets (|�, �|�, |�, −1|) , � > 1 and 
(|�, −1|, |�, �|�) , � ≥ 1 for � > −1.  So we give the 
inclusion relations between these methods, which 
completes some open problems in literature. 

2. MAIN RESULTS 

In this section we characterize the sets 
(|�, �|�, |�, −1|) , � > 1 and (|�, −1|, |�, �|�) , � ≥ 1 
for � > −1.  Thus, in the special case, we give the 
inclusion relations between methods. 

Now, we require the following lemmas for our 
investigations. 

Throughout this paper, �∗ denote the conjugate of � >
1, i.e., 1/� + 1/ �∗ = 1, and 1/ �∗ = 0 for � = 1. 

Lemma 2.1. Let 1 < � < ∞.  Then,  �(�) ∈ ℓ 
whenever � ∈ ℓ� if and only if 

� ��|���|

�

���

�
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< ∞ 

where ℓ� = {� = (��) ∶  ∑|��|� < ∞} [15]. 

Lemma 2.2. Let 1 ≤ � < ∞. Then, �(�) ∈ ℓ� 
whenever � ∈ ℓ if and only if 

sup
�

�|���|�

�

���

< ∞, 

[9]. 

We begin with the characterization of the set 
(|�, �|�, |�, −1|) for � > 1 and � > −1. 

Theorem 2.3. Let � > 1 and � > −1. Then, � ∈
 (|�, �|�, |�, −1|) if and only if  
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Proof. Let define ��
� and  �� by (1.1) and 
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respectively. Using the definitions of  ��
�  and  �� , we 

define the sequences � = (�� )and �� = (��� ) by 
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and 

��� = �� − ���� = (� + 1)���� − (� − 1)��������, 
� ≥ 1 ��� ��� = ����                         (2.3) 

respectively. Then, � ∈  (|�, �|�, |�, −1|)  iff �� ∈ ℓ 
whenever � ∈ ℓ�. By inversion of (2.2), we write for 
� ≥ 1 
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Hence, by (2.4) we get for � ≥ 1 
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� ,1 ≤ � ≤ �
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So �� ∈ ℓ whenever � ∈ ℓ� if and only if 

� ��|���|

�

���

�

�∗
�

���

< ∞, 

by Lemma 2.1 or, equivalently, (2.1) holds. Thus the 
proof is completed. 

    Since 1 ∈  (|�, �|�, |�, −1|)  leads us to a 
comparison of summability fields of methods |�, �|� 
and |�, −1|, where 1 = (1,1, . . . ), that is |�, �|� ⊂
|�, −1|, taking �� = 1 for all � ≥ 1 in Theorem 2.3  we 
get the following result. 

Corollary 2.4. If � > 1 and � > −1, then, |�, �|� ⊂
|�, −1| if and only if  
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Theorem 2.5. Let � ≥ 1 and � > −1. Then the 
necessary and sufficient condition for � ∈
 (|�, −1|, |�, �|�), is 

sup
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Proof. As in proof of Theorem 2.3, we define 
sequences � = (�� ) and �� = (��� ) by 
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respectively.   

Then, � ∈  (|�, −1|, |�, �|�)  if and only if � ∈ ℓ� 
whenever �� ∈ ℓ. On the other hand, from (2.6) we write 
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Hence, by (2.7) we get for � ≥ 1 
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Then, � ∈ ℓ� whenever �� ∈ ℓ if and only if  
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by Lemma 2.2, which is the same as the condition (2.5). 
This completes the proof. 

    Since 1 ∈  (|�, −1|, |�, �|�) leads us to a 
comparison of summability fields of methods |�, �|� 
and |�, −1|, where 1 = (1,1, . . . ),  that is |�, −1| ⊂
|�, �|�, taking �� = 1 for all � ≥ 1 in Theorem 2.5 we 
get the following result. 

Corollary 2.6. If � ≥ 1 and � > −1, then, |�, −1| ⊂
|�, �|� if and only if 
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