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Abstract

In this paper, an advection-diffusion equation wAkangana-Baleanu derivative is
considered. Cauchy and Dirichlet problems have baescribed on a finite interval.

The main aim is to scrutinize the fundamental sohgt for the prescribed problems.
The Laplace and the finite sin-Fourier integralmisformation techniques are applied to
determine the concentration profiles corresponding the fundamental solutions.
Results have been obtained as linear combinatidnene or bi-parameter Mittag-

Leffler functions. Consequently, the effects offthetional parameter and drift velocity
parameter on the fundamental solutions are inteigmeby the help of some illustrative
graphics.

Keywords: Atangana-Baleanu derivative, advection-diffusiomuation, Laplace
integral transformation, Mittag-Leffler functioryridamental solution.

Sonlu bir boélge Uzerinde Atangana-Baleanu tUredaeksiyon-
difizyon denklemine analitik ¢coztimler

Ozet

Bu calgmada Atangana-Baleanu turevli bir adveksiyon-difileydenklemi ele
alinmitir. Cauchy ve Dirichlet problemleri sonlu bir arlata tanimlanmngtir. Asil

amagc, belirlenen problemler igin temel c¢ozumlerdelemektir. Temel c¢oziumlere
karsihk gelen konsantrasyon profillerini belirlemekingLaplace ve sonlu sin-Fourier
integral donigim teknikleri uygulanmgtir. Sonuclar, bir veya iki parametreli Mittag-
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Leffler fonksiyonlarinin lineer kombinasyonlari @& elde edilmytir. Sonuc¢ olarak,
kesirli parametrenin ve suruklenme hizi parametiesicozimler tzerindeki etkileri
bazi aciklayici grafikler yardimiyla yorumlarytmi.

Anahtar Kelimeler: Atangana-Baleanu turevi, adveksiyon-diftizyon dankl Laplace
integral donigumu, Mittag-Leffler fonksiyonu, temel ¢c6zim.

1. Introduction

Solute dispersion under the combined effects offusibn and advection in
heterogeneous porous mediisnmodelled by parabolic advection-diffusion eqoas
(ADE). Many harmful effects on humans and environtneuch as atmospheric
pollutions, contaminated flows in groundwater aergf chemical and migration of
contaminations in the seawaters and river systaarer dispersion in a porous medium
are modeled by such type of equations [1-4].

In the recent decades, fractional calculus has laepowerful tool to describe many
complex dynamics such as glassy and porous meaikecttic materials, polymers,
biological systems. Riemann-Liouville (RL) and Capfractional operators which give
more realistic description to many physical phenoadhan the integer order
derivatives are two foremost and commonly used dieiirs of fractional calculus [5-9].
It is well-known that these operators have nonilatescription by including non-
singular power-law function and hence many compatat difficulties make it
impossible to find the analytical solutions of fianal order models. Therefore, most of
the studies related to fractional order modeld@cased on the developing of numerical
methods [10-15].

The time-nonlocal generalization of Fick's law leatb the time-fractional ADE in

terms of Caputo derivative. An extensive surveytltd mathematical and physical
background of the fractional ADE can be found i][IThe analytical solutions of one-
dimensional fractional advection-diffusion equatizewve been obtained in terms of H-
function [17, 18]. The fundamental solutions to dHfinactional advection-diffusion

equation have been analyzed in different domains ubing integral transform

techniques [19-22].

Even though the concepts of RL and Caputo fractideavatives are advantageous for
describing the hereditary and memory features alyuarising in real-world problems,
both the derivatives cannot specify the completenorg in the systems and also it is
commonly difficult to obtain the analytical soluti® because of the singular power
kernels in their definitions. Furthermore, manysgative physical processes such as
diffusion, heat transfer, and stress-strain refetioannot be accurately obeyed to the
power-law function. All these inadequacies resgltirom the natural definitions of
conventional fractional derivatives have led to tbmergence of new fractional
derivatives with non-singular kernels.

In this sense, Caputo and Fabrizio [23] have pregos fractional derivative with
exponential kernel for modelling of relaxation pberena in a dissipative system. After
that Losada and Nieto [24] have defined fractiangtgral of this new derivative. By
using the integral definition, Caputo and Fabri@5] studied on some constitutive
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relations related to fractional diffusion equatiddotice that Caputo-Fabrizio (CF)
derivative has been considered only as a formahemadtical definition without any

physical background at the beginning. However, tlvig26] have demonstrated that
this definition is naturally arising from a fundantal relation between the flux and the
gradient of exponential decay function.

In order to compare the effects of Caputo and Gapufabrizio derivatives on an
advection partial differential equation, Baleanuakt[27] gave a detailed analysis by
using some iterative techniques. Rubbab et al. §8jlied the analytical solutions of
the Dirichlet problem for an ADE with CF derivativélristov [29] gave the real

physical relationship between the Cattaneo modelflisx relaxation mdelled by

Jeffrey’s exponential kernel and the heat diffusith CF derivative. Singh et al. [30]

studied the existence and uniqueness of an epidiegical model for computer viruses
with the CF derivative. Yavuz and Evirgen [31] rmasted the optimal solution

trajectories for optimization problem modelled énrhs of CF operator.

As a similar manner, Atangana and Baleanu [32] @sefd a derivative in sense of RL
and Caputo definitions with non-singular Mittag-tlef function as a memory kernel. It
should be noted that the Atangana-Baleanu (AB)éd#vie is also interpreted as a filter
regulator, similar to the CF derivative as wella@®ying the derivative properties [33].
The Laplace transformation of AB derivative thatapplied to the present study
requires physically interpretable integer ordettiahiconditions. It is a remarkable
advantageous to model various physical processdbeimature. Yavuz et al. [34]
compared approximate-analytical solutions of soymes of time-fractional partial

differential equations with singular and non-sirsgukernels by using combined
Laplace perturbations method. Algahtani [35] stddiee groundwater model in terms
of AB derivative in the subsurface formation knoasithe unconfined aquifer.

This study addresses the advection diffusion egnatiith and its initial and boundary
value problems, when the Atangana-Baleanu dereaisv used. It is organized as
follows. Section 2 gives some basic definitions @noperties belong to AB operator
and Laplace and finite-Fourier transforms. Sectioms devoted to the Cauchy and
Dirichlet problems formulated on a finite intervainally, concluding remarks are
given in Section 4.

2 Preliminaries
This section will provide some fundamental deforis and properties for the AB

derivative.
Let (a,b)cR and letu be a function of the béitt space®(a ) u ' denotes the derivativ

u as distribution ong h ).

Definition 2.1: The Sobolev space of order 1 anl§ , ) efided ac

H'(a,b)={ue (3 | ue E(a b
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Definition 2.2: Leta € (0,1) anch functione H' g hh )b> a . The ABattional derivative
in Caputo sense of order wf with a based poistdefinecas B2

sepey(t) =% [uts g{-&( . 91 ds 3)

where B(«) denotes the normalization function which givesie-tuning to the

corresponding response of a physical process neatlely AB derivative and has the
similar properties as in Caputo and Fabrizio casd,is defined as

B(a) =1- a+—
I'(a)
E,;(2 is the well-known bi-parametric Mittag-Leffler fation such that

a,p eC with Rg(a) >0 and Rg8)> is defined as by the following series expansion
[5]

Emﬁ(z)=iF il (@, > 0). 4)

k=0
The Mittag-Leffler kernel in AB derivative has amibined form of the exponential and

power laws. Therefore, it gives a probabilistims@#ion between the power-law and the
stretched exponential as a waiting time distrilbutio

Definition 2.3: Let « € (0,1) and a function ue H*(a,b), b> a The AB derivative in
the Riemann-Liouville sense of ordeof u is defined as [32]

ABRDt"‘u(t)_M dj u(s g[ ( — 5)“} ds (5)

Theorem 2.4: The Laplace transform of AB derivative in Riemddauville and
Caputo sense are given respectively as [32]

L3 f
£y {10} (9= 2D TELIONE, ©
S+ —
l-a
a f _§—1
£f0y 1)} (9 - XA SEUOIE - 1O @)

The finite sin-Fourier transform is defined in th@main0< x< L as [8]:

385



BAUN Fen Bil. Enst. Dergisi, 20(2), 382-395, (2018)

F{f00} = F(&) =] f(9sin(&, ) dx (8)
with its inverse transform:
F{fE} = f0 =23 Fedsingx) ©)

where &, :kTﬂ’ k=1,2,3,...The finite sin-Fourier transform of the second orde

derivative of a given function can be calculatedhmsyfollowing property [8]:

d*f 2F k
F{ ngX)}z_gk f(é:k)+§k|:f(o)_(_l) f(L)] (10)

It is well known fact that boundaries of the correspondingaiorof a boundary-value
problem determine the integral transformation techniques to besdppli

3 Fundamental solutions

In this section, we investigate the fundamental solutiontheéoCauchy and Dirichlet
problems based upon the ADE with AB derivative detailed in gh@¥bsub-sections:

3.1 Cauchy problem
The ADE with regard to AB derivative on a finite interval is defl by

. d*c(xt)  ad(x 1)
"D c(x t) = a 2

., xe(0, L), t> 0. (11)
for «€(0,1) ,diffusion coefficienta> 0 and the velocity quantity > 0.

We consider Eq. (11) corresponding to the following initialdibon

t=0: c(x,t)=56(x=¢), S e(0,L) (12)

such that Dirac delta function is rather preferirgd the description of initial-boundary
value problems because of its useful integral ptegse In addition, we suppose the
homogeneous boundary conditions at the ends «febment are considered.

x=0: c(x1t)=0,

x=L: c(xt)=0. (13)

To simplify the problem (11)-(13), we use an awii function
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c(xt)= exp(u—xj u(x,t), (14)
2a

which reduces the main problem into the following:

Qu(xt) v?

DA U(x, 1) = a 2 4a u xt), (15)

U(x,0)= 5<x—;)exr{—%j , (16)
2a

u(0,t)=u(L,t)= 0. (17)

While obtaining the initial condition (16), we havesed the shifting property
f(X)o(x—=¢) = f(£)o(x—¢) that can be implemented from the point of disttidou

theory.

Applying the Laplace transform with respect to titnand finite sin-Fourier transform
with respect to the spatial coordinatewith the initial and boundary conditions gives:

—* st ) 3) 1
9= : sln@k;)exp[—ij gt a8
+a§2+07 0[}/ a§2+1)7 2a 1—

VT T g ; “ 4a
St+—m— 5~

D

+akl+——

y+agy 4a

. k . ,
Here, s represents the Laplace transform variable {@ﬁdTﬂ By inverting the

integral transforms, we obtain:

2 Z ay(a§f+zaj
u(x,t)=texp(—l;—gjz Y E|- Lt |sinE L) sing, x),  (19)
a/ia 2, L 2 U
y+a§k+—4a y+a§k+—4a

where E, is the Mittag-Leffler function with one-parametiivat has the following
useful Laplace transform formula [8]

El{ il }: E.(—bt"). (20)
s"+b

By substituting Eqg. (19) into the Eq. (14), we adbtde concentration function(x, t)
as the result of Cauchy problem
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) ay(acfﬁuzj
c(xt):gex;{v(x_g)Jz /4 ~E,| - 46; t |sinE . )sin€ x)  (21)
L 2a k=1 2 L 2 (%)
7 +ag " 7+, "

In the case ofx =1, i.e.y —> w0, the classical solution of advection-diffusion atjon
solution

) 2
o(% t):%exp(%); ex{—(afk%%j tj sing,¢ )sinf x (22)
To obtain all the graphics, we assume ti¢diffusion coefficient=t (timey for
only computational convenience. We first illustratee concentration profiles,
respectively for fractional and integer valuesagfin the Figures (1a) and (1b). In both
of the graphics, we obtain an inverse correlati@ween drift parameter and the
concentration, i.e. the values @ x t)are decreasing while the drift parameter is
increasing. In the case of = 0.5, sharps in the solutions around tke 0.5 have been
observed. We must note that this character issdegends on our arbitrary choices on
problem parameters. Another interesting outcomspitkethe different drift parameters,
concentration profiles reach the maximum valuesthe casea =0.5 around the
x=0.5. However, this condition changes far=1, the maximum concentration

changes with respect to the spatial coordinate
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Figure 1. Dependence of the concentration funamthe result of Cauchy problem on
drift velocity parameter: (ax =0.5,t=1 and (b)a =t=1.

3.2 Dirichlet problem
In this section, we consider two types of boundaalte problems on ADE equipped
with AB derivative.

388



AVCI D., YETIM A.

1. Case:

. d%c(xt)  oo(x 1)
"D c(x, t) = a FUI

., xe(0,1), t>0 (23)

wheret >0,a>0,v> 0

with the assumption of homogeneous initial cooditi

t=0: c(x,t)=0, (24)
and the Dirichlet boundary conditions at the endh® segment:

x=0: c(x,t)=0 (1),

x=L: c(xt)=0. (25)

Similar to the Cauchy problem, by introducing theidary function u(x, t) defined by
Eq. (14), Dirichlet problem (23)-(25) reduces to

o’u(x,t) o°
ABCDau X,t = a ) _ t , 26
SDIU(X = a2~ — UXY) (26)
with the initial condition
u(x,0)= 0, (27)

and the boundary conditions

u(0,t)=0o(t),
01)=50) 28)
u(L,t)=0.
By applying the Laplace and the finite sin-Foutr@ansform, respectively, we get
— 1 ay? 1
U6 9)= &, St ~ | (29)
2 2
yragity (7/+a§k2+j ) 7(341 +4aj
s"+ 5
L
+aki+——
7 +agy 4a

After taking the inverse integral transforms, thexibary function is found in the
following form

389



BAUN Fen Bil. Enst. Dergisi, 20(2), 382-395, (2018)

. , ar(ae”ﬂ:z}
u(x,t):§Z§k (1) + & t'E 2 e sin, x) (30)

L k=1 +a§ +: 2 2 o +a§2+072
4 kT 4a y+agl +—a 4 KT 4

where bi-parameter Mittag-Leffler functiok, , has the following commonly used
Laplace transform property

L*l{ ! }:t"“lEaa(—bt"). (31)
s“+b ’

Returning to the concentration functia{xt) given by Eqg. (14), the fundamental
solution can be obtained:

c(><,t)=%aexp( Ji 5(0

K +a§k
2 ] (32)
, ay('déh}
aj/ a-1 4a a H
+ 2 zt Ea,a - , 1)2 t ékSIn(ékX)
bl + +—
(7/+a§k + aj y+ag, Aa

The first term §(t) is a natural result also encountered in the furesdad solutions
arising from the ADE model with CF derivative [3Mloreover, it is a remarkable
difference between the fundamental solutions of A&dels with Caputo fractional
derivative [19-22], and the CF models [28, 37] vitike current AB model for ADE.

By using the definitions(t) =0 fort > 0 and taking the limit fore =1, i.e. y —> o0, in
the Eq. (32), we arrive

c(x, t) :% aexp(;—:jigk ex{—( ar? +Z—:J tj sing, x) (33)

In the Figures (2a) and (2b), we illustrate thecamtration profiles belonging to the 1.
case for Dirichlet problem under the variationsdoft parameter. As seen in Figure
(2a), the sharps disappear at the maximum valuesrafentrations. We can clearly see
the drift parameter affects the skewness of thetiemis.
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Figure 2. Dependence of concentration functionltegsufrom 1. case of Dirichlet
problem: (a)a =0.5 and (b)a =1.

2. Case:

Moreover, we investigate fundamental solution of &%) under the influence of zero
initial condition and the non-dimensional constemricentration at the boundary:

x=0: c(x,t)= ¢,
x=L: c(xt)=0.
Similarly, applying the integral transforms yields
— C 1 Sa—l
U (69— o | (35)
2, v 2 U v
Sk 42> (7/+a§k +4aj ) ay(agk"'llaj
St+t———""3"
L
+aki+——
7 t+ag 4a
Inverting the transforms leads to,
sinh(V(L—x)j
2a
u(xt)=¢
. (VL
smh(j
2a
) (36)
ay[aff +UJ
—%Z = 194 = E, |- i? t |sin(, x)
k=1 2
(égf"‘wj[)/"‘aff“‘%j 7 +ag, +£
and then we have the concentration funcifr t) :
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smh( (L- x)j
c(xt)=¢ exp{ﬂj
2a sinh(ULj
2a

) (37)
) a7[a§f+uj
_ iz . 74 ~E,|- 4a) o sinE, x)|.
k=1 128
[‘/:gk \)[7+a‘§k +4aj 7+a§k +4a

In the usual sense far =1 for t >0, we obtain

x smh(2 (L- x)) w2 .
c(x,t):q)exp(z) . (“Lj ——; p(—(agk +letj sing,x)| . (38)
inh o E2+

Consequently, we plot the profiles of concentration changing values o& in the
Figure (3). The characters of the solutions nalyrahange because of constant
boundary condition. There has not been a meanirgffatt of fractional order on the
character of profiles. The similar results haverbakso obtained in Caputo sense [21]
from the physical point of view.

Figure 3. Dependence of concentration functionltegufrom 2. Case of Dirichlet
problem: drift velocity v = 1.
4. Conclusions
In the present study, we have aimed to investitfaediffusion profiles of advection-

diffusion process modelled by AB derivative. Foistpurpose, Cauchy and Dirichlet
problems have been considered in a line segmenudBlgy an exponential auxiliary
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function, we have focused on the fundamental smistiof the reduced problems.
Laplace and finite-Fourier transformation methodweh been applied. Results have
been obtained in terms of one or bi- parameteraditteffler functions. As seen in the
literature and also in the current study, AB demx&has been more advantageous than
the Caputo fractional derivative for different tgpef diffusive transport models. It is
due to the non-singular Mittag-Leffler kernel [3Hg). It can be obviously observed that
the current results for concentration functionetifirom the results of ADE model with
Caputo fractional derivative with only some paragnetoefficients if examined the
results in [21]. This is a noteworthy proof to shtive AB derivative is an effective
alternative to the Caputo fractional derivative &dlvection-diffusion models.
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