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ABSTRACT.  The aim of this paper, is to establish some new inequalities of Hermite-Hadamard type by using
n—strongly convex fuction. Moreover, we also consider their relevances for other related known results.
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1. INTRODUCTION AND PRELIMINARES

The relationship between theory of convex functions and theory of inequalities has occured as a result of many
researches investigation of these theories. A very intersting result in this regard is due to Hermite and Hadamard
independently that is Hermite-Hadamard’s inequality. This remarkable result of Hermite and Hadamard can be viewed
as necessary and sufficient condition for a function to be convex. The f : I C R — R be a convex function defined on
an interval I of real numbers a,b € I and a < b, we have,

() < g [ 7o < Lt

Both inequalities hold in the reversed direction if f is concave.

The classical Hermite-Hadamard inequalities have attracted many researchers since 1893 [1-16]. Researchers in-
vestigated Hermite-Hadamard inequalities involving fractional integrals according to the associated fractional integral
equalities and different types of convex functions.

Definition 1.1. A function f : I — R is called convex with respect to n—convex, if

fax+ A =0y < f)+mfx), f()
forall x,y e I'and ¢ € [0, 1].
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Definition 1.2. A function f : I — R is called convex with respect to n—strongly convex ¢ > 0, if

fx+ 1 =0y) < fO)+m(f0), () —ct (1 =) (x = y)°
or

fex+(1=0y) < fO)+m (), fO) et (=0 (x,y)
forall x,y e Iand ¢ € [0, 1].
Proposition 1.3. Iff:[a,b] — R is n—strongly convex,then

max f(x) < max {f (8), f (b) + tm (f(@), fB))}.

Proof. For any x € [a,b], we have x = ta + (1 — £)b for some ¢ € [0, 1], which implies that
fx) = f@a+(1-0b) < f(b)+m(fla), f(b) —ct(1 —1)n*(a,b)
<max{f (b), f (b) + m (f(a), f(D))}

since x is arbitrary, so

max f(x) < max(f (b). f (b) + i (f(@). fB))

and the statement is proved. O

2. MAIN REsuLrs
In this section, we obtain our main results.

Theorem 2.1. A function f : I — R is n—strongly convex if and only if for any x1, x, x3 € I, with x; < x3 < X3,

I x1 n(f(x1), f(x2))
det| 1 x» f(x2)—f(x3) |=0
1 X3 0

and

S (x1) < fxs) + 7 (f(x1), f(x3))

Proof. Suppose that f is a n—strongly convex. Consider arbitrary, ¢ > 0, xj,x2,x3 € I, with x; < x, < x3.S0 there is

at € (0, 1) such that x, = tx; + (1 — r) x3, namely z = ’X‘f:ii From n—strongly convexity of f we have

)= fxi + (A =0 x3) < f(x3) + t (f(x1), f(x3))
—ct (1 =) (x1,x3)

or
fG) = ftxy + (1= Dx3) < flxs) + 2020 (f(x), £(x3))

_ L o=x3)(xn=xp) 2
ST (x1, x3)

(x3 = x1) [f(x3) = f(x2)] + (x3 = x2) 1 (f(x1), f(x3))

(=x3)(x1=%2) .2
—c= sy (a1, x3) 2 0

which is equivalent to above determinat being nonnegative, Also for = 1, ﬁ = 1,namely x; = x,

fx1) £ f(x3) +n(f(x1), f(x3)

and also forr = 0

F(x3) < f(x3)
For the inverse implications, consider x,y € I, with x < y.Choosing any ¢ € (0, 1) we have x < tx + (1 — #)y < y,and so
1 x n(f (0, f(n)
det| 1 tx+(1—-10)y f(tx+(1—t)y)—f(y)+ct(1—t)r]z(x,y) >0
1 y 0

By expanding this determinat we reach to the inequality

Fax+ =0y < fO)+m(f), fO) —ct(1 —Dn* (x,y)

for any ¢ € (0, 1) that gives n—strongly convex.
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From assumption for # = 1,we have

F)<fO+n(f(x0,fO)

namely n—convex. O

Theorem 2.2. For a function f : I — R the following assertions are equivalent.

a. f is p—strongly convex function;
b. For any x,y,z € [ with x <y < z we have

WD — L8, 2) < TS and f (1) < FO) +0(f (). f )

flex+(1=0y) < fO)+mf), fO) — et (1 =1 n* (x,y)
forr=1,f00)<f)+n(f(x),f)

Proof. Supposed that f is n—strongly convex and x,y,z € I with x < y < z, then there is a t € (0, 1), such that

y=tx+ (1 —1)z.So we have t = == Also

FO)SfF@Q+m(f(x),f@)—ct(1—Dn(x,2)
or

FO) = F@ < En(f @), f @) - 2502 (x, )

(x—2)
hence
nf(x.f@) _ .=y 2 fO)-f@)
T T ) S e

For the inverse implications, consider x,y € I with x < y. It is clear that forany 7 € (0,1), x <tx+ (1 —-f)y < y. It

follows that

n(f(x).f)) a-n.2 fx+(-0y)-f )
T e TS TR

that is equivalent to
o) _ . A=1) 2()6 y) < Sax+(1-0y)-f()

x=y ﬁn (x=y)
therefore
fx+ 1 =0y) < fO)+m(F), fo) = et (1 =17 (x,y)
for any x,y € I with x < yand ¢ € (0, 1) .so f is n—strongly convex. O

Theorem 2.3. For a function f : I — R the following assertions are equivalent.

a. f is p—strongly convex function;
b. For any x,y,z € I with x <y < z we have

WL — 2P (x,2) < LD and £ () < FO) + 7 (f (), f )

flx+(1=02) < f(@+m(fQx), f@) = ct (1 = n*(x,2)
fort=1,f(x)<f@Q+n(f(x),f )

Proof. with the same argument as theorem 2 proof is completed. O

Theorem 2.4. Supposed that f : I — R is a n-strongly convex function and n is bounded from above on f (I) X
f ). Then f satisfies a Lipschitz conditionon any closed interval [a, b], contained in the interior I° of 1. Hence, f is
absolutely continuons on [a, b] and continuons on I°.
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Proof. Let M, be upper bound of 1 on f(I) X f(I).Consider closed interval [a,b] in I° and choose £ > 0 such
that [a@ — &, b + €] belong to 1. Supposed that x, y are distinct points of [a,b]. Setz =y + 55 (y x)and ¢t = ‘yly Xl’ﬁlg So
itis not hard to see that z € [a —&,b + €] and y = tz + (1 — 1) x. Then

FO < f@)+m(f@, f(x)=ct(1 =D (z, %)
<f)+tM, - ct(l —t)nz(z,x)

this implies that
FO) - f(x) <M, —ct(l—t)n (z,x)

_ _y=xl o by-ale
= pomire My (- AHE)ZTI (z.%)

< bty eboilep gy
=Kly—xl—cly—x.7°(zx
=y — x| K = cr? (2, )]
=Fly—x

M, 2
where K = -+, K—cn (z,x) =
Also if we change the place of x, y in above argument we have f (x) — f (y) < F |y — x| .Therefore |f (y) — f (x)| <
Fly—x.
It follows that if we choose ¢ < %, then f is absolutely continuons.Finally since [a, b] is arbitrary on [°, then f is
continuons on /°. O

Theorem 2.5. Supposed that f : [a,b] — R is a n—strongly convex function such that n is bounded from above on

f([a,b]) x f([a,b]). Then

f(a;b)— My + S (ab) < 5 7 F (0 dx
M@+ FO]+ 1 f @, f ) +n(f B), f @) - 5 [P (@b)+n* (b,a)]
L@+ f O]+ 5 = 5 [0 (@) +n* (b,a)]

Proof. For the right side of inequality consider an arbitary point x = ta + (1 —t)b with t € [0,1]. So f(x) <
fb)+m(fa),fb)—ct(l-0n*(a,b)witht = %. It follows that

<35
<

e [ f @y < 5L [f(b)+tn(f(a) £ ) = et (1= 1) (a,b)] dx

n(f(@).f () (b-a)® b (a-x)(x=b)
ba((b a)f(b)+ WL ba? _ 2 (,p) [ @D dx)

= O+ 30 (f @, f ) - i "’m (a,b)
=f(b)+in(f@,f®b)- n2<a b)

Therefore we get

ﬁfabf(x)dxsmin{f(bwén(f(a) £ ) - & (a,b), f(a)+2n(f(b) f @)= & (b.a))
AP @+ SOl @.FO) + 1 G).f @)~ & [P @b+ @, a)]
<3 [f(a)+f(b)]+—” CslR@h e, a)
For the left side o inequality, n—strongly convex of f 1mphes that
f a+b f a+b t@_'_aTHa_i_t@
_ f( atb- t(b a)) + % atb+i(ba)

2
a+b+t(b—a) 1 a+b—t(b—a) a+b+t(b—a)
) f_(£ 772 2a+b—t)(b-i—-a)2 nu(kjl:‘-*—(t(b—a)z ) ’ f < : ))
4

2 s

2
a+b+t(b—a) c a+b—t(b—a) a+b+t(b—a)
f ( 2 ) My = §n ( 2 2 )

IA

fOral]tE O,] .SO
+b+t(b— —+, a+b—-t(b—a) a+b+t(b—a
f(a 1( a))>f(a b) lM 6‘772( ( )’ 1( ))
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Also with the same argument we have
a+b—t(b—a) a+b 1 ¢ .2 (a+b+t(b—a) a+b—t(b—a)
f( 7 )Zf(T)_EMnJrZU( 7 2 )

Finally using the change of variable we have

S [P dx = ﬁ[fa‘”bf(x)dx+ff+bf(x)dx]
1: %fol[ (a+b—;(b—a)) f£a+:+t(b—a)2] d[f
> %j(‘) [2f<a-5b) M + € 2(a+ +i(b—a) a+ t( a))]dl
:f(u;b)— %M nz(a,b).

Definition 2.6. A function g : [a, b] — R is said to be symmetric with respect to % on [a,b] if
gx)=gla+b—-x), foranya < x <b.

Theorem 2.7 (Hermite-Hadamard-Fejer right inequality). Supposed that f : [a,b] — R is a n—strongly convex function
such that n is bounded from above on f ([a,b]) X f ([a,b]). Also supposed that g : [a,b] — R*, is integrable and
symmetric with respect to 432 “”’ .

[0 f ) g dx < LU [ g (2)dx

(f(@),fB)+n(f(b).f(a)] rb
QSO “]f (b= g () dx

5[ @by + P @] [ 00 g (x) v,

Proof. From fis n—strongly convex function, using the change of variable and the fact that g is symmetric with respect

to M , we get two inequalities.
Flrst
L r@gwds<b-a) ) [f ) +m(f@.f®)-ct(d =07 @b)
xXg(ta+ (1 —1)b)dt
= (b=} FBYga+ (A =0b)di+n(f @, fG) | tgta+ (1= b)ds @1
—erP(a,b) [ 1(1=1)g(ta+ (1 —r)b)dt].
Second

[ r@egdx<®-a) f [f@+mF®).f@)=-ct( =i b.a)
xXg((1 =t a+tb)dt

= (b=} F@g(( =na+brdi+n(f®),f@) [ 181 ~a+ib)di 2.2)
—af (ba) [ 1(1 -1 g —t)a+tb)dt].
Finally if we add (2.1) and (2.2) we obtain

2" fWg@dx<(b-a)[f @+ f®)] fog«l—r)am)dr
+b-a)[n(f(a),f®)+n(fb), f(a))]fo tg((1=t)a+1tb)dt
—c [P (. b) +n? (b,a)]fo t(1-0g((1=1a+th)dt

So the change of variable x = ta + (1 — 1) b implies that

[7f g dx < LD [ g () dx
[%(f(a) f(z)(;;n;)f(b)f(u))] f (b - x)g(x) dx

5[ @by + P @] [0 g (x) v,




Some Inequalities Related to 7—Strongly Convex Functions 212

Theorem 2.8 (Hermite-Hadamard-Fejer left inequality). Supposed that f : [a, b] — R is a n—strongly convex function
such that n is bounded from above on f ([a,b]) X f ([a,b]). Also supposed that g : [a,b] — R*, is integrable and
symmetric with respect to “”’

£(422) [P g dx =1L [ n(fa+b=2.f (g @dx
+5 fabnz(a+b—x,x)g(x)dx§ fubf(x)g(x)dx.

Proof. From n—strongly convex of f we have

f(a;b) f(m ta+a+b tb+tb) f(m+(1 r)b th+(1— t)a)
<fa+(1 —t)a) + 2r](f(ta+ 1-0b), f(tb+ (1 —-1a))
——n (ta+(A-0b,tb+ (1 -1 a)

Also with the change of variable x =tb + (1 - ) a, t = b - 4 we have

F(E2) [ g+ -na)b-a)d

< [ fab+(A-Daygb+(1-na)b-adt
2fo'n(f(m+(1—t)b) fth+(-na)gh+(1—1a)(b-a)ds

< [P ta+(1-0btb+(1-Da)gth+(1 - a)(b-a)dt

= fa f(x)g(x)dx+ 2fa n(fla+b-x),f(x)gx)dx

—iLbnz(a+b—x,x)g(x)dx

Let f : I - R be a n—strongly convex function. For x1, x, € I, and @, a; € [0, 1]. Define T; = 23:1 «; and choose
«; suchthatT, = 1. So

I,
f(Zfl 1 @i xi) = f(Z;1 1 % XiT—n)
T,

= f(zl” 11 ; X; T” L+ a,x,

<ﬂm+nmU@HmT)fmn
wnan(xlmTlM)

Theorem 2.9. Consider functions f : I - Randn : RXR — R, such that n is nondecreasing and nonnegative
sublinear on first variable. also define

Ny G Xiot 2 %) = (0 Ot Xiots 2 Xam1) 5 f )

and 1y (x) = f(x) for all x € I. Then f is n — strongly convex if f for any n > 2,
n & 2 n—1
F(Z i xi) < B Tong (%is Xier o Xn) — € Hl Tici * (205 e i, %)
i=

T;= Zj.:laj fori=1,2,...nsuchthatT, = 1.
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Proof. Suppose that f is n—strongly convex. Since 7 is nondecreasing and nonnegative sublinear on first variable then

for (3) it follows that

f(z:l]aixi):f(

—1

_f( 10~’1sz

+ a,x,

< f(xn) + Tn—ln(f (Zl 1 a’z
- In—[ a;n 2 (Zn |1 a; T xn)

< f(-xn) + Tn 177(
n—1

_T 16’1—101

=T, 1CHC¥1

112

(=
<f(xn)+Tn ln([f(xn 1)+
(=

2 n2
(B2 312 0 7

Ty
> n 2
- I

Ty

1“:

Th3 n3
- nZCHat (Tnz =1 Qi

S f(xn) + T (f (xp=1)s f(xn)) + Tpon (7 (f (Xa=2), f(Xa=1)) » F(X4))
- (fCa), f(x2), f(x3) ), f(xn))

< 2 1
+T1)CI—[lai77 ( S xl,xn)
i=
= f(xn) + Tn—lnf (xn—l,xn) + Tn—277f (xn—Z, Xn—15 X,,) R Tlnf (X1,)C2, Y
[(n(-~-n((xl,Xz),X3)),---,xn)])

+T1n(n(

_(Tn—l +Tn—2 +

n
—e YT, (1_[1 a;
-

nooo Ty
=1 i x,T”)

=

7o) ()

) an_l Xn— l,f(xn))

Ty

n;z Gt xn)
20 (F (20 @ 72) 0 f ) - £
T xn)
s "T": X1 xn)

n

— 2 1

= 20, Tty (X i1 Xa) — € [T T P (205 e %1, 32).
i=1

For the inverse implication consider n = 2 in (3). we omit the details.

Theorem 2.10. Suppose that f :

O

[a,b] — R is a differentiable n—strongly convex function on (a,b) and that 1 is
measurable on f ([a,b]) X f ([a,b]) . Then we have

£t -

y)+c[(w)—(a+b)y+y2]
< "n(f @), f ) dx.

Proof. From the definition of n—strongly convex functions we have;

L0 e (1= (x =y <n(f (D), f )
for ¢t € (0, 1]. Taking the limit t — 0%, we get

FOE=n+ec=y> <n(f ), fO)

for any x € [a,b] and any y € (a, D).
Since is measurable on f ([a, b]) X f ([a, b]), then the integral

@ fonde= [0 o) -yyde+ [ e(x—yPdx

=(b-a) [ ()[4 -
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