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Abstract

In this paper, we establish the following results: Let M be an m−dimensional compact totally
real minimal submanifold immersed in a locally symmetric Bochner-Kaehler manifold M̃
with Ricci curvature bounded from below. Then either M is a totally geodesic or

infr ≤ 1
2

(
1
2

m(m−1) k̃− 1
3
(m+1) c̃

)
,

where r is the scalar curvature of M.

1. Introduction

The Bochner tensor was originally introduced in 1948 by S. Bochner as a Kaehler analogue of the Weyl conformal curvature tensor. Kaehler
manifolds with vanishing Bochner tensor are known as Bochner-Kaehler manifolds, [1]. The Bochner tensor has interesting connections to
several areas of mathematics and Bochner-Kaehler manifolds have been studied quite intensively in the last two decades, see for instance,
[1, 2, 3].
In this work, we make us of Yau’s [4] maximum principle to compact study totally real minimal submanifold with Ricci curvature bounded
from below and obtain the following results:
Main Theorem. Let M be an m−dimensional compact totally real minimal submanifold immersed in a locally symmetric Bochner-Kaehler
manifold M̃ with Ricci curvature bounded from below. Then either M is totally geodesic or infr ≤ 1

2
( 1

2 m(m−1) k̃− 1
3 (m+1) c̃

)
where r is

the scalar curvature of M.
We use the same notation and terminologies as in [5] unless otherwise stated.
Let M̃ be an n−dimensional Kaehler manifold and denote by gAB, FAB, K̃ABCD and K̃, the metric tensor, the complex structure tensor, the
curvature tensor, the Ricci tensor and the scalar curvature of M̃, respectively. Suppose that the Boechner curvature tensor of M̃ vanishes, then
we have

K̃ABCD =−gADLBC +gBDLAC−LADgBC +LBDgAC−FADMBC (1.1)

+FBDMAC−MADFBC +MBDFAC +2(MABFCD +FABMCD),

where

LBC = K̃BC/(2n+4)− K̃gBC/2(2n+2)(2n+4) , K̃BC = gADK̃ABDC,

K̃ = gBCK̃BC, MBC =−LBDFD
C , FD

C = gBDFCB .

LBC are components of a hybrid tensor of type (0,2) . That is

LBCFB
A FC

D = LAD .

In order to avoid repetitions it will be agreed that our indices have the following ranges throughout this paper:

A,B,C,D, ...= 1,2, ...,m,1∗,2∗, ...,m∗,

i, j,k, l, ...= 1,2, ...,m;α,β ,γ, ...= 1∗,2∗, ...,m∗.
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In the following sections, M̃ is always supposed to be a Bochner-Kaehler manifold, that is, M̃ is a Kaehler manifold with curvature tensor
K̃ABCD given by (1.1).

2. Totally real submanifolds in M̃

We call M as a totally real submanifold of M̃ if M admits an isometric immersion into M̃ such that for all x ∈M, F (Tx (M))⊂ vx, where
Tx (M) denotes the tangent space of M at x and F the complex structure of M̃. If the real dimension of M is m, then m≤ n, n is the complex
dimension of M̃. We choose a local field of orthonormal frames

e1, ...,em,em+1, ...,en ; e1∗ = Fe1,...,em∗ = Fem,...,en∗ = Fen,

in M̃ in a such a way that, restricted to M, e1, ...,em are tangents to M. With respect to this frame field, F and g have the components

(FAB) =

(
0 −In
In 0

)
, (gAB) = (I2n) ,

where Ik denotes the identity matrix of degree k.
We consider the case n = m only in this paper.
The equation of Gauss of M in M̃ is written as

Ki jkl = K̃i jkl +∑
α

(
hα

ikhα
jl −hα

il hα
jk

)
. (2.1)

Ki jkl is the curvature tensor and hα
i j is the second fundamental tensor of M. Since M is a totally real submanifold in M̃, with respect to

the above frame we have the relation hi∗
jk = h j∗

ik . Let K̃ be the curvature tensor field of M̃ so that K̃ABCD = g
(
K̃ (eC,eD)eB,eA

)
. Then (1.1) is

equivalent to

K̃ (X ,Y )Z = L(Y,Z)X−L(X ,Z)Y + 〈Y,Z〉NX−〈X ,Z〉NY (2.2)

+M (Y,Z)FX−M (X ,Z)FY + 〈FY,Z〉PX

−〈FX ,Z〉PY −2(M (X ,Y )FZ + 〈FX ,Y 〉PZ) ,

where NX ,PX are defined by g(NX ,Y ) = L(X ,Y ) , g(PX ,Y ) = M (X ,Y ) and 〈,〉 denotes the inner product with respect to g. Let K̃ (X) be
the holomorphic sectional curvature spanned by a unit vector X and FX . By (1.1) or (2.2) we have

K̃ (X) = K̃ (X ,FX ,FX ,X) =
〈
K̃ (X ,FX)FX ,X

〉
= 8L(X ,X) ,

Let ρ̃ (X ,Y ) denote the sectional curvature of M̃ determined by section {X ,Y} spanned by two orthonormal vector {X ,Y} . If X ,Y are both
tangent to the totally real submanifold M then we have

ρ̃ (X ,Y ) = L(X ,X)+L(Y,Y ) =
1
8
(
K̃ (X)+ K̃ (Y )

)
. (2.3)

The equation of (2.3) has been obtained by Iwasaki and Ogitsu, [6].
Let ρ (X ,Y ) denote the sectional curvature of M determined by orthonormal tangent vectors {X ,Y} of M. Then the equation of Gauss (2.1)
and (2.3) imply

ρ (X ,Y ) =
1
8
(
K̃ (X)+ K̃ (Y )

)
+ 〈σ (X ,X) ,σ (Y,Y )〉−‖σ (X ,Y )‖2 ,

where σ is the second fundamental form which is related to hα
i j by g(σ (X ,Y ) ,ξ ) = hi∗

jkX jY kξ i∗ for any normal ξ = ξ i∗ei∗ .
Let S be the Ricci tensor of M and r the scalar curvature of M. Then

S (X ,Y ) = (m−2)L(X ,Y )+
1
8

mk̃ 〈X ,Y 〉−∑
α

g(hα X ,hαY ) ,

r =
1
4

m(m−1) k̃−‖σ‖2 .

Let M̃ is locally symmetric. Let ∆ denote the Laplacian,5′denote the covariant differentiation with respect to connection in (tangent bundle)
⊕ (normal bundle) of M in M̃. If M is a minimal submanifold of M̃ the following holds (see [5] for example). Since M̃ is assumed to be
locally symmetric:

1
2

∆‖σ‖2 =
∥∥5′σ∥∥2

+
1
4
(m+1) c̃‖σ‖2 +∑ tr

(
hi∗h j∗ −h j∗hi∗

)2−∑ tr
(
hi∗h j∗

)2 , (2.4)

where c̃ is a function on M defined by h j∗
lk h j∗

ik K̃li =
1
2
(m+1) c̃‖σ‖2 .

In order to prove the main theorem, we need the following lemmas.
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Lemma 2.1. Let Hi, i≥ 2 be symmetric n×n matrices, Si = trH2
i , S = ∑

i
Si. Then

∑
i, j

tr
(
HiH j−H jHi

)2−∑
i, j

tr
(
HiH j

)2 ≥−3
2
‖σ‖4 , (2.5)

and the equality holds if and only if either all Hi = 0 or there exists two of Hi different from zero. Moreover, if H1 6= 0,H2 6= 0, Hi = 0, i 6= 1,2,
then S1 = S2 and there exists an orthogonal n×n matrices T such that

T Ht
1T =


√

S1
2 0 . . . 0
0 −

√
S1
2 . . . 0

...
...

. . .
...

0 0 . . . 0

 , T Ht
2T =


0

√
S1
2 . . . 0√

S1
2 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,

[7, 8].

Lemma 2.2. Let N be a complete Riemannian manifold with Ricci curvature bounded from below and let f be a C2−function bounded from
above on N, then for all ε > 0, there exists a point x ∈ N at which ,
i) sup f − ε < f (x) ,
ii) ‖5 f (x)‖< ε,
iii) ∆ f (x)< ε, in [9].

3. Proof of the main theorem

In this section, the method proof used by Ximin in [9] is applied totally real minimal submanifold immersed in a Bochner-Kaehler manifold.
From (2.4) and (2.5), we obtain

1
2

∆‖σ‖2 ≥ ‖σ‖2 (
1
4
(m+1) c̃− 3

2
‖σ‖2). (3.1)

We know that ‖σ‖2 =
1
4

m(m−1) k̃− r. By the condition of the theorem, we conclude that ‖σ‖2 is bounded. We define f = ‖σ‖2 and

F = ( f +a)
1
2 (where a > 0 is any positive constant number). F is bounded. We have

dF =
1
2
( f +a)−

1
2 d f ,

∆F =
1
2

(
−1

2
( f +a)−

3
2 ‖d f‖2 +( f +a)−

1
2 ∆ f

)
,

=
1
2

(
−2‖dF‖2 +∆ f

)
( f +a)−

1
2 ,

i.e.,

∆F =
1
2

(
−2‖dF‖2 +∆ f

)
.

Hence, F∆F =−‖dF‖2 +
1
2

∆ f or
1
2

∆ f = F∆F +‖dF‖2 . Applying Lemma 2.2 to F, we have for all ε > 0, there exists a point x ∈M such
that at x

‖dF (x)‖ ≤ ε, (3.2)

∆F (x)< ε, (3.3)

F (x)> supF− ε. (3.4)

From (3.2),(3.3) and (3.4), we have

1
2

∆ f < ε
2 +Fε = ε (ε +F) . (3.5)

We take a sequence {en} such that εn→ 0(n→ ∞) and for all n, there exists a point xn ∈M such that (3.2), (3.3) and (3.4) hold. Therefore,
εn (εn +F (xn))→ 0(n→ ∞) (Because F is bounded). From (3.4), we have F (xn)> supF− εn. Because {F (xn)} is a bounded sequence.
So we get F (xn)→ F0 (If necessary, we can choose a subsequence). Hence, F0 ≥ supF. So we have

F0 = supF.

From the definition of F, we get

f (xn)→ f = sup f .
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(3.1) and (3.5) imply that

f
(

1
4
(m+1) c̃− 3

2
f
)
≤ 1

2
∆ f ≤ ε (ε +F) ,

and

f (xn)

(
1
4
(m+1) c̃− 3

2
f (xn)

)
< ε

2
n + εnF (xn)≤ ε

2
n + εnF0,

let n→ ∞, then εn→ 0 and f (xn)→ f0. Hence,

f0

(
1
4
(m+1) c̃− 3

2
f0

)
≤ 0.

i) If f0 = 0, we have f = ‖σ‖2 = 0. Hence M is a totally geodesic.
ii) If f0 > 0, we have 1

4 (m+1) c̃− 3
2 f0 ≤ 0 and

f0 ≥
1
6
(m+1) c̃,

that is, sup‖σ‖2 ≥ 1
6 (m+1) c̃. Therefore,

infr ≤ 1
2

(
1
2

m(m−1) k̃− 1
3
(m+1) c̃

)
.

This completes the proof.
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