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Bounded-Influence Regression Estimation for Mixture
Experiments

Karma Denemelerde Sinirh Etkili Regresyon Tahmin
Edicileri

Orkun COSKUNTUNCEL*

Abstract: Ordinary Least Squares (OLS) estimator is widely used technique for estimating the regression
coefficient in mixture experiments. But this estimator is very sensitive to outliers and/or multicollinearity
problems. The aim of this paper is to propose estimators for the regression parameters of a mixture model
that can combat with the above problems. For this purpose, Generalized M (GM) estimation, which is
more resistant to outliers in the y and / or x directions and regression estimators such as ridge and Liu,
which is effective against the multicollinearity, were used together. The Mean Square Error (MSE)
properties of proposed estimator has been examined and shown to be smaller than biased and GM
estimates. Also performance of the combined estimator is illustrated by examples.

Keywords: Bounded-influence regression estimation, generalized M estimation, ridge regression
estimator, liu estimator

Oz: Karma denemelerde regresyon katsayilarini tahmin etmek amaciyla en sik kullamlan tahmin edici En
kiiciik kareler tahmin edicisidir. Fakat bu tahmin edici ¢oklu baglant1 ve/veya sapan deger problemlerine
kars1 ¢ok hassastir. Bu ¢aligsmanin amaci karma modellerin regresyon parametrelerinin tahminlerini bahsi
gegen problemlere karsi daha direngli olacak bigimde tahmin edebilecek bir tahmin edici dnermektir.
Bunun i¢in y ve/veya x yoniindeki aykirt degerlere kasi daha direngli olan Genellestirilmis M (GM)
tahmini ile ¢oklu baglanti problemine karsi etkili olan ridge ve liu gibi yanli regresyon tahmin edicileri
birlikte kullanilmistir. Onerilen tahmin edicinin hata kareler ortalamas1 (MSE) incelenerek bunun yanli ve
GM tahminlerinden daha kii¢iik oldugu gosterilmis ve performansi 6rneklerle gosterilmistir.

Anahtar Kelimeler: Sinirl etkili regresyon tahmini, genellestirilmis M tahmin edicisi, ridge regresyon
tahmin edicisi, liu tahmin edicisi

Introduction

Experiment with mixtures or mixture problem is a special type of experimental designs in which
the response depends only on the relative proportions of the design factors or component. If x;
denote the proportion of the i component for i = 1, 2, ... , g then a mixture problem with g
components must have the following constraints

Xi >0, Zq:xi=1.
(1)

These are called natural constraints of experiments with mixtures. In many mixture problems
there are additional component constraints of the form L; < x; < U; for some or all of the
components (Cornell, 1990; Myers & Montgomery, 2002). These additional constraints on the
components often cause multicollinearity or referred as multicollinearity problem in mixture
data (John, 1984). In addition to multicollinearity, in many mixture data there may be a single
design point or a small subset of points that exerts disproportionate and influence the classical
estimation procedure.
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The mixture constraints given by (1) produce a simplex experimental region. Scheffé
(1958, 1963) showed that the standard response surface polynomial

n=p5p+ Zq:ﬂixi + qu;ﬂijxixj + Zzzq; BiXiX X + .

(2)

must be modified with respect to these constraints. Since, this polynomial has meaning for us
only subject to the restriction X1 + ... + Xq = 1 and substitute

1-q q
Xg=1- % and X’ =x|1-)x,
i=1 j=1

J#i

in (2) and obtain the linear and second-order mixture models

E(Y) = DA

©
E(Y) = iﬂiXi +Ziﬁijxixj :

) @

In this paper we will use the second-order mixture model given in (4). Note that in
product optimization if number of component is small second-order mixture model is most
preferable. The polynomial mixture model can be represented in matrix form as following:

y=Xp+e
®)

where y is a n x 1 vector of observation on the response variable, X is a n x p matrix with i"" row
containing the values of the p predictor variables (linear terms for model (3) in which case p=q
and linear and cross product terms for model (4)), #is a p x 1 vector of unknown parameters
and ¢is an n x 1 column vector of random errors. It is seen that we do not have the intercepts
(Cornell, 1990).

Multicollinearity and influential observation

Multicollinearity arises when there are near linear dependencies in the column of X, and it
destroys the precision of estimation for regression coefficient and can result in coefficient
estimates that are far from the true values (Montgomery, Peck & Vining, 2001). Such linear
dependence particularly arises in mixture models when the constraints on the components are
active (John, 1984). Various techniques for detecting and identifying multicollinearity have
been purposed. In this paper, we will use the condition number of X matrix, which is the ratio of
maximum and minimum eigenvalues of (X’X), and variance inflation factors (VIF), which are
the diagonal element of (X’X)™. Marquardt (1970) indicates that if any of the VIF's is greater
than 10, the corresponding OLS coefficient estimate should be considered as a poor estimate of
the corresponding parameter. On the other hand, Gorman (1970) suggests that the ill-
conditioning problem should be considered if the VVIFs are greater than 100. Also, Belsley, Kuh
and Welsch (1980) show that if the condition number is greater than 25, then there is a serious
multicollinearity problem which needs to be investigated.
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A point or points may be influential because of its location in x-space, its observed y-
values, or both (Montgomery et al., 2001). For mixture data Montgomery and Voth (1994) used
diagonal elements h;i of the hat matrix H = X(X’X)™X”as a measure of leverage and used this
measure as a measure of location of the point in x-space and suggest that if the experimenter has
some flexibility with respect to number of runs, then leverage and multicollinearity can be taken
into account in design selection. However, in general, experimenters do not have flexibility with
number of runs because of physical, chemical or economical reasons. Montgomery and Voth
(1994) also suggest using a robust regression method instead of the OLS estimate to over come
with the outliers in x direction. To measure the outlyingness of an observation one can use the
Mahalanobis distance based on robust location and covariance estimators. For example,
Rousseeuw and Zomeren (1990) suggest that high breakdown point estimators to obtain
Mahalanobis distances (for example, the minimum volume ellipsoid (MVE) was introduced by
Rousseeuw (1985)).

Coskuntuncel (2005) consider the estimation problem of the regression coefficients in
mixture experiments in the case of the combined problem of outliers in y direction and
multicollinearity. In this study, it will be investigated the problem of multicollinearity and
outliers in x and/or y-directions and propose some hybrid estimators to combat with these
problems simultaneously. It will be mainly combine the generalized M (GM) estimators, which
are effective to the outlier in x- and y-direction, with the biased estimators ridge and Liu, which
are effective to the multicollinearity, to obtain estimators that can simultaneously deal with
multicollinearity and outlier problems. The newly proposed hybrid estimators compared with
the ridge, Liu and GM according to their MSE properties and showed that the hybrid estimators
have smaller MSE. In the examples, we observed that these estimators significantly reduce the
MSE.

Estimators

Ridge and Liu Estimators

The classical estimator for g (the OLS estimator) is ,3 oLs = (XX)XX"Y. This estimator is very

sensitive to multicollinearity and outliers. To deal with the multicollinearity problem, the ridge
regression estimator was proposed by Hoerl and Kennard (1970a, b). The ridge regression

estimator B r(K) of gis defined as

B r(K) = (XX +KIXX B o,
6)

where k > 0 is called the biasing or shrinkage parameter and | = diag(l, ... , 1). There are
various procedures for choosing the shrinkage parameter k and these methods depend on data.

One estimator for kis k= p6 % A, < S5, where &2 is the OLS estimates of o2.

Another technique which combats with multicollinearity is Liu estimator defined by Liu
(1993). The Liu estimator is defined as

S ud) = OXXH)XK + dI) S o,
(7)

where 0 < d < 1 is a parameter. The advantage of ,[3’ L(d) over /?R(k) is that ﬁ’ (d) is a linear
function of d. Therefore it is easier to choose d in Liu estimator than k in ridge estimator.
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Robust Ridge and Robust Liu Estimators Based On M Estimator

Since OLS estimator is sensitive to outliers, Ridge and Liu estimators based on the OLS will
also be sensitive to outliers in x- and/or y- directions. To overcome this problem, Silvapulle
(1991) proposed ridge type M estimator by combining M and ridge estimators, and showed that
this estimate is better in term of MSE criteria. Ridge type M estimator (RM estimator) is defined
as

B au(K) = (XXHKT) XX B w,
(8)

where k* is the robust choice of shrinkage parameter and B w is the M estimator of the
regression coefficient that is used instead of OLS estimates. One of the robust choices of k is

pA’

k=2,
B Bu

(9)

where A2 = &2{(n — p) ZyA(el 6*)}{n Zy (el %)} Silvapulle (1991) also proved that
MSE{ 3 ru(K)} < MSE{ 3 m} and MSE{ 3 rm(K)} < MSE{ 3 r(K)}.

Arslan and Billor (2000) proposed Liu type M estimator to combat with combined

problem of outlier in y-direction and multicollinearity. Their alternative class of Liu type M
estimator (LM estimator) is defined as

B () = (XX+D) XX+ S w,
(10)

where d* is the robust choice of the parameter d. There are many different ways to choose a
robust estimate for d. In their paper they proposed the following robust estimate of d.

*_ A2 1 Bl\'/IIBAM
diA [zw. +1)/ZM. +1)2]

(11)

where A1 > ... > 4, are the eigenvalues of XX and A? is given above. Arslan and Billor (2000)

also proved that MSE{f um(d")} < MSE{B m} and MSE{p m(d")} < MSE{ (d)}.

Combined estimators given above are concerned with the multicollinearity and outliers
in y-direction. However, Huber type M estimator is not robust against outliers in x-direction. So,
the combined estimators, Ridge type M and Liu type M estimators, will not be robust against
outliers in x direction. To overcome this drawback of M estimators, Krasker and Welsch (1982)
suggested Generalized M (GM) estimators which are effective to outliers in y- and x-directions.
They introduced extra weight function depending only on x to down weight the outliers in x-
direction. By doing this, they define bounded influence robust regression estimators for the
regression parameter. We will briefly summaries their estimator in the following section.

Note that Huber type M estimator is not scale invariant. To make it a scale invariant
estimator we have to introduce a scale parameter o in the minimization problem and then find
an estimate for it. Here we will estimate the scale parameter o using the median absolute
deviation (MAD) prior to the regression estimation (Maronna, Martin & Yohai, 2006).
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! .median|ei — median(ei)| =

.mad(e;) = 1.483.mad(ej). 12
0.6745 0.6745 (©) (&) (12)

6=

Generalized M (GM) Estimators
In general the GM-estimator for the regression parameter can be obtained as the solution of the
following minimization problem:

— A2 \ yi_xi’ﬂ 1+6
Q(ﬂ) o gp( Of\_u',g JUI !

(13)

where p is an even function that is non decreasing on [0, ), u; is weight determined by
X1, ..., Xxn @nd & is the scale estimate given above.

In this form if we choose p(x) = x* and u; = 1 we get OLS estimator. Similarly if we
choose p(x) = x* and #= -1 we get weighted OLS. The L; estimator uses p(x) = | x | and u; = 1.
Robust M estimator (or Huber M estimator) is obtained by setting ui = 1 (Simpson & Chang,
1997). Here, choosing @ is very important and there are two important values for 8 which give
two different bounded influence regression estimators widely known in literature.

Setting @ = 0 gives Mallows type GM estimator (Krasker & Welsh 1982; Simpson,
Ruppert and Carroll 1992). In this form of the minimization problem an extra weight function is
introduced to downweight the outliers in x-direction. Widely used weight function is

Ui = min[l,{ — bfl — } } (14)
(Xi - Xc),C (Xi - Xc)

(Hampel, Ronchetti, Rousseeuw & Stahel, 1986) where X, is a robust location estimator and C

is a robust scatter estimator of X. Here b is equal to (1 — v) quantile of the chi-squared
distribution on p — 1 degrees of freedom and o can be taken as 0.1 or 0.05. The Mallows type
GM estimator put separate bounds on the residuals and the influence in x-direction. This method
downweights the outlier observation regardless of the magnitude of the corresponding residual.
However, any downweighting of x that does not consider how the response fits the remainder of
the data may not produce efficient estimators.

To cope with this drawback of Mallows type GM estimator the Schweppe type GM
estimator has been proposed (Hampel et. al., 1986). The Schweppe type GM estimator can be
obtained when we take €= 1. In this case the weight function can be taken as:

) 1
" JOoy—R)CH (% —%,)

(15)

This estimate downweights leverage points only if corresponding residual is large
(Hampel et. al. 1986).

If pis a differentiable function we get the following estimating equation after setting
derivative of (13) with respect to g to zero
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iv(%}x{u?ﬂ(yi ~x)=0,

i=1 GUi

(16)

where v(t) is y(t)/t for t # 0 and y(0) for t = 0. After some further rearranging this equation we
get

ﬁA’GM = [iaixixi'j_ Zn:aixi)’i )
7 7 )

A

where (, =v[y‘_—)§ﬁ

Jui“’ . Or in matrix notation we can write

Bew=XUX) XUy,
(18)
wherey = (y1, ..., y); X = [X1, ..., xn]’and U =diag(d,,...,0,).
The variance-covariance estimate of /3 cw is of the form
. &2
COV(ﬂ GM) = — P'lQP'l,
n
(19)
I [ 6 oy, o IS 2 5iley, o ith i -
where P = =Y /| — U7X, Q= =Yy’ — ulxx and riis i standardized residual.
Nz Ui Nz Ui

Here is when 6 = 0 we get exchangeable estimate of Cov(ﬁ’ om) (Du & Wiens, 2000; Maronna
& Yohai, 1981) and it can be expressed as in matrix notation by

52 ;V/Z(ri)z o
P [Zw’(n)}

Cov( B em) =

(20)
where Q = (X UX)1(X WX)(XUX)™ and U = diag(u, ..., un).
Robust Ridge and Liu Regression Estimations Based On GM Estimators

Robust Ridge Estimator for Regression Based On GM Estimator

Since GM estimators are robust against outliers in x- and y-directions it will be very useful in
combining both ridge (and Liu) and GM estimate to deal with simultaneous presence of outliers
in x- and y- direction and multicollinearity. In this sense Arslan and Billor (1996) proposed
ridge type GM estimator (RGM estimator) which robust against the outlying observation in x-
direction and outliers with large residuals.

1025



Coskuntuncel

They proposed two different forms of ridge type GM estimator. The first form is

Brem(K?) = (XX + KX X 3 om,
(21)

where S u is the GM estimator of 4 and k* is the one of the robust choice of k. The second
form is

B remu(KY) = (XUX + K1) TXUX B owm,
(22)

where k* = p62, | B Bow » U = diag(uy, ..., un) and &2, is the estimate of variance using
Bow. Arslan and Billor (1996) also proved that MSE{f rem(k")} < MSE{ S om},
MSE{ 3 romu(k")} < MSE{ 3 om} and MSE{ 2 rem(k")} < MSE{ 3 r(K)}.

Robust Liu Estimator for Regression Based On GM Estimator
In this study we combine the GM and the Liu estimators to combat with simultaneously
occurrence of multicollinearity and outliers in the dataset. We expect that the resulting estimator
is robust against the outliers and influence observations as well as deals with the
multicollinearity. Similarly two different forms of the Liu type GM estimator can be defined.

In ordinary Liu estimator form we can replace the OLS estimator /3 ois with the £ ou

which gives

£ em(d®) = (XX + IY{XX +d*T) 3 om,
(23)

where d* is the robust choice of d.
We can also combine /3 ew and the Liu estimation method as follows

B remu(d®) = (XUX + ){(XUX + d*1) S om.
(24)

In this form we want to take care the outliers in design matrix and then downweight
them. Therefore, instead of using XX we want to use X UX. By doing this we may get rid of
some points in design which affects the whole procedure. However downweighting this type of
observation may also affect the multicollinearity problem. We may downweight some points
which may induce multicollinearity or mask multicollinearity.

Mean Squared Error Properties
In this subsection we will compare the MSEs of the proposed estimators. To do so let

A1 > ... = A be the eigenvalues of XX, g1, ... , gp be the corresponding eigenvectors, and
A =diag(4y, ..., 4p) and P = (g1, ... , gp) such that XX = PAP”. Then, the regression model
given in (5) can be rewritten in canonical form as following:

y=Ca+ g
(25)
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where C = XP, o = P /4. It is seen that we do not have the constant term in our models. The
OLS and the corresponding Liu estimators are

dols= Ay
and
G (d) = (A+ )X A+dl) G os. (26)

Note that since ,B =Pa we have MSE(& ois) = MSE(,@ ). Thus, it is sufficient to consider only
the canonical form compare the MSEs.

We can also find the GM estimator of a. If « cwm is the corresponding GM estimators of
a, then the corresponding & Lem and & Lemu estimators become

aiem(d) =+ |)'1(/1 +dl) @aem and @ emu(d) = (B + |)'1(B +dl) @ owm,
(27)

where 1n > ... > yp are the eigenvalues of X UX, B = diag(z4, ..., 1) and U is given above.
Now we can give the following theorem on the MSE properties of the estimators

a |_G|v|(d) and ¢ LGMU(d)-

Theorem: Assume that Cov(a om) =T is finite. Then
i) There always exists a d such that MSE( & Lem(d)) < MSE( & om)
ii) There always exists a d such that MSE( & Lemu(d)) < MSE( & om)

2
iii) Further if Ty < 07 is for every i, then MSE( & Lem(d)) < MSE(« (d)) for every
positive d, where T is diagonal element of I".
Proof: The MSE expressions of & om, @ ((d), @ 1em(d) and & Lemu(d) are

p
MSE(Gem) = > T

(28)
. Py (
MSE(& (d)) = .Z_;ﬂf.(. +( -1) Z(i T
(29)
_ A _w +d) 2 L, of
g(d) = MSE( G Lom(d)) = Z 0 Ty +(d-1) Z—( PR (30)
r(d) = MSE( & Lemu(d)) = Z( +d) +(d-1) Zp:a—zz
= (14 i (14 +1)
(31)

i) The proof of part one of the theorem is similar to the proof of the Theorem 2.1 of Liu (1993).
If we take the derivative of g(d) with respect to d we get

@ D2
IO =2 Gy A 1)2(1 17

Note that g(1) = MSE(« om). Because of g(1) > 0 there exists 0 < d < 1, which means that

g(d) < g(1) or equivalently MSE( & Lem(d)) < MSE( & gm).
From the proof of part (i) we see that MSE( & Lem(d)) is minimized at
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P a, I a2+F
B Z (i +1) Z(z, +1)° (32)

ii) The proof of part (ii) is similar to the Theorem 4.3 of Hoerl and Kennard (1970a). If we take
the derivative of r(d) we observe that the first of part of r(d) is an increasing function of d and
the second part is a decreasing function of d. Therefore we only need to prove that there always
exists a d > 0 such that r'(d) < 0. The derivative of r(d) is

2

r(d) = iz(‘_”d) +2(d 1)2( o

From this one can easily see that 2T + 2Iid < -2a’d — 2a”. Therefore if

d <mm[ﬂj, i=1,...pthenwe get r'(d) <O0.
T +05i

iii) For the proof of part (iii) we denote the difference MSE(a Lem(d)) — MSE(a (d)) by
L. Some straightforward calculations result in

_é)

)’ (4 +d)° (4 +d)’[AT; —o’]

I YA ; 4 +174,

L=

_é>

In order to make L less than zero we should have Aili — 6® < 0. Thus we have T < ¢?/J; to get
L < 0. This completes the proof. [
Next we will propose a robust estimator for d by substituting « and T by their

unbiased estimates given in (32). Asymptotically it is known that ¢,, is normally distributed
with covariance matrix A’Q for the Mallows case, where A? = ?E[A(& 0)|/[E (& 0)]%. Thus
instead of I we can take its estimate A2/ @, Where a are the eigenvalues of Q given in (20),
and

= 5°0- 0" S /| v
)

(Du & Wiens, 2000). Also the unbiased estimator of & is &2, — A?/ @ . Thus for the Mallows
GM estimator we can propose a robust estimator of d as follows

dGMi =1- A2|: / déM' :|
= (ﬂ, +1) (4 +D)?
(34)

Examples

To illustrate the performance of the estimators that we give above we consider the four
component lubricant blending data given by Snee (1975). The objective of the study was to
determine the amount of additive (x:) needed in three lubricant blends (x2, X3, Xs) SO that a
certain critical physical property would attain a desired level (John, 1984). The components
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have following additional constraints instead of natural constraints of experiments with mixtures
given by (1).

0.07<x:<0.180<x2,<0.30
0.37<x3<0.700<x4<0.15

To emphasize the aim of this study we would like to create an outlier in y direction by
changing the 5™ response value from 12.93 to 3.417. The new value for 5% response value found
with simulation editor of software packages Design Expert 6 (Stat-Ease, 2004). Preliminary
examination of the data set for the second-order mixture model given in (4) shows that the
smallest and the largest eigenvalues are 0.00008 and 7.57, respectively and the condition
number is 93406.91 and also the smallest and the largest VIFs are 7039.66 and 65.74,
respectively. These values point out that there is a serious ill-conditioning problem. We get
following estimating equation for ordinary least square estimate of the standardized data.

Yows = 13.55x; + 19.45x, + 0.58x3 — 94.83xs + 3.66x1X2 — 6.22x1X3 +
35.54x1X4 + 0.02X2X3 + 4.27X2X4 + 82.86X3X4 (5‘2 = 244)

For the OLS estimator we have the MSE(ﬁ’ oLs) = 37468.21. The following table shows
the some diagnostic measure for the lubricant blending data. In the table, r; are the standardized
residuals, hi are diagonal elements of hat matrix, MD; and RD; are the Mahalanobis distances
base on the sample variance-covariance estimators and the robust MVE estimators, respectively.

Table 1.
Some diagnostics for lubricant blending data.
Obs I hii MD; RD;

1 -0.481 0.442 0.308 8.039
2 -0.169 0.927 1.147  13.298
3 08759 0.528 0.528 8.768
4 -0.549 0.813 0.123 12.114
5 -2.828 0.784 0.301 208.379
6 -1.028 0.525 0.466  9.3687
7 2.339 0.869 0.340 416.093
8 -0.210 0.429 0.345 7.714
9 1.197 0.827 0.303 12.819
10 0.939 0.453 0.264 9.631
11  -0.687 0.411 0.065 8.971
12 0.847 0.427 0.027 9.046
13 -1.617 0.477 0.148 9.325
14 0.847 0.388 0.072 6.922
15 1.382 0401 0.321 9.250
16 -0.345 0.466 0.147 8.608
17 -0.032 0.275 0.001 7.529
18 -0.319 0.558 0.382 8.597

From Table 1 following conclusion can be drawn: For 5" observation, standardized
residual is larger than others as we expected. Because, this observation is adjusted as an outlier
in y-direction. Also 7" observation has large standardized residual too. The cut off value for hj
is 2p/n = 1.11. This is bigger than 1, so we can use average of h; values 0.555 as the cut off
value. 2", 4t 5t 7t and 9™ observations exceed the cut off value. 2" observation has larger
classical mahalanobis distance than the others as we except, because there exists a monotone
relationship between hi and MD; of xi (Rousseeuw & Leroy, 2003; Rousseeuw & Zomeren,
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1990). For robust distance, 5" and 7™ observations exceed the cut off value g5 , 1 = Zooss =
16.918. For Huber type M estimate, we get the following estimating equation:

Ym = 70.37x1 + 6.98x, + 17.49%x3 + 2.07x4 — 11.71x1Xo — 32.71x1Xs —
1.75X1X4 — 3.33X2X3 — 0.23X2X4 — 2.32X3X4 (6‘ 2= 102)

Notice the difference between OLS and the M estimate. Examination of the residual we
see that the 5" observation has very large residual and also its weight approximately zero and 7t
observation has very small residual and its weight is one, which means, 7" observation has no
problem in y-direction but in OLS it has large error and seems to be outlier in y-direction. This
is, classical diagnostics methods and OLS estimate is mislead us about outlier analysis and we
have to be careful when we use these methods. Thus based on diagnostics given above and M
estimate results, we can conclude that the 5™ observation is an outlier in x- and y-direction and
the 7™ observation is an outlier in x-direction.

For GM estimate we expected to get smallest weights in x-direction for 5" and 7t
observations and weight in y-direction for 5" observation. Mallows and Schweppe types GM
estimators are using the weights for x-direction given in (14) and (15), respectively. For
Mallows type GM estimator we get following estimating equation:

yGMM = 62.81x1 + 8.34x, + 14.92x3 — 12.08Xs — 9.51x1x2 — 29.79x1X3 +
3.82X1X4 — 2.25XoX3 + 0.25X2X4 + 14.27X3X4.

For Mallows type GM estimator, we have MSE(/Bcwv) = 208.13. 5" and 7

observations have weighs in x-direction 0.28 and 0.20, respectively and the others are 1. Also 5™
observation has weight in y-direction near zero while the others are 1, and 5" observation has
largest residual from the others. For Schweppe type GM estimator, we get following estimating
equation:

YGMS = 71.58x; + 6.37x2 + 17.46x3 + 2.59%4 — 11.84x1X2 — 33.97X1X3 —
1.80x1X4 — 2.65x%oX3 — 0.46X2X4 + 2.10X3Xa.

Notice the different signs for some coefficients from Mallows type GM estimate. High level
multicollinearity may cause these differences. For Schweppe type GM estimator we have
MSE(B ems) = 200.60. 5™ and 7" observations have weighs in x-direction 0.07 and 0.05,

respectively. Also 5" observation has weight in y-direction near zero while the others are 1, and
7" observation has largest residual from the others as Mallows type GM estimate. But with
these two estimates we get weights and residuals as we expect above.

Table 2 shows the coefficient estimates of ordinary ridge and Liu estimators and robust

ridge and Liu estimators based on M estimator. In the table ﬁ r IS ordinary ridge estimate, ,B L
is ordinary Liu estimate, ,B rwm IS ridge type M estimate, ﬁ v IS Liu type M estimate.

Table 2.
Results for ridge and Liu estimators. Wk = 0.001376, @d = 0.185, ®k = 0.001556, “d = 0.14.
Term xi X2 X3 Xa  X1Xo X1X3  X1iXa XoXz  XoXa  XaXsa VIFimax MSE

ARt 3.42 12.14 -0.56 -16.65 6.37 3.84 22.57 5.92 -9.76 27.46 9553 1278.44
f1? 754 6.30 4.95 -13.32 3.65 4.05 11.60 2.87 1.65 20.02 241.22 12801.09
fra® 1526 458 11.71 4.06 1.40 11.87 590 -1.51 -0.74 0.63 87.40 1142.72
At 1615 3.73 825 422 175 216 4.44 262 0.64 4.70 138.22 5258.07
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From Table 2 we observe that performance of the biased estimators based on M
estimator are better than its ordinary forms in terms of MSE and VIF. Especially Ridge type M
estimator gives smaller MSE and VIF values than the others. And also from VIF values we may
say, for this data ridge type estimators combat with multicollinearity better than Liu type

estimators. Table 3 shows the results of ridge type GM estimators. In the table A3 rewmw and
B romum are ridge type Mallows GM estimate and S rowms and 3 rewmu-s are ridge type
Schweppe GM estimate given in (21) and (22), respectively and k = pé&3,, / /?éM ,[S'GM . From

Table 3 we can observe that ridge type GM estimators are very effective in terms of MSE and
VIF.

Table 3.

Results for ridge type GM estimators.

Term X1 X2 X3 Xa  XiX2 XiX3  XiXa XoXz  XoXa  X3Xa k  VIFimx MSE
Bromm 1311 5.15 9.71 1.67 2.37 10.72 8.50 0.19 254 4.28 0.0018 76.24 188.67
B remu- 13.14 5.26 9.62 1.74 2.29 10.77 8.44 0.17 2'33 4.27 0.0018 81.17 187.95
M .

Broms 15.28 4.29 11.69 4.25 1.50 11.54 6.08 1'17 0;32 0.59 0.0016 88.70 189.35
Bromus 12.84 1.64 11.12 3.21 3.05 12.08 7.63 1.31 160 1.75 0.0016 93.45 189.67

Table 4 shows the results of Liu type GM estimators. In the table £ iomv and £ Lomu-m

are Liu type Mallows GM estimate and BLGM.S and ,[3 Lemu-s are Liu type Schweppe GM
estimate given in (23) and (24), respectively.

Table 4.
Results for Liu type GM estimators.
Term X1 X2 X3 Xa  XiX2 X1X3 XiXa XoX3 XoXa  X3Xg d VIFinax MSE

flemm 13.27 3.78 7.53 2.82 2.41 3.49 538 2.93 0.76 6.19 0.11  85.37 188.84
fiemum 12.08 3.87 7.20 3.35 2.49 3.61 551 3.10 1.18 6.30 0.095 64.60 195.69
fBlems 1434 354 7.91 4.36 2.20 3.24 4.67 2.90 0.64 4.77 0.1095 84.61 172.78
Biemus 9.03 352 5.60 4.10 2.55 2.77 4.11 3.03 2.08 4.24 0.06  69.33 194.49

From Table 4 we can observe that, similar to ridge type GM estimator, Liu type GM
estimators are very effective in terms of MSE and VIF.

Conclusions

In experiment with mixture, multicollinearity is a very important problem. Particularly, for
models with some additional constraints it can be very serious. In the case of multicollinearity,
pseudocomponent transformation may improve the VIFs, but they may not be reduced to an
acceptable level. Biased regression estimators, such as ridge or Liu, should be used to reduce the
effect of multicollinearity on OLS estimators. Further, there may be some outlying observations
in the mixture data, and we may use a regression estimator that is robust against outliers in the
data. In this paper we propose to combine biased regression estimation and robust regression
estimation to produce a hybrid estimator to simultaneously combat with multicollinearity and
outliers problems. We are particularly interested in combining generalized M (GM) regression
estimators with the ridge and Liu estimators to produce an estimator to deal with the combined
problem of multicollinearity and the outliers in a mixture data. We provide an example to show
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that the hybrid estimators can successfully combat with the combined problem of
multicollinearity and outliers, and these estimators can be safely used to obtain regression
estimates for the mixture data sets that are suspected to have multicollinearity and outliers.

It should be taken into consideration that in order to claim that this estimate will be
effective against outliers in the direction of y and/or X, it is necessary to see its effectiveness in
other fields (educational sciences, econometrics etc.) and in data sets with more observations.
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Uzun Oz

Giris
Karma denemeler, y amacinin (veya amaglarinin), sistemi olusturan bilesenlerin oranina bagl
oldugu deneysel tasarimlarin 6zel bir halidir. Yani eger xi, i-inci bilesenin orani ise q bilesenli
karma problem x; > 0, X; + ... + Xq = 1 dogal kisitlamasina sahip olur. Bir¢ok karma problem
Li < xi < Ui seklinde alt ve {ist sinirlardan olusan ek kisitlamalara sahiptir (Cornell, 1990; Myers
ve Montgomery, 2002). Bilesenler iizerindeki bu kisitlamalar karma problemde genellikle kotii
kosulluluk veya i¢ iliski probleminin ¢ikmasina neden olur (John, 1984). Bunlarin yani sira veri
analizinde aragtirmacilarin ¢ok sik karsilastiklari sapan deger problemi de bulunabilir. Bu
durumda en kiiciik kareler ile elde edecegimiz sonuglar giivenilir olmayacaktir.

Scheffé (1953, 1963) standart polinomun karma denemelerin dogal kosullarindan dolay1
diizenlenmesi gerektigini ve asagidaki kanonik polinom modelin kullanilmasini énermistir. Bu
polinom bizim i¢in X1 + ... + Xq = 1 kisitlamasi altinda anlamlidir.

q q q
n=p+ Zﬁixi + ZZﬂijxixj + ZZ Z ﬂijkxixjxk +..

i<j i<j<k

Bu polinomda

1-q q

Xg=1- Y x and X’ =x|1-) X,
i1 i

=i

dondsiimleri yapilarak asagidaki lineer ve ikinci dereceden karma modeller elde edilir.
q
E(Y) = ZIBI X;
i=1

E(Y) = iﬁixi +qu:,b’ijxixj .

i<j

Kanonik polinom model matris formunda; y, nx1 tipinde amag¢ degisken iizerinde
gbzlemlerin bir stitun vektorii, & nx1 tipinde rastgele hatalarin bir siitun vektort, X, nxp tipinde
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ve i-inci satirl, i-inci gozleme karsilik gelen siitunlarinda p tane X; degiskeninin degerlerini
iceren matris ve S, px1 tipinde tahmin edilecek parametrelerinin bir siitun vektorii olmak tizere,

y=Xp+e
seklinde verilir (Cornell, 1990).

Coklu baglanti ve etkili gozlem

X katsayr matrisinin kolonlar1 arasinda kotii kosulluluktan dolayi yaklasik lineer bagimlilik
olugabilir. Bu durumda X’X matrisinin tersi alinamaz veya alinsa bile yanlis olabilir. Ayrica
regresyon katsayilari da kotii kosulluluktan dolayr ger¢ek degerlerinden uzaklasabilir
(Montgomery, Peck ve Vinning, 2001). Veride kotii kosullulugun derecesini belirlemek igin en
cok kullanilan yontemler kosul sayis1 ve VIFi’dir. Varyans sisirme faktorleri (VIFi)’ler, (X X)?!
matrisinin kosegen elemanlaridir. Marquardt (1970), VIF’lerden en az birinin 10’dan biiyiik
olmasi durumunda tahmin edilen parametrenin giiclii bir tahmin olmayacagmi belirtmistir.
Diger yandan Gorman (1970), 100’den biiyiik VIF degerlerinin ciddi ¢oklu baglanti problemini
isaret ettigini belirtmistir. Belsley, Kuh ve Welsch (1980), 25’ten biiyiik kosul sayisi olmasi
durumunun ciddi ¢oklu baglanti probleminin gostergesi oldugunu belirtmislerdir.

Bir gozlem veya gozlemlerin etkili gdzlem olmasi onun X yoniindeki konumuyla,
gozlenen y degeriyle veya her ikisiyle ilgili olabilir. Karma verilerde etkili gdzlemlerin bir
olgiisii olarak Montgomery ve Voth (1994), H = X(X’X)*X' sapka matrisinin kosegen elemanlari
hii’leri kullanmislardir. Montgomery ve Voth (1994) x yoniindeki aykir1 degerlere karsi robust
regresyon yontemlerini kullanmay1 6nermislerdir. Bir gézlemin aykir1 olma 6l¢iisii olarak robust
Mabhalanobis uzakliklar1 kullanilabilir (Rousseeuw ve Zomeren, 1990).

Tahmin ediciler

Ridge ve Liu Tahminleri
Koti kosulluluk probleminin tahminler {izerindeki etkilerini azaltmak i¢in en ¢ok kullanilan iki
yontem Ridge ve Liu tahmin yanli edicileridir. k > 0 yanlilik parametresi olmak tizere alisilmig

Ridge tahmin edicisi, /3 oLs regresyon parametrelerinin en kiigiik kareler tahmini olmak iizere,

,é r(K) = (XX + k')_lx’x,é oLs

seklinde verilir (Hoerl ve Kennard, 1970a, b). Liu tahmin edicisi ise 0 < d < 1 yanlilik
parametresi olmak iizere,

f(d) = (XX + 1Y (XX+dI) B os

seklinde verilir (Liu, 1993).

Ancak dikkat edilirse her iki tahmin edicide sapan degerlere karsi hassas olan en kiiciik
kareler tahminlerine dayalidir. Silvapulle (1991) en kiiciik karelerin bu dezavantajindan dolay1
Ridge tahmin edicisinde, en kiigiik kareler yerine y yoniindeki sapan degerlere karsi daha
direngli olan M tahmin edicilerini kullanmasiyla elde edilen robust Ridge tahmin edicisinin

kullanilmasini nermistir. Robust Ridge tahmin edicisi, k*, k’nin bir robust se¢imi ve ﬁ M, [ nin
bir robust M tahmin edicisi olmak {izere,

Brn(K) = (XX +KI)XX B u
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dir. Arslan ve Billor (2000) Liu tahmin edicisi yerine M tahmin edicilerine dayali robust Liu
tahmin edicisinin kullanilmasini énermistir. d”, d’nin bir robust se¢imi ve /;’ M, ' nin bir robust
M tahmin edicisi olmak tizere robust Liu tahmin edicisi,

Bun(d) = (XX + )X X+dI) B w

dir. Burada o dlgek parametresinin bir tahmini medyan mutlak sapma (MAD) kullanilarak elde
edilecektir (Maronna, et.al., 2006).

! .median|e; — median(ej)| =
0.6745 0.6745

6= .mad(ei) = 1.483.mad(ei).

Genellestivilmis M (GM) tahmin edicisi
Regresyon parametreleri icin GM tahmin edicisi asagidaki minimizasyon probleminin
¢Oziilmesiyle elde edilir:

— A2 3 yi_xi,ﬂ 1+6
Q(ﬁr)_J ;p( O,\_ulg }ui '

Burada p, [0, «) araliginda azalmayan fonksiyon, U;,

o [ { b }1/2:|
ui = min| 1, :
(Xi _Yc)lcil(xi _70)

seklinde agirlik fonksiyonu ve G yukarida verilen 6lgek parametresinin tahminidir. Buna gore
Y=o o, ), X =[Xs, ..., x]”and U =diag({,,...,0,) olmak iizere matris formunda GM
tahmini

Bom=XUX) XUy,
seklinde elde edilir.

GM tahminine dayalt Robust Ridge ve Robust Liu tahmin edicileri

Arslan ve Billor (1996) hem x hem de y yoniindeki aykir1 degerlere karsi dayanikli olan Ridge
tipi GM tahmin edicisini onermistir. k*, k’nin bir robust se¢imi olmak iizere bu tahmin edicinin
iki formunu vermislerdir. Bunlardan ilki,

Bram(k") = (XX + K1YXX B awm,
ve ikincisi,
B remu(k?) = (XUX + K1) 'XUX 2 om,

seklindedir. Ayrica MSE{ A rom(k")} < MSE{ 8 om}, MSE{ 3 remu(k")} < MSE{ /3 em} and
MSE{ 3 rem(k*)} < MSE{ /3 r(K)} oldugu gosterilmistir.
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Bu caligmada, ayni anda ¢oklu baglanti ve aykiri degerler problemlerine karsi direngli
olan GM ve Liu tahminlerinin birlestirilmesiyle elde edilen GM tahminine dayali Liu tahmin

edicileri tanitilacaktir. Bunu igin d*, d’nin bir robust se¢imi olmak iizere Liu tahminindeki [? oLs

en kiigiik kareler tahmini /3 gu ile degistirilerek 6zelliklerini incelenecektir. Bu tahmin edicinin
ilk formu asagidaki gibidir:

Brom(d?) = (XX + XXX +d*1) B owm,
Bir diger formu ise
£ Lomu(d) = (XUX + 1) YXUX + d*1) 3 om
seklinde verilmistir.

Hata Kareler Ortalamas: Ozellikleri
Yukarida verilen regresyon modeli kanonik formda C = XP ve « = P # olmak iizere

y=Ca+ g

seklinde yazilabilir. Modelde sabit terim yoktur. Buna gore en kiigiik kareler ve karsilik gelen
Liu tahmini sirasiyla

aols = ACY
ve
a(d)y=(A+ |)-l(/1 +dl) & os.

seklindedir. GM ve buna karsilik gelen Liu tahminleri ise,

a LGM(d) = (/1 + |)'1(/1 + d|)d GM
ve
Giemu(d) =B+ 1)*B+dl)dom

burada (1 > ... > p, X UX’in 6zdegeri, B = diag(z4, ... , 1) ve U yukarida verilen formadadir.
Simdi & Lem(d) ve & Lemu(d) tahminleri igin asagidaki teoremi verebiliriz.

Teorem: & gm’nin kovaryans matrisi sinirli olsun ve Cov( @ gm) = I alalim.
i) MSE(a em(d)) < MSE(a om) olacak sekilde bir d sayist vardir.
i) MSE(a Lemu(d)) < MSE( & om) olacak sekilde bir d sayis1 vardir.

2
iii) Ti’ler I’'nin kosegen elemanlart olmak tizere; Eger her i igin T < Z— ise her

pozitif d sayisi igin MSE( & Lem(d)) < MSE( & (d))’dir.

Sonug

Karma denemelerde ¢oklu baglanti problemi énemli bir problemdir. Ozellikle ek kisitlamalar
bulunan modellerde bu problem daha ciddi boyutlara ulasabilir. Karma verilerde ¢oklu baglanti
olmasi durumunda psudobilesen doniisiimii ile bazen VIF degerlerinde iyilesmeler olsa da bu
genellikle yeterli seviyelerde olmamaktadir. Yanlh tahmin edicilerde en kiiciik kareler tahminine
dayal1 olup ¢oklu baglanti probleminin etkilerini azaltabilirler. Ancak aykiri degerlerin olmasi
durumunda en kiigiik kareler tahmini bundan ¢ok etkilenmektedir. Bu ¢alismada hem c¢oklu
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baglanti hem de aykir1 deger problemlerine sahip karma verilerde daha tutarli tahminler
verebilecek robust yanli tahmin edicilerin kullanilmasi ele alinmistir. Bu amagla hem x hem de y
yoniindeki aykir1 degerlere karsi direncli olan GM tahminine dayali ridge ve Liu tahminleri
incelenmistir. GM tahminine dayali Liu tahmin edicisinin MSE o6zellikleri incelenerek diger
tahmin edicilerle karsilastirilmis ve karma verilerde etkili oldugu goriilmiistiir. Genel olarak,
GM tahmin edicisine dayali robust Liu yanli tahmin edicisinin, hem goklu baglanti hem de etkili
gozlemlere karsi ayni anda direngli oldugunu soyleyebilmek igin kuskusuz bagka alanlarda
(egitim bilimleri, ekonometri gibi) ve daha yliksek goézlem sayisina sahip veri gruplarinda
etkinliginin incelenmesi gerekmektedir.
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