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Abstract

Here existence and stability results of ψ-Hilfer fractional differential equations on time
scales is obtained. Here sufficient condition for existence and uniqueness of solution by
using Schauder’s fixed point theorem (FPT) and Banach FPT is produced. In addition,
generalized Ulam stability of the proposed problem is also discussed. problem.

1. Introduction

In the past decade, fractional differential equations(FDEs) appeared as rich and beautiful field of research due to their applications to the
physical and life sciences and it is witnessed by blossoming literature, for instance see [1]-[6].
Consider the dynamic equation on time scales with ψ-Hilfer fractional derivative (HFD) of the form{

T∆α,β ;ψu(t) = g(τ,u(τ)), τ = [0,b] := J ⊆ T,
TI1−γ;ψu(0) = u0, γ = α +β −αβ ,

(1.1)

where T∆α,β ;ψ is ψ-HFD defined on T, α ∈ (0,1), β ∈ [0,1] and I1−γ;ψ is ψ-fractional interal of order 1− γ(γ = α +β −αβ ). Let T be a
time scale, that is nonempty subset of Banach space and g : J×T→ R is a right-dense function.
Time scales calculus allows us to study the dynamic equations, which include both difference and differential equations, both of which are
very important in implementing applications; for further information about the theoretical and potential applications of time scales, refer
[7]-[9]
The dynamical behaviour of FDEs on time scales is currently undergoing active investigations. Several authors deliberate the existence
and uniqueness solutions for problems involving classical fractional derivative [10, 11]. Motivated by the above works here we discuss the
existence theory and stability criteria of FDEs on times scale. In order to solve the proposed problem ψ-HFD is utilized. The emergent
and properties of ψ-HFD and the qualitative analysis is briefly studied in [12]-[14]. Further considerable attention paid to Ulam stability
results for FDEs. For Ulam-Hyers stability theory of FDEs and its recent development, one can refer to [15]-[17]. Further the solution of
generalized Ulam-Hyers-Rassias(UHR) is obtained.

2. Preliminaries

Throughout this study, let C(J) be continuous function with norm

‖u‖C = max{|u(τ)| : τ ∈ J} .

We denote the space Cγ (J) as follows

Cγ (J) :=
{
g(τ) : J→ R|(ψ(τ)−ψ(0))γ g(τ) ∈C(J)

}
,0≤ γ < 1

the weighted space Cγ (J) of the functions g on the interval J.Thus, Cγ (J) is the Banach space provided the norm

‖g‖Cγ
=
∥∥(ψ(τ)−ψ(0))γ g(τ)

∥∥
C .
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Definition 2.1. Let time scale be T. The forward jump operator σ : T→ T is defined by σ(τ) := inf{s ∈ T : s > τ}, while the backward
jump operator ρ : T→ T is defined by ρ(τ) := sup{s ∈ T : s < τ}.

Proposition 2.2. Suppose T is a time scale and [a,b]⊂ T, g is increasing continuous function on [a,b]. If the extension of g is given in the
following form:

G (s) =

{
g(s); s ∈ T
g(τ); s ∈ (τ,σ(τ)) /∈ T.

Then we have∫ b

a
g(t)∆t ≤

∫ b

a
G (t)dt.

Definition 2.3. Let T be a time scale, J ∈ T. The left-sided R-L fractional integral of order α ∈ R+ of function g(τ) is defined by

(
TIαg

)
(τ) =

∫
τ

0
ψ
′
(s)

(ψ(τ)−ψ(s))α−1

Γ(α)
g(s)∆s.

Definition 2.4. Suppose T is a time scale, [0,b] is an interval of T. The R-L fractional derivative of order α ∈ [n−1,n), n ∈ Z+ of function
g(τ) is defined by

(
T

∆
αg
)
(τ) =

(
1

ψ
′
(τ)

d
dτ

)n ∫ τ

0
ψ
′
(s)

(ψ(τ)−ψ(s))n−α−1

Γ(n−α)
g(s)∆s.

Definition 2.5. [2] The ψ-HFD of order α and type β of function g(τ) is defined by

T
∆

α,β ;ψg(t) =
(
TIβ (1−α);ψ T

∆(TI(1−β )(1−α);ψg)
)
(τ),

where T∆ := d
dτ

.

Remark 2.6. 1. Here T∆α,β ;ψ is also written as

T
∆

α,β ;ψ = TIβ (1−α);ψ T
∆
TI(1−β )(1−α);ψ = TIβ (1−α);ψ T

∆
γ;ψ , γ = α +β −αβ .

2. Let β = 0, it transfers into R-L derivative given by T∆α := T∆α,0.
3. Let β = 0, it turns to be Caputo fractional derivative given by T

c ∆α := TI1−α T∆.

Next, we review some lemmas which will be used to extabilish our existence results.

Lemma 2.7. If α > 0 and β > 0, there exist[
TIα (ψ(s)−ψ(0))β−1

]
(τ) =

Γ(β )

Γ(β +α)
(ψ(τ)−ψ(0))β+α−1

Lemma 2.8. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβ g(τ)
a.e
= TIα+β g(τ).

Lemma 2.9. If g ∈Cγ (J) and TI1−αg ∈C1
γ (J), then

TIα T
∆

αg(τ) = g(τ)−
(TI1−αg

)
(0)

Γ(α)
(ψ(τ)−ψ(0))α−1 .

Lemma 2.10. Suppose α > 0, a(τ) is a nonnegative function locally integrable on 0≤ τ < b (some b≤ ∞), and let g(τ) be a nonnegative,
nondecreasing continuous function defined on 0≤ τ < b, such that g(τ)≤ K for some constant K. Further let u(τ) be a nonnegative locally
integrable on 0≤ τ < b function with

|u(τ)| ≤ a(τ)+g(τ)
∫

τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 u(s)∆s,

with some α > 0. Then

|u(τ)| ≤ a(τ)+
∫

τ

0

[
∞

∑
n=1

(g(τ)Γ(α))n

Γ(nα)
ψ
′
(s)(ψ(τ)−ψ(s))nα−1

]
u(s)∆s.

Theorem 2.11. (Schauder FPT) Let E be a Banach space and Q be a nonempty bounded convex and closed subset of E and N : Q→Q
is compact, and continuous map. Then N has at least one fixed point in Q.
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3. Existence results

Lemma 3.1. Here u is solution of (1.1) if and only if u satisfies the following integral equation

u(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1 +

1
Γ(α)

∫ t

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,u(s))∆s, t > 0. (3.1)

For further investigation, we give the following assumptions:

(H1) The function g : J×R→ R is a rd-continuous.
(H2) There exists a positive constants L > 0 such that

|g(τ,u)−g(τ,v)| ≤ L |u−v| .

(H3) There exists an increasing function ϕ ∈C1−γ (J) and there exists λϕ > 0such that for any τ ∈ J,

TIα
ϕ(τ)≤ λϕ ϕ(τ).

Theorem 3.2. Assume that (H1)-(H2) are fulfilled. Then, equation (1.1) has at least one solution.

Proof. Consider the operator P : C1−γ,ψ (J)→ C1−γ,ψ (J). The equivalent Volterra integral equation (3.1) which can be written in the
operator form

(Pu)(τ) = u0(τ)+
1

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,u(s))∆s

with

u0(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1 .

Define Br =
{
u ∈C1−γ,ψ (J) : ‖u‖C1−γ,ψ

≤ r
}

.

Set g̃(s) = g(s,0),

σ =
|u0|
Γ(γ)

+
B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g̃‖C1−γ,ψ

and

ω =
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α .

To verify Theorem 2.11, we divide the proof into three steps.
Step 1: We check that P(Br)⊂ Br.∣∣∣(ψ(τ)−ψ(0))1−γ (Pu)(τ)

∣∣∣
≤ |u0|

Γ(γ)
+

(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,u(s))|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,u(s))−g(s,0)|∆s

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,0)|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 L |u|∆s

+
(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g̃|∆s

≤ |u0|
Γ(γ)

+
B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g̃‖C1−γ,ψ

+
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u‖C1−γ,ψ

.

Hence

‖(Pu)‖ ≤ σ +ωr ≤ r.

Which yields that P(Br)⊂ Br.
Next, the completely continuous of operator P is proved.
Step 2: The operator P is continuous.
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Let un be a sequence such that un→ u in C1−γ,ψ (J).∣∣∣(ψ(τ)−ψ(0))1−γ ((Pun)(t)− (Pu)(τ))
∣∣∣

≤ (ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,un(s))−g(s,u(s))|∆s

≤ (ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 sup

s∈J
|g(s,un(s))−g(s,u(s))|∆s

≤ (ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,un(s))−g(s,u(s))|ds, (by Proposition 2.2)

≤ B(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖g(·,un(·))−g(·,u(·))‖C1−γ,ψ

,

Since g is continuous, Lebesgue dominated convergence theorem implies

‖Pun−Pu‖C1−γ,ψ
→ 0 as n→ ∞.

Step 3: P(Br) is relatively compact.
Thus P(Br) is uniformly bounded. Let τ1,τ2 ∈ J, τ1 < τ2, then∣∣∣(Pu)(τ2)(ψ(τ2)−ψ(0))1−γ − (Pu)(τ1)(ψ(τ1)−ψ(0))1−γ

∣∣∣
≤

∣∣∣∣∣ (ψ(τ2)−ψ(0))1−γ

Γ(α)

∫
τ2

0
ψ
′
(s)(ψ(τ2)−ψ(s))α−1 g(s,u(s))∆s

− (ψ(τ1)−ψ(0))1−γ

Γ(α)

∫
τ1

0
ψ
′
(s)(ψ(τ1)−ψ(s))α−1 g(s,u(s))∆s

∣∣∣∣∣
≤ 1

Γ(α)

∫
τ1

0
ψ
′
(s)
∣∣∣(ψ(τ2)−ψ(0))1−γ (ψ(τ2)−ψ(s))α−1− (ψ(τ1)−ψ(0))1−γ (ψ(τ1)−ψ(s))α−1

∣∣∣ |g(s,u(s))|∆s

+
(ψ(t2)−ψ(0))1−γ

Γ(α)

∫
τ2

τ1

ψ
′
(s)(ψ(τ2)−ψ(s))α−1 |g(s,u(s))|∆s

≤ 1
Γ(α)

∫
τ1

0
ψ
′
(s)
∣∣∣(ψ(τ2)−ψ(0))1−γ (ψ(τ2)−ψ(s))α−1− (ψ(τ2)−ψ(0))1−γ (ψ(τ1)−ψ(s))α−1

∣∣∣ |g(s,u(s))|ds

+
(ψ(τ2)−ψ(0))1−γ

Γ(α)
(ψ(τ2)−ψ(τ1))

α+γ−1 B(γ,α)‖g‖C1−γ,ψ
.

Thus, right-hand part tends to zero. Hence along with the Arzëla-Ascoli theorem and from Step 1-3, it is concluded that P is completely
continuous. Thus the proposed problem has at least one solution.

Lemma 3.3. Assume that (H1) and (H3) are fulfilled. If(
LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α

)
< 1 (3.2)

then there exists unique solution for Eq. (1.1).

Proof. Define the operator P : C1−γ,ψ (J)→C1−γ,ψ (J).

(Pu)(τ) = u0(τ)+
1

Γ(α)

∫ t

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,u(s))∆s

with u0(τ) =
u0

Γ(γ)
(ψ(τ)−ψ(0))γ−1.

Let u1,u2 ∈C1−γ,ψ (J) and τ ∈ J, then∣∣∣(ψ(τ)−ψ(0))1−γ ((Pu1)(τ)− (Pu2)(τ))
∣∣∣

≤ (ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,u1(s))−g(s,u2(s))|∆s

≤ (ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,u1(s))−g(s,u2(s))|ds

≤ L(ψ(τ)−ψ(0))1−γ

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |u1(s)−u2(s)|ds

≤ LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u1−u2‖C1−γ,ψ

.

Then,

‖Pu1−Pu2‖C1−γ,ψ
≤ LB(γ,α)

Γ(α)
(ψ(b)−ψ(0))α ‖u1−u2‖C1−γ,ψ

.

From (3.2), it follows that P has a unique fixed point which is solution of problem (1.1).
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4. Stability analysis

Next, we shall give the definitions and the criteria generalized UHR stability.

Definition 4.1. Equation (1.1) is generalized UHR stable with respect to ϕ ∈C1−γ (J) if there exists a real number cg,ϕ > 0 such that for
each solution v ∈C1−γ (J) of the inequality∣∣∣T∆

α,βv(τ)−g(τ,v(τ))
∣∣∣≤ ϕ(t), (4.1)

there exists a solution u ∈Cγ

1−γ
(J) of equation (1.1) with

|v(τ)−u(τ)| ≤ cg,ϕ ϕ(τ).

Theorem 4.2. Assume that (H1), (H3), (H4) and (3.2) are satisfied. Then, the problem (1.1) is generalized UHR stable.

Proof. Let v∈C1−γ (J) be solution of the following inequality (4.1) and let u∈C1−γ (J) be the unique solution of the ψ-Hilfer type dynamics
equation (1.1). By Lemma 3.1,

u(τ) = u0(τ)+
1

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,u(s))∆s.

By integration of (4.1) we obtain∣∣∣∣v(τ)−v0(τ)−
1

Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,v(s))∆s

∣∣∣∣≤ λϕ ϕ(τ).

On the other hand, we have

|v(τ)−u(τ)| ≤
∣∣∣∣v(τ)−v0(τ)−

1
Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,v(s))∆s

∣∣∣∣
+

1
Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |g(s,v(s))−g(s,u(s))|∆s

≤
∣∣∣∣v(τ)−v0(τ)−

1
Γ(α)

∫
τ

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 g(s,v(s))∆s

∣∣∣∣
+

L
Γ(α)

∫ t

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |v(s)−u(s)|ds

≤ λϕ ϕ(τ)+
L

Γ(α)

∫ t

0
ψ
′
(s)(ψ(τ)−ψ(s))α−1 |v(s)−u(s)|ds.

By applying Lemma 2.10, we obtain

|v(τ)−u(τ)| ≤
[
(1+ν1Lλϕ )λϕ

]
ϕ(τ),

where ν1 = ν1(α) is a constant,then for any τ ∈ J:

|v(τ)−u(τ)| ≤ cgεϕ(τ),

Thus, the proof is complete.

References

[1] K. M. Furati, M. D. Kassim, N.e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012),
1616-1626.

[2] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 15 (2015), 344-354.
[3] R. Hilfer, Application of fractional calculus in physics, World Scientific, Singapore, 1999.
[4] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
[5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Sci. Publishers, Yverdon,

1993.
[6] D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal

conditions, Mediterr. J. Math., 15 (2018), 1-15.
[7] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22.
[8] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhauser, Boston, 2003.
[9] M. Bohner, A. Peterson, Dtnamica equations on times scale, Birkhauser, Boston, Boston, MA.

[10] A. Ahmadkhanlu, M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time
scales, Bull. Iranian Math. Soc., 38 (2012), 241-252.

[11] N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-lioville initial value problem on time
scales, J. King Saud Univ. Sci., 28 (2016), 87-92.

[12] S. Harikrishnan, K. Shah, D. Baleanu, K. Kanagarajan, Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Adv.
Difference Equ., 2018(224) (2018).

[13] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., (in press).
[14] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett.,

(in press).
[15] R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23 (2012).
[16] P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., 102 (2015), 631-642.
[17] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron J. Qual. Theory

Differ. Equ., 63 (2011), 1-10.


	Introduction
	Preliminaries
	Existence results
	Stability analysis

