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Abstract

The generalized complex number system and generalized complex plane were studied by
Yaglom [1, 2] and Harkin [3]. Moreover, Holditch-type theorem for linear points in Cp
were given by Erişir et al. [4]. The aim of this paper is to find the answers of the questions
”How is the polar moments of inertia calculated for trajectories drawn by non-linear points
in Cp?”, ”How is Holditch-type theorem expressed for these points in Cp?” and finally ”Is
this paper a new generalization of [4]?”.

1. Introduction and preliminaries

H. Holditch expressed the Holditch theorem in the article entitled ”Geometrical Theorem” in 1858. Holditch theorem is stated that ”If the
end points of a chord, with constant length a+b, draw any closed curve, any point on this chord draw different closed curve. So, the area
between these curves is always πab”, [5]. The most important point of this classic Holditch theorem in Euclidean plane is that the area
between these curves is independent of the selection of the curves. Thus, this theorem has attracted a lot of attention and been generalized
with various methods and different perspectives. Then, Steiner calculated the area formula of the trajectory in a moving plane drawn by a
point in the fixed plane in terms of Steiner points, [6].
Blaschke and Müller considered trajectories drawn by three points and generalized the Holditch theorem in Euclidean plane, [7]. Then, Hering
expressed the Holditch theorem with respect to the length of the envelope curve with the aid of non-linear three points, [8]. Considering the
above studies, there are many studies concerned with the Holditch theorem, [9, 10, 11].
The polar moment of inertia instead of area in Holditch theorem can be calculated by similar processes. Holditch theorem expressed in terms
of the polar moment of inertia is called as ”Holditch-type theorem”.
Müller calculated the polar moment of inertia of the trajectory drawn by a point in the Euclidean plane. Moreover, Müller gave a conclusion
that the geometric locus of all fixed points on the moving plane which has same polar moment of inertia is the circle with center which is
Steiner point, [12]. Then, considering the study [12], there are lots of studies related to Holditch-type theorem, [13, 14, 15, 16, 17].
In the Euclidean plane, the Cauchy formula of the closed envelope of a family of the straight lines g and the length of the envelope of
trajectories of straight lines were given by Blaschke and Müller, [7]. In the Lorentzian plane, the Cauchy formula for the envelope of a
family of lines was given by Yüce and Kuruoğlu. Moreover, they proved the length of the envelope of trajectories of non-null lines and gave
the Holditch theorem for the length of the envelope of trajectories for Lorentzian motion, [18].
The generalized complex number system is defined as

Cp =
{

x+ iy : x,y ∈ R, i2 = p ∈ R
}

and expressed by Yaglom and Harkins, [1, 2, 3]. This system involves in complex (p =−1), dual (p = 0) and hyperbolic (p =+1) number
systems and also different planes for other values of p.
Considering the studies given by Yaglom and Harkins, some studies were done in the generalized complex plane. Gürses and Yüce considered
the one parameter planar motion in Affine-Cayley Klein planes and p-complex plane CJ =

{
x+ Jy : x,y ∈ R, J2 = p, p ∈ {−1,0,1}

}
⊂

Cp, [19, 20]. Moreover, Erişir et. al. calculated the Steiner area formula and proved Holditch theorem in the generalized complex plane Cp,
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[21]. Then, they calculated the polar moment of inertia of trajectories under the one-parameter planar motion and proved Holditch-type
theorem in Cp, [4]. Moreover, Erişir and Güngör gave the Cauchy-length formula and proved Holditch theorem for non-linear points in Cp,
[22].
Now, using the above studies, we give some operations on this system.
The addition, substraction and product on this generalized complex plane Cp are

Z1±Z2 = (x1 + iy1)± (x2 + iy2) = x1± x2 + i(y1± y2)

and

Mp(Z1,Z2) = (x1x2 +py1y2)+ i(x1y2 + x2y1)

where Z1 = (x1 + iy1), Z2 = (x2 + iy2) ∈ Cp, [2, 3]. In addition, the p−magnitude of Z = x+ iy ∈ Cp is

|Z|p =
√
|Mp (Z, Z̄)|=

√∣∣x2−py2
∣∣.

The unit circle in Cp is the set of points in the form |Z|p = 1. So, now we consider the special values of p in Cp as follows.
1) Let us consider p < 0. Thus, the generalized complex number system matches up with the elliptical complex number system. For p =−1,
the unit circle in Cp corresponds to the Euclidean unit circle and the plane C−1 matches up with Euclidean plane.
2) If we consider p = 0, the plane C0 matches up with Gallilean plane. The unit circle in Cp corresponds to Gallilean circle.
3) We take p > 0. In this case, the generalized complex number system is equal to the hyperbolic complex number system. If we take p = 1,
the plane C1 corresponds to the Lorentzian plane, (Figure 1.1), [3].

Figure 1.1: Unit Circles in Cp

So, we can give the following definition.

Definition 1.1. Let us consider a circle in the generalized complex plane Cp. This circle has the center M(a,b) and the radius r. So, the
equation of this circle is∣∣∣(x−a)2−p(y−b)2

∣∣∣= r2

where i2 = p ∈ R, [3].

Now, we mention the angle in Cp. Let us consider σ ≡ y/
x and Z = x+ iy. So, we can write

tanpθp =
sinpθp

cospθp
,

[3]. In addition, the generalized Euler formula

eiθp = cospθp + isinpθp

where i2 = p in Cp. Thus, the polar and exponential forms of the generalized complex number Z is

z = rp(cospθp + isinpθp) = rpeiθp

where θp and rp = |Z|p are p−argument and p−magnitude of generalized complex number Z, respectively. The p−rotation matrix obtained
by eiθp is

A(θp) =

[
cospθp psinpθp
sinpθp cospθp

]
.
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Moreover, the derivatives of the p−trigonometric functions cosp and sinp can be written by

d
dα

(cospα) = psinpα,
d

dα
(sinpα) = cospα,

[3].
Throughout this study, we consider one-parameter planar motion Kp/K′p in generalized complex plane Cp. Moreover, we study in the branch
I of Cp.
Now, we mention Cauchy formula in Cp which is used in this study. This formula in Cp was studied by Erişir and Güngör in [22].
Let g be a line in the branch I of Cp. So, the Hesse form of this line g in Cp is written by

h = x1 cospψp−px2 sinpψp

where
(
h,ψp

)
is the Hesse coordinates in Cp and h = h(ψp) is the distance to the origin O from the right line and the point X (x1,x2) is the

contact point of the line g with the envelope curve (g). Moreover, the Cauchy-length formula in Cp is written by

L =
1√
|p|

t1∫
t0

∣∣ph− ḧ
∣∣dψp.

Similarly, we give the length of the enveloping curve (g) according to the fixed generalized complex plane K′p. So, we can write the Hesse
form of the line g according to the fixed generalized complex plane K′p as

h′ = x′1 cospψ
′
p−px′2 sinpψ

′
p

where h′ is the distance to the origin O′ from the right line g. If the necessary operations are considered, it is obtained that

h′ = h−u1 cospψp +pu2 sinpψp.

So, we obtain that

L′ =
1√
|p|
∣∣phδp−Acospψp +pBsinpψp

∣∣
where A =

t1∫
t0
(pu1− ü1)dθp and B =

t1∫
t0
(pu2− ü2)dθp.

Moreover, we know that

L′ =
√
|p|

 t1∫
t0

q̄dθp +Lg
Q


where Lg

Q = q2 cospψp−q1 sinpψp

∣∣∣t1
t0

is the length of orthogonal projection of the line segment Q1Q2 of the moving pole curve (Q) on the

line g. Moreover, q̄ = h−q1 cospψp +pq2 sinpψp is distance of the pole point Q to the line g in the generalized complex plane in Cp, [22].
In addition, the following theorem can be given.

Theorem 1.2. All the fixed lines with Hesse coordinates (h,ψp) of the generalized moving complex plane Kp whose envelope of trajectories

have the same length L′ = c are tangent to the cycles with center SG =
(

A
pδp

, B
pδp

)
and radius c√

|p|δp
in the generalized moving plane Kp,

[22].

2. Main theorems and proofs

In this section, we prove the Holditch-type theorem for non-linear points in the generalized complex plane Cp for one-parameter planar
motion with S = SG. We firstly express and prove following theorem.

Theorem 2.1. Let the non-linear points X = (0,0), Y = (a+ b,0) and Z = (a,c) be fixed on the generalized moving plane Kp in Cp.
In addition, the points X, Y and Z move along the trajectories kX , kY and kZ on K′p with moments TX , TY and TZ , respectively. So, the
relationship between the polar moments of inertia TX , TY and TZ is

TZ =
aTY +bTX

a+b
−δp

(
pc2 +ab

)
−2
√
|p|cLXY

where LXY is the length of the enveloping curve of (XY ).

Proof. Let the points X , Y and Z be non-linear points. Moreover, we consider that these points X = (0,0), Y = (a+b,0) and Z = (a,c). We
know that the polar moments of inertia of any point X in Cp is given

TZ = T0 +δp

(
x1

2−px2
2−2x1s1 +2px2s2

)
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in [4]. So, if we use this formula for the points X , Y and Z, we find that

TX = T0 (2.1)

TY = TX +δp

(
(a+b)2−2(a+b)s1

)
(2.2)

TZ = TX +δp

(
a2−pc2−2as1 +2pcs2

)
. (2.3)

From the equations (2.1) and (2.2), we have

s1 =
a+b

2
+

TX −TY

2δp (a+b)
. (2.4)

Moreover, from the equations (2.3) and (2.4), we find that

TZ =
aTY +bTX

a+b
−δp

(
pc2 +ab

)
+2pδpcs2.

The other hand, from S = SG we know that

s2 =
B

pδp
.

Finally, if L′ is written for X = (0,0), Y = (a+b,0) and Z = (a,c) we obtain that

TZ =
aTY +bTX

a+b
−δp

(
pc2 +ab

)
−2
√
|p|cLXY (2.5)

So, the following conclusion can be given.

Conclusion 2.2. Let us take that X ,Y and Z are linear points during the motion with S = SG in Cp. Namely, we have c = 0. From the
equation (2.5) the relation between the polar moments of inertia of trajectory drawn by the points X, Y and Z is

TZ =
aTY +bTX

a+b
−δpab.

This formula is the formula given relationship between polar moments of inertia for the linear three points in [4]. So, the formula (2.5) is
generalization of the formula in [4].

Note: For the value p = 0, the formula (2.5) is obtain that

TZ =
aTY +bTX

a+b
−δpab. (2.6)

This formula is also the formula between polar moments of inertia for the linear three points in [4]. Namely, for p = 0, the formula of polar
moment of inertia for linear three points is same the formula of moment for non-linear three points. The reason of this is the metric in the
plane C0. From the definition of metric in C0 (p = 0) the distance between the points X and R (the orthogonal projection of the point Z on
the line segment XY ), (a), is same the distance between the points X and Z. Similarly, the distance between the points Y and R, (b), is same
the distance between the points Y and Z. So, for p = 0 the equation (2.6) is valid the polar moments of inertia for both linear three points and
non-linear three points.
In addition, we give the following conclusions.

Conclusion 2.3. If the points X and Y move along the same trajectories kX with moment TX , the formula (2.5) is obtained that

TZ = TX −δp

(
pc2 +ab

)
−2
√
|p|cLXY .

Conclusion 2.4. The relationship between the length of envelope curve (g) and the length of the enveloping curve of (XY ) is

L′ =
√
|p|
(

hδp +

(
TY −TX

2δp (a+b)
− a+b

2

)
δp cospψp−

√
|p|LXY sinpψp

)
Finally, we can give the main theorem from the equation (2.5).

Theorem 2.5. Main Theorem (Holditch-Type Theorem): Let us consider motion with S = SG and the points X = (0,0), Y = (a+b,0)
and the point Z = (a,c) non-linear with X and Y fixed on Kp. In a specific time interval, while the points X and Y move along the same
trajectories kX with moment TX , the point Z non-linear with the points X and Y draws different trajectory kZ with the moment TZ . The
moment of section between the curves kX (kY ) and kZ depends on the distances of the point R to the endpoints X and Y , the distance of the
point Z to the line XY, the length of the enveloping curve and the rotation angle of the motion. This moment is independent of the choice of
curves.
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[15] S. Yüce, N. Kuruoğlu, Holditch-type theorems for the planar Lorentzian Motions, Int. J. Pure Appl. Math., 17(4) (2004), 467–471.
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