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Abstract

In the present study we consider Euclidean curves with incompressible canonical
vector fields. We investigate such curves in terms of their curvature functions. Recently,
B.Y. Chen gave classification of plane curves with incompressible canonical vector
fields. For higher dimensional case we gave a complete classification of Euclidean
space curves with incompressible canonical vector fields. Further we obtain some

results of the Euclidean curves with incompressible canonical vector fields in 4 -

dimensional Euclidean space [E*.

Keywords: Regular curve, Generalized helix, Salkowski curve, Canonical vector
field.
Sikistirilamayan Kanonik Vektor Alana Sahip Oklit Egrileri

Ozet

Bu calismada Oklit uzayinda sikistirilamayan kanonik vektdr alana sahip egriler
ele alinmustir. Bu tiir egrilerin egrilik fonksiyonlar1 incelenmistir. Son zamanlarda B.Y.
Chen sikistirilamayan kanonik vektor alana sahip diizlemsel egrilerin  bir

smiflandirmasini vermistir. Bu ¢alismada yiiksek boyutlu Oklit uzayinda bu tiir egrilerin
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bir siniflandirmasi verilmistir. Ozellikle 4-boyutlu Oklit uzayinda bazi sonuglar elde

edilmistir.

Anahtar Kelimeler: Regiiler egri, Genellestirilmis helis, Salkowski egrisi, Kanonik

vektor alani.

1. Introduction

Let a=a(t): I c R —>E" be a regular curve in E”, (i.e.,

o (1)) #0). Then
is called a Frenet curve of osculating order d, (2<d <m) if o (t),a (¢),....,a'"(¢) are
linearly independent and o (£),& (¢),...,a'”" (¢) linearly dependent for all ¢ in 7 [10].

In this case, Im(a) lies in a d — dimensional Euclidean subspace of E” . To each Frenet

curve of osculating order d there can be associated orthonormal d —frame

V, = Ha%,...,% along «, the Frenet d—frame, and d-1 functions
o (t
K, Ky,.... K, 11 — R, the Frenet curvatures, such that
1 0 x 0 0 [V ]
2 -k 0 K, 0 V3
v, |7V 0 —-«x, O 0 (|7 (1)
Ko
, 0 0 .. —x,, 0|V,
Vel - T

where, v= Ha'(t)u is the speed of the curve «. In fact, to obtain V,...,V, it is sufficient

to apply the Gram-Schmidt orthonormalization process to « (¢),a (¢),...,a'"(t).
Moreover, the functions «,x,,...,k, , are easily obtained by using the above Frenet

equations. More precisely, V,,...,V, and «x,,x,,...,x, , are determined by the following

formulas:
E\(#):= a (1) = ”?Eg >
E,(0)= (-3 <" (0. E,1) > ” - ((;))2 ,
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E, (1)
|£.®

V_ .=

>

2

— ||E5+1 (t)”
O =1 OllE®

where o6 € {1,2,3,...,d —1} (see, [4]). For the case d =n the Frenet curve « is called a
generic curve [3, 10]. A Frenet curve of rank d for which «,,x,,...,x, , are constant is
called (generalized) helix or W — curve [5]. Meanwhile, a Frenet curve of rank d with
. K, Ky, K K, .
constant curvature ratios —=, —, =% .., —4L is called a ccr—curve [6, 7].
K K K Kia
A generic space curve with constant first curvature x, and non-constant second

curvature «, is called a Salkowski curve [1, 9]. A generic curve in E* is called a slope

curve for which the curvatures x, # 0, x, and x; satisfy the relations

oS, @
Kl Kl

where A and u are non-zero real constants [5].

2. Euclidean Curves with Incompressible Canonical Vector Field

Let a=a(s):I cR —>E" be a regular curve in E” given with the arclength
parameter s . For the Euclidean curve a(s) there exists a natural decomposition of the

position vector field « given by:
a(s)=a(s) +a(s), 3)

where a(s)' and a(s)" denote the tangential and the normal components of o,

respectively.

A vector field v on a Riemannian manifold (M, g) is called conservative if it is

the gradient of some function, known as a scalar potential. Conservative vector fields
appear naturally in mechanics: They are vector fields representing forces of physical
systems in which energy is conserved [2].

For Euclidean curves we give the following definition.
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Definition 2.1 Let a = a(s): I c R —> E" be a unit speed, regular curve in E". If

the divergence of the the canonical vector field a(s)" of a vanishes identicall. That is;
if

div(a" (s)) =0,
holds then the vector field a(s)" is called incompressible.

Using a result of B.Y. Chen in [2] one can get the following adapted result.

Theorem 2.2 Let o = a(s): I c R —>E" be a unit speed, regular curve in E" .

Then the canonical vector field a/(s)" of a is incompressible if and only if

(Aa(s),a(s)) =1, 4)

2
holds, where A = —% is the Laplacian of « .
s

Proof. The divergence of the canonical vector field a(s)" of « is given by
div(@(s)") = (Vs ()", a'(5)) )
where V is the covariant derivative in E”. For the scalar potential function
f= l(ma),
2

the gradient of f becomes

grad(f) ==V, {a(s),a(s))a'(s)

= ('(s), a())er'(s) = a(s)"

N | =

(6)

which means that, the canonical vector field a(s)" is conservative. Hence, substituting

(6) into (5) after some computation we get
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div(a(s)") = (V ;@) a'())
= (Vo () a)a’ ()} a'(9))
(Vo' (s),als)) ' (s),a'())
+ <a'(s), %a,(s)a(s)xa'(s), a'(s))
@), @GNV i@ (), @'(5))

Furthermore, using the equalities

(V' (s),0'(5)) =0,
(a'(s),a'(s)) =1, V ,a(s)=a'(s)

into previous equation one can get

div(a(s)") =(V @' (s),a(5)) +1

If the canonical vector field a(s)' of a is incompressible then by definition

div(a(s)") =0 holds identically. So, we obtain

(V' (s),a(s))=-1 (7)

which gives the proof of the theorem.

2.1 Planar Curves

Let a=a(t):1 cR —E’ be a unit speed regular curve in E*. Then one can get

the following Frenet equations;
a'(s)=T(s),
a' (s)=T (s)=«xN(s),
N'(s)=-«T(s),
where {T ,N } is the Frenet frame of @ and x > 0 is the curvature (function) of « .

For the plane curves we have the following classification theorem of B.Y. Chen;
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Theorem 2.3 [2] Let a = a(s): 1 c R - E* be a unit speed, regular curve in &’ .
Then the canonical vector field a(s)" of a is incompressible if and only if up to a rigid

motion in & about the origin, a is an open portion of a curve of the following types;
a) A circle centered at the origin,

b) A curve defined by the parametrization
a(s)= C%(cos(c\/;) +cs sin(Cx/;),sin(c\/;)—c s cos(c\/;)),

for some non-zero real number c.

2.2 Space Curves

Let o = a(s) be a regular space curve in E’ given with the arclength parameter

s. Then we have the following Frenet equations;
o (s)=T(s),
a (s)=T(s)=xN(s), (8)
N'(s)=—x,T(s)+x,B(s),
B'(s)=-K,N(s),
where 7,N and B are the Frenet frame fields of  and x, >0 and «, are the

curvature functions of « .

From now on let us assume that « is a space curve whose canonical vector field

a(s)" is incompressible. Then it follows from (7) and (8) that

__1
(N(s),a(s))= —. )

1

Differentiating (9) with respect to s and using (8) we have

'

—i,(T(s),a(s))+ &, {B(s),a(s)) = L. (10)

K

Similarly, differentiating (10) with respect to s and using the Frenet equations (8) we
get

75



i, (T(s),a(s)) + &, (B(s), a(5)) = (%j —’;—2. (11)

Consequently, the equations (10) and (11) have a common solution

h(T(s),a(s)) = %+ g, (12)
h(B(s),a(s))=1; + f, (13)

where f,g and 4 are smooth functions defined by

K

(D_K_lz,
f= K{("_Kl(o’a (14)
g=K5P—K50,

h= KK, — KK,
respectively. So, we have the following cases;

Case (a): Suppose that If 2=0 holds. In this case (14) implies that the equality

C e . K .
KK, — kK, = 0 holds identically. Thus, the ratio —= A is a real constant. So, the curve

K

a = a(s) 1s a cylindrical helix. We have the following subcases;

(a,): If x, and «, are both constant curvatures, i.e., & is a W —curve. In this
case f =0 and g =0 holds identically. Thus, (12) and (13) gives x, =0. Hence

a = a(s) 1s an open portion of a circle centered at the origin.

(a,): If x;, and x, are both non-constant curvatures. Then, differentiating the
equations (12) and (13) with respect to s and using (14) with x, = Ax, we obtain the

following differential equation
3(k)) —xm + A2 =0, (15)

where A is a non-zero constant function. A simple calculation gives that the differential
equation (15) has a non-trivial solution
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+ ! ,
\/—/1252 +2as—2b

(16)

K =

for some real numbers a,b and 4.
Summing up the equalities above we obtain the following result;

Theorem 2.4 Let a=a(s): I cR —>E’ be a unit speed, regular curve in E’

given with incompressible canonical vector field a(s)". If a is a helical curve then «

is either an open portion of a circle centered at the origin or a cylindrical helix given
with the Frenet curvatures

N 1
\/—/1252 +2as—2b

K, = K, = AK,,

where a,b and A are real constants.

Case (b): Suppose that /## 0 holds. In this case (12) and (13) gives

(T(s),a(s)) = ";% (17)
(B(s),a(s)) = 7 Zf . (18)

Differentiating both equations (17) and (18) with respect to s and using the Frenet
formulae (8) we obtain the following equations

2 ,
0:[19 +Klg] (19)
Kh
N
ﬁ{"z *fj , (20)
K h

respectively.

Summing up the equalities (17)-(20) we obtain the following result.
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Theorem 2.5 Let a = a(s): 1 c R — E’ be a unit speed, non-helical curve in &’ .

Then the canonical vector field a(s)' of a is incompressible if and only if the

following two equalities hold;

0= K +Kg ,
Kh ’

where

A

1

(0_’(_12’
f=Ko-K¢,
g=KQ—K,0,

h= KKk, — KK,
are real valued smooth functions with h#0.

As a consequence of Theorem 2.5 we obtain the following results;

Corollary 2.6 Let a=a(s):I cR—>E’ be a unit speed, non-helical curve in

. If a is a Salkowski curve with the incompressible canonical vector field a(s)"
then

P S Q1)

V-2¢es-2d°
holds identically.

Proof. Let « be a Salkowski curve with the incompressible canonical vector field

a(s)". Then using (14) we get
f: g~ O’h :_KIK;’

where «, is a real constant. Consequently, substituting these values into (19) and (20)

we get the same differential equation
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3(x)) — K, =0, (22)

for the both equations (19) and (20) respectively. An easy calculation gives that the
differential equation (22) has a non-trivial solution (21).

2.3 Curves in Euclidean 4-space E*

Let a=a(s) be a regular curve in E* given with the arclength parameter s.

Then we have the following Frenet equations;
a (s)=T(s),
a'(5) =T () = K, ()N (s),
N'(s) =~k ()T (s) + 55, () B(s), (23)
B (5) = —x, ()N (s) + 15 ()W (s),
W (s) = —k(s)B(s),

where T, N, B and W are the Frenet frame fields of « and x, >0, x, and x; are the

curvature functions.

It is well-known that the regular parametric curve ¢ in E* has the position vector
field of the form

a(s) = my ()T (s)+m (s)N(s) + m,(5)B(s) + my ()W (s), (24)

where m,(s),0<i<3 are differentiable functions and 7, N, B and W are the Frenet

frame fields of «. Differentiating (24) with respect to arclength parameter s and using
the Frenet equations (23), we obtain

a (s) = (my(s) = &, (s)m, ()T (s)

+(my(5) + &6, ()my (5) = &6, (5)m, ()N (s) (25)
+(my (5) + 16, ()m, () = 16, (5)m; (5)) B(s)

+(my (5) + &5 (), ()W

which follows
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m, —km, =1,

m, + k;my — Kk,m, =0, (26)
m, + i,m, —k,m; =0,

m; +ic;m, =0,

(see, [8]).

From now on let us assume that « is a space curve whose canonical vector field

a(s)" is incompressible. Then it follows from (7) and (23) that

m, = (N(s),a(s)) = -, 27

Kl
holds. So, from the first equation of (26) we deduce that
my =(T(s), a(s)), (28)

is a constant function. Further, the equations in (26) imply that

_ ’({ + Kfmo
m, = —————,
K K,
m, + k,m
_m, T Km
my = ————, (29)
K
my = —K5m,,
holds identically.

In [8] the first author and at all. gave the following definition;

Definition 2.7 Let o = a(s) be a regular curve in B* given with the arclength
parameter s. If the position vector x lies in the hyperplane spanned by {T , N, W} or
equivalently the curvature function m, vanishes identically then o is called an

osculating curve of first kind in * .

We obtain the following result.
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Theorem 2.8 Let a=a(s):I cR—>E" be a unit speed regular curve in E'

given with incompressible canonical vector field a(s)'. If a is an osculating curve of
first kind then

(30)

2 __ —
— =F (31)
K, N2as+c
holds, where m,=a, m, =b and c are real constants.

Proof. Let o be a regular curve with the incompressible canonical vector field
a(s)'. If « is an osculating curve of first kind then by definition m, = 0. So using the

first equation of (29) we get the differential equation
K, +x.m, =0,
which has a solution (30). Similarly using the second and third equation of (29) we get

m; =0,

2
— T Tk,
K3

where m, = a,m, = b are constant functions. So we obtain (30).
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