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A NEW PERSPECTIVE OF TRANSMUTED DISTRIBUTION

MONIREH HAMELDARBANDI AND MEHMET YILMAZ

Abstract. Regarding the concept of quadratic rank transmutation, a new dis-
tribution with convex combinations of the life distributions of two-component
systems (series and parallel systems) whose component lifetimes are not iden-
tical is obtained. This proposed distribution has extra parameters compared
to the known transmuted distribution. It can also be represented by two dif-
ferent baseline distributions. So, it is very flexible in modeling. A description
of the various structural properties of the subject distribution along with its
reliability behavior is provided. Finally, a real data analysis is performed for
this distribution and it is found that this class is more flexible.

1. Introduction

In the recent years, there has been a growing interest in different types of mix-
ture distributions and several of them have been studied. Adding parameters to
a well-established distribution is a time-honored device for providing more flex-
ible distributions. An interesting method of adding a new parameter to known
distributions was pioneered by [21]. This method has been named as transmuted
distribution. In literature, there are some transmuted distributions that have been
studied. Some of them are listed below.
Shaw [22] defined the theory of transmuted distribution. Through this work,

many studies have been done. Aryal and Tsokos [6] defined the transmuted ex-
treme value distribution. Also, Aryal and Tsokos [7] presented a new generaliza-
tion of Weibull distribution called the transmuted Weibull distribution. Recently,
Aryal [5] proposed and studied the various properties of the transmuted log-logistic
distribution. Subsequently, Elbatal and Aryal [10] presented on the transmuted ad-
ditive Weibull distribution. Merovci [15] studied transmuted Lindley distribution
and applied it to bladder cancer data. In another article Merovci [16] introduced
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transmuted exponentiated exponential distribution and transmuted rayleigh distri-
bution is introduced by [17]. Moreover, Merovci and Elbatal [18] studied trans-
muted Lindley-geometric distribution and Merovci and Puka [19] defined trans-
muted Pareto distribution and discussed theirs various properties. Transmuted
exponentiated Lomax distribution is studied by [8], Eltehiwy and Ashour [12] ob-
tained transmuted exponentiated modified Weibull distribution, transmuted expo-
nentiated gamma distribution is studied by [13], transmuted exponentiated Fréchet
distribution is studied by [11] , exponentiated transmuted Weibull distribution is
studied by [1].
In this study, we introduce a new distribution by using convex combination of two

exponential distribution with different parameters. It is important to note that the
reparametrization is done on convex combination parameter, then the transmuted
parameter can be achieved. The main aim of this article is to discuss about the
principal idea of transmutation method.
Second part of this article contains some main definitions, and the analytical

shapes of the probability density, survival, cumulative hazard rate and hazard rate
functions are presented of the model under study. Statistical properties including
moments, generating function and skewness and kurtosis, random number genera-
tion, Rényi entropy of proposed distribution are discussed in subsections of Section
2. In part 3, two exponential distributions with different parameters for the base-
line distributions to investigate a special case of the new distribution introduced
in part 2 are considered. In addition to the same mathematical properties of the
new distribution studied in section 2, mean residual function, maximum likelihood
estimates and order statistics are also studied. Finally, three real data applications
are presented to illustrate the proposed distribution.

2. The New Family

Two-component systems will be given in this section. Firstly, let’s consider
the series system. Failure of the serial system is due to failure of either of the
two parts. T1 and T2 represent the component lifetimes which are independent
random variables having the distribution functions F (t) and G(t) respectively and
Tmin = min{T1, T2} stands for the series system lifetime. Hence, the probability
of failure of this system is given by

HTmin(t) = P (Tmin ≤ t) = P (min{T1, T2} ≤ t) = F (t) +G(t)− F (t)G(t)

In the same way, parallel system loses its functioning, if the two components of
the system are not functioning. Accordingly, Tmax = max{T1, T2} stands for the
parallel system lifetime that the probability of failure of this system can be written
as

HTmax(t) = P (Tmax ≤ t) = P (max{T1, T2} ≤ t) = F (t)G(t)

Component lifetimes T1 and T2 can be stochastically ordered as Tmin≤ Ti≤ Tmax,
i = 1, 2. Namely, we have HTmax(t) ≤ F (t) ≤ HTmin(t). Then, for λ ∈ [0, 1], the



1146 MONIREH HAMELDARBANDI AND MEHMET YILMAZ

convex combination can be written as follows

H(t) = λHTmin(t) + (1− λ)HTmax(t)

= λ (F (t) +G(t)− F (t) G(t)) + (1− λ)F (t)G(t)

= λ (F (t) +G(t)) + (1− 2λ)F (t)G(t). (1)

If the transformation is done by applying λ = 1+δ
2 in (1), we can write

H(t) =
1 + δ

2
(F (t) +G(t))− δF (t)G(t), (2)

=
1 + δ

2
HTmin(t) +

1− δ
2

HTmax(t)

where |δ| ≤ 1. Thus, by this method we have obtained a new univariate dis-
tribution which looks like to the transmuted distribution extremely. So, if the
baseline distributions are taken identical, namely, F (t) = G(t) in the latter equa-
tion, we can obtain the transmuted distribution which has become very popular
in the recent years. Here parameter space for proposed distribution is defined as
P = {Θf ∪ Θg ∪ {δ}}. When a comparison of the parameter space of the known
transmuted distributions is made, this new distribution has an extra parameter set
Θg. By using cumulative distribution function in equation (1), the corresponding
probability density function (p.d.f.) is given by

h(t) = λ(f(t) + g(t)) + (1− 2λ)(f(t)G(t) + F (t)g(t)), (3)

= λ(f(t) + g(t)− f(t)G(t)− F (t)g(t)) + (1− λ)(f(t)G(t) + F (t)g(t))

= λhTmin(t) + (1− λ)hTmax(t)

2.1. Survival Function of Proposed Distribution. According to (2), the cor-
responding survival function of proposed distribution is given as follows,

H̄(t) = 1− λ(F (t) +G(t))− (1− 2λ)F (t)G(t)

= (1− λ)(F̄ (t) + Ḡ(t))− (1− 2λ)F̄ (t)Ḡ(t)

= (1− λ)(F̄ (t) + Ḡ(t)− F̄ (t)Ḡ(t)) + λF̄ (t)Ḡ(t).

2.2. Cumulative Hazard Rate and Hazard Rate Function of Proposed
Distribution. The cumulative hazard rate and hazard rate functions of this dis-
tribution are defined by

R(t) = − log H̄(t) = − log (1− λ (F (t) +G(t))− (1− 2λ)F (t)G(t)),

r(t) =
h(t)

H̄(t)
=
λ (f(t) + g(t)) + (1− 2λ)(f(t)G(t) + F (t)g(t))

(1− λ)(F̄ (t) + Ḡ(t)− F̄ (t)Ḡ(t)) + λF̄ (t)Ḡ(t)
.

Note that, the hazard rate function of the proposed distribution can also be obtained
as a function of the hazard rate of the baseline distributions as follows:

r(t) = rf (t) + rg(t)−
(1− λ)(rf (t)Ḡ(t) + rg(t)F̄ (t))

(1− λ)(F̄ (t) + Ḡ(t)− F̄ (t)Ḡ(t)) + λF̄ (t)Ḡ(t)
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In special case, if we get λ = 1
2 , distribution and probability density functions of

this special case are H∗(t) = F (t)+G(t)
2 and h∗(t) = f(t)+g(t)

2 respectively. That is,
H∗ represents average of the baseline distributions. So, the hazard rate funcion of
H∗ is defined by

rh∗(t) =
f(t)+g(t)

2

1− F (t)+G(t)
2

=
f(t) + g(t)

F̄ (t) + Ḡ(t)

=
rf (t)F̄ (t) + rg(t)Ḡ(t)

F̄ (t) + Ḡ(t)
= w(t)rf (t) + (1− w(t))rg(t),

where w(t) = F̄ (t)
F̄ (t)+Ḡ(t)

. It is clear that the hazard rate function of this case can be
written as a weighted expression of the hazard rate functions of the two baseline
distributions.

2.3. Moment Generating Function and Moments of Proposed Distribu-
tion. The moment generating function of random variable T is obtained as

MT (k) =

∫ ∞
0

ekt(λ (f(t) + g(t)) + (1− 2λ) (f(t)G(t) + F (t)g(t))) dt

= λ

∫ ∞
0

ekt(f(t) + g(t)) dt+ (1− 2λ)

∫ ∞
0

ekthTmax(t) dt

= λ(MTf (k) +MTg (k)) + (1− 2λ)MTmax(k)

Moment of T random variable is defined as

E(T k) =

∫ ∞
0

tk h(t)dt = λ(E(T kf ) + E(T kg )) + (1− 2λ)E(T kmax), (4)

Then the first four moments can be obtained by taking k = 1, 2, 3, 4 in equation
(4).

2.4. Skewness and Kurtosis of Proposed Distribution. Based on the first
four moments of the random variable under consideration, the skewness and kurtosis
measures are given by

γ1 = E

(T − E(T )√
V ar(T )

)3
 =

1

(E(T 2)− E(T )2)
3
2

×


λ(E(T 3

f ) + E(T 3
g )) + (1− 2λ)E(T 3

max)

−3(λ(E(Tf ) + E(Tg)) + (1− 2λ)E(Tmax))
(λ(E(T 2

f ) + E(T 2
g )) + (1− 2λ)E(T 2

max))

+2(λ(E(Tf ) + E(Tg)) + (1− 2λ)E(Tmax))
3


γ2 = E

(T − E(T )√
V ar(T )

)4
 =

1

(E(T 2)− E(T )2)
2
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×



λ(E(T 4
f ) + E(T 4

g )) + (1− 2λ)E(T 4
max)

−4(λ(E(Tf ) + E(Tg)) + (1− 2λ)E(Tmax))
(λ(E(T 3

f ) + E(T 3
g )) + (1− 2λ)E(T 3

max))

+6(λ(E(Tf ) + E(Tg)) + (1− 2λ)E(Tmax))
2

(λ(E(T 2
f ) + E(T 2

g )) + (1− 2λ)E(T 2
max))

−3(λ(E(Tf ) + E(Tg)) + (1− 2λ)E(Tmax))
4


2.5. Random Number Generation from Proposed Distribution. In this sec-
tion, the mixture method will be used to generate the random number from sug-
gested distribution. Distribution function that is defined in (2) can be written as a
mixture of Tmin and Tmax distribution functions as the latter equality in (2). So,
the random number is generated from this nested mixture by the following steps:
Step 1: Generate t1 ∼ F and t2 ∼ G independently,
Step 2. Generate u ∼ U(0, 1),
Step 3. If u ≤ λ then t = min{t1, t2}, otherwise t = max{t1, t2}.

2.6. Rényi Entropy of Proposed Distribution. The entropy of a random vari-
able is a measure of variation of the uncertainty, see [20]. Then the Rényi entropy
function of the random variable T with p.d.f. (3) is defined by

IR(ρ) =
1

1− ρ log

∫ ∞
0

(h(t))
ρ
dt, (5)

where ρ > 0, ρ 6= 1. We have the following series representation of (h(t))
ρ by

applying the generalized Binomial theorem to obtain Rényi entropy for proposed
distribution.

(h(t))
ρ

= (λhTmin(t) + (1− λ)hTmax(t))
ρ

=

∞∑
j=0

(
ρ

j

)
(λ(f(t) + g(t)− (f(t)G(t) + F (t)g(t))))

ρ−j

×((1− λ)(f(t)G(t) + F (t)g(t))
j

Then, an equality for Rényi entropy can be written as follow

IR(ρ) =
1

1− ρ log [

∞∑
j=0

∞∑
k=0

∞∑
m=0

∞∑
n=0

∞∑
l=0

(−1)
k

(
ρ

j

)(
ρ− j
k

)(
j

m

)(
ρ− j − k

n

)(
k

l

)

×λρ−j(1− λ)
j
∫ ∞

0

((f(t))
ρ−n−l−m

(g(t))
n+l+m

(F (t))
l+m

(G(t))
k+j−l−m

)dt]

3. The Application of the Proposed Method

We assume random variables T1 and T2 have exponential distribution with pa-
rameters β1 and β2, respectively. The baseline distributions in equation (2) are
considered as two different exponential distributions. Then we have

H(t) = 1− (1− λ)
(
e−β1t + e−β2t

)
+ (1− 2λ) e−(β1+β2)t, (6)
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Figure 1. P.d.f. of the CCE-E distribution for some parameter values

where λ ∈ [0, 1]. So, the new univariate distribution function is obtained. This
distribution is called the convex combination of two exponential distributions with
different parameters (CCE-E). Then, the p.d.f. can be obtained from the cumulative
distribution function that defined in (6) as

h (t) = (1− λ)
(
β1e
−β1t + β2e

−β2t
)
− (1− 2λ) (β1 + β2) e−(β1+β2)t,

where t ≥ 0, β1, β2 ≥ 0. Now, the shapes of the p.d.f. of the CCE-E distribution
can be analyzed as follows

h′ (t) = (1− λ)
(
−β2

1e
−β1t − β2

2e
−β2t

)
+ (1− 2λ) (β1 + β2)

2
e−(β1+β2)t

by examining this derivation, it is clear that when λ ≥ 1
2 , h

′
(t) < 0 is obtained and

we can say p.d.f. is decreasing. Also, in order for p.d.f. to be unimodal, it must
be λ < 1

2 . Figure 1 illustrates some possible shapes of the p.d.f. of the CCE-E for
different values of the parameters β1, β2 and λ.

It is clear from Figure 1 that the p.d.f. of proposed distribution can take different
shapes. The p.d.f. of the CCE-E distribution is compared with their baseline dis-
tributions, that is, p.d.f.s of two exponential distributions with parameters β1 = 2
and β2 = 3 in Figure 2.
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Figure 2. Compare plots of p.d.f. of the CCE-E with baseline
distribution for some parameter values

3.1. Survival Function of the CCE-E Distribution. The survival function of
the CCE-E distribution is given as follows

H̄ (t) = (1− λ)
(
e−β1t + e−β2t

)
− (1− 2λ) e−(β1+β2)t (7)

3.2. Cumulative Hazard Rate and Hazard Rate Function of the CCE-E
Distribution. The cumulative hazard rate R (t) and hazard rate r (t) functions
can be found as follows

R (t) = − log H̄ (t) = − log
(

(1− λ)
(
e−β1t + e−β2t

)
− (1− 2λ) e−(β1+β2)t

)

r (t) =
h (t)

H̄ (t)
=

(1− λ)
(
β1e
−β1t + β2e

−β2t
)
− (1− 2λ) (β1 + β2) e−(β1+β2)t

(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t

= (β1 + β2)−
(1− λ)

(
β2e
−β1t + β1e

−β2t
)

(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t
,

Let’s investigate the hazard rate function.

r′ (t) =
−(1− λ)

2
(β1 + β2)

2
e−(β1+β2)t(

(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t
)2

+
(1− λ) (1− 2λ)

(
β2

2e
−(2β1+β2)t + β2

1e
−(β1+2β2)t

)(
(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t

)2
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Figure 3. Hazard rate function of the CCE-E distribution for
some parameter values

It is clear from above derivation, (1− 2λ) must be negative so that the derivative
sign can be negative. That is, it is enough that λ ≥ 1

2 . So, the hazard rate function
is decreasing. Also, in order for hazard rate function to be unimodal, that is, in
order for r′ (t) = 0 to have a single solution, it must be λ < 1

2 . We are primarily
interested in extreme points of r(t) and we have

r (0) = λ (β1 + β2)

lim
t→∞

r (t) =

{
β1 if β1 < β2;
β2 if β1 > β2.

Thus, the hazard rate function of this distribution is changed from λ (β1 + β2) to
min {β1, β2}. Now, we find the values of the hazard rate function for extreme
points of combination parameters.

r (t) =


(β1 + β2)− β2e

−β1t+β1e
−β2t

e−β1t+e−β2t−e−(β1+β2)t if λ = 0;

(β1 + β2)− β2e
−β1t+β1e

−β2t

e−β1t+e−β2t
if λ = 1

2 .

β1 + β2 if λ = 1

while λ = 1, hazard rate function is constant. Now, we show some possible shapes
of the hazard rate function for selected parameter values in following figures.

Figure 3 shows the hazard rate function that defined in (7) with different choices
of parameters. This distribution has an decreasing hazard rate function for λ ≥ 1

2 .
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Figure 4. Mean residual life function of the CCE-E distribution
for some parameter values

If λ < 1
2 , the hazard rate function is inverse bathtub curve function, and for λ = 1,

it is constant.

3.3. Mean Residual Life Function of the CCE-E Distribution. Now, we will
examine the mean residual life function of the CCE-E distribution which is another
important characteristic of a random variable.

m (t) = E (T − t |T > t ) =

∫ ∞
0

(k − t) dP (T ≤ k |T > t ) =

∫∞
t
H̄ (k) dk

H̄ (t)

=
(1− λ)

(
1
β1
e−β1t + 1

β2
e−β2t

)
− (1− 2λ)

(
1

β1+β2

)
e−(β1+β2)t

(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t

=

(
1

β1 + β2

)
−

(1− λ)
(

1
β2
e−β1t + 1

β1
e−β2t

)
(1− λ) (e−β1t + e−β2t)− (1− 2λ) e−(β1+β2)t

, (8)

The mean residual life function obtained in (8) is examined as follows:

m (0) =
1− λ
β1

+
1− λ
β2

− 1− 2λ

β1 + β2

=
(1− λ)

(
β2

1 + β2
2

)
+ β1β2

β1β2 (β1 + β2)

lim
t→∞

m (t) =

{
1
β1

if β1 < β2;
1
β2

if β1 > β2.

and some possible shapes of the mean residual life function for selected parameter
values are given in following figures.
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Figure 5. Compare plots of The mean residual life function of
the CCE-E with baseline distribution for some parameter values

The mean residual life function, defined above, will be compared with the mean
remaining life function of the baseline distributions for the values of the parameters
β1 = 2, β2 = 3 in the following graph.

As you can see above (Figure 5), as T goes to infinity, the mean residual life
function of the CCE-E distribution approaches the mean residual life function of
exponential distribution with small parameter.

3.4. Moment Generating Function and Moments of the CCE-E Distri-
bution. The moment generating function of the CCE-E random variable can be
expressed as

MT (k) = (1− λ)

(
β1

β1 − k
+

β2

β2 − k

)
− (1− 2λ)

(
β1 + β2

β1 + β2 − k

)
= (1− λ)

(
MExp(β1) (k) +MExp(β2) (k)

)
− (1− 2λ)MExp(β1+β2) (k)

where k < min (β1, β2). Thus, we give a weighted expression of the moment gener-
ating functions of the three exponential distributions with parameters β1, β2 and
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β1 + β2. The k
th moment of a random variable T can be obtained from (3) as

E(T k) = Γ(k + 1)

(
(1− λ)

(
1

β1
k

+
1

β2
k

)
− 1− 2λ

(β1 + β2)
k

)
, (9)

= (1− λ)
(
E
(
T kExp(β1)

)
+ E

(
T kExp(β2)

))
− (1− 2λ)E

(
T kExp(β1+β2)

)
The expressions for the expected value is

E (T ) = (1− λ)

(
1

β1

+
1

β2

)
− 1− 2λ

β1 + β2

Then, the 2th, 3th and 4th moments of a random variable T from equation (9) are
given by

E
(
T 2
)

= Γ (3)

(
(1− λ)

(
1

β1
2 +

1

β2
2

)
− 1− 2λ

(β1 + β2)
2

)

E
(
T 3
)

= Γ (4)

(
(1− λ)

(
1

β1
3 +

1

β2
3

)
− 1− 2λ

(β1 + β2)
3

)

E
(
T 4
)

= Γ (5)

(
(1− λ)

(
1

β1
4 +

1

β2
4

)
− 1− 2λ

(β1 + β2)
4

)
3.5. Skewness and Kurtosis of the CCE-E Distribution. Based on the first
four moments of the CCE-E random variable, the skewness measure of this random
variable is given by

γ1 =
1(

Γ (3)
(

(1− λ)
(

1
β1

2 + 1
β2

2

)
− 1−2λ

(β1+β2)2

)
−
(

(1− λ)
(

1
β1

+ 1
β2

)
− 1−2λ

β1+β2

)2
) 3

2

×


Γ (4)

(
(1− λ)

(
1
β1

3 + 1
β2

3

)
− 1−2λ

(β1+β2)3

)
−Γ (4)

(
(1− λ)

(
1
β1

+ 1
β2

)
− (1− 2λ)

(
1

β1+β2

))(
(1− λ)

(
1
β1

2 + 1
β2

2

)
− 1−2λ

(β1+β2)2

)
+Γ (3)

(
(1− λ)

(
1
β1

+ 1
β2

)
− (1− 2λ)

(
1

β1+β2

))3

 , (10)

The values of the obtained skewness measures in (10) at the extreme values of λ
will be examined,

γ1 =

 2 if λ = 0, 1;
2.5134 if λ = 1

2 .

The skewness measures of the CCE-E distribution will be compared with the skew-
ness measure of the exponential distribution with the following graph.
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Figure 6. Comparison skewness measure of the CCE-E distribu-
tion with the skewness measures of the exponential distribution

The skewness measure of the exponential distribution is 2 and we can see that
the skewness measure of the CCE-E distribution is positive and larger than 2,
that is, the CCE-E distribution is a right skewed distribution. So, the skewness
measure of this distribution is larger than the exponential distribution, it is more
right skewed distribution than exponential distribution. When λ = 0 and λ = 1,
the skewness of the CCE-E distribution is equal to the skewness measure of the
exponential distribution. Now, the kurtosis measure of the CCE-E distribution will
be found as follows

γ2 =
1(

Γ (3)
(

(1− λ)
(

1
β1

2 + 1
β2

2

)
− 1−2λ

(β1+β2)2

)
−
(

(1− λ)
(

1
β1

+ 1
β2

)
− 1−2λ

β1+β2

)2
)2

×


Γ (5)

(
(1− λ)

(
1
β1

4 + 1
β2

4

)
− (1− 2 λ)

(
1

(β1+β2)4

))
−Γ (5)

(
(1− λ)

(
1
β1

+ 1
β2

)
− (1− 2λ)

(
1

β1+β2

))(
(1− λ)

(
1
β1

3 + 1
β2

3

)
− 1−2λ

(β1+β2)3

)
−Γ (4)

(
(1− λ)

(
1
β1

+ 1
β2

)
− (1− 2λ)

(
1

β1+β2

))4

 , (11)
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Figure 7. Comparison kurtosis measure of the CCE-E distribu-
tion with the kurtosis measures of the exponential distribution

The values of the obtained kurtosis measures in (11) at the extreme values of λ will
be examined,

γ2 =

{
9 if λ = 0, 1;
11.9623 if λ = 1

2 .

Then the kurtosis measures of the CCE-E distribution will be compared with the
kurtosis measure of the exponential distribution with the following graph.

The kurtosis measure of the CCE-E distribution is larger than the kurtosis mea-
sure of the exponential distribution for λ ∈ (0, 1). So, the p.d.f. of the CCE-E
distribution has a more sharp-pointed shape than the p.d.f. of exponential distri-
bution. For λ = 0 and λ = 1 the kurtosis measure of the CCE-E distribution is
equal to the kurtosis measure of the exponential distribution.

3.6. Estimation byMaximum Likelihood and the Information Matrix of
the CCE-E Distribution. Let t = (t1, t2, · · · , tn) be observed values from this
distribution with parameters β1, β2 and λ. The likelihood function forΘ = {β1, β2, λ}
is given by

L (Θ; t) =

n∏
i=1

(
(1− λ)

(
β1e
−β1t + β2e

−β2t
)
− (1− 2λ) (β1 + β2) e−(β1+β2)t

)
.
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Throughout this subsection, the log-likelihood function is denoted by l = logL (Θ; t)
for brevity. We differentiate l with respect to β1, β2 and λ as follows

∂l

∂β1

=

n∑
ı=1

(1− λ) (1− β1ti) e
−β1ti − (1− 2λ) (1− β1ti − β2ti) e

−(β1+β2)ti

h (ti; Θ)
, (12)

∂l

∂β2

=

n∑
ı=1

(1− λ) (1− β2ti) e
−β2ti − (1− 2λ) (1− β1ti − β2ti) e

−(β1+β2)ti

h (ti; Θ)
, (13)

∂l

∂λ
=

n∑
ı=1

−
(
β1e
−β1ti + β2e

−β2ti
)

+ 2 (β1 + β2) e−(β1+β2)ti

h (ti; Θ)
, (14)

The maximum likelihood estimators as β̂1, β̂2 and λ̂ are obtained by equating these
three equations (12), (13) and (14) to zero and solving the equations simultaneously.
For these three parameters, we will get the second order derivative of logarithms
of the likelihood functions for obtaining the elements of the Fisher-Information
Matrix.

Iβ1β1 =
∂2l

∂β2
1

= −
n∑
ı=1

(
(1− λ) e−β1ti − (1− 2λ) e−(β1+β2)ti

)2
(h (ti; Θ))

2

+

n∑
ı=1

(1− λ)
2

(2− β1ti)β2tie
−(β1+β2)ti

(h (ti; Θ))
2

+

n∑
ı=1

(1− λ) (1− 2λ) (2− β1ti − β2ti)β2tie
−(β1+2β2)ti

(h (ti; Θ))
2

Iβ2β2 =
∂2l

∂β2
2

= −
n∑
ı=1

(
(1− λ) e−β2ti − (1− 2λ) e−(β1+β2)ti

)2
(h (ti; Θ))

2

+

n∑
ı=1

(1− λ)
2

(2− β2ti)β1tie
−(β1+β2)ti

(h (ti; Θ))
2

−
n∑
ı=1

(1− λ) (1− 2λ) (2− β1ti − β2ti)β1tie
−(2β1+β2)ti

(h (ti; Θ))
2

Iλλ =
∂2l

∂λ2 = −
n∑
ı=1

(
−
(
β1e
−β1ti + β2e

−β2ti
)

+ 2 (β1 + β2) e−(β1+β2)ti

h (ti; Θ)

)2

Iβ1β2 = Iβ2β1 =
∂2l

∂β2∂β1

= −
n∑
ı=1

− (1− λ) (1− 2λ)
(

(1− β1ti) e−(β1+2β2)ti + (1− β2ti) e−(2β1+β2)ti
)

(h (ti; Θ))2



1158 MONIREH HAMELDARBANDI AND MEHMET YILMAZ

−
n∑
ı=1

(1− 2λ)2
(
e−2(β1+β2)ti − (1− β1ti) (1− β2ti) e−(β1+β2)ti

)
(h (ti; Θ))2

Iβ1λ = Iλβ1 =
∂2l

∂λ∂β1
= −

n∑
ı=1

β2e
−(2β1+β2)ti − (1− β1ti − β2ti)β2e−(β1+2β2)ti

(h (ti; Θ))2

Iβ2λ = Iλβ2 =
∂2l

∂λ∂β2
= −

n∑
ı=1

β1e
−(β1+2β2)ti − (1− β1ti − β2ti)β1e−(2β1+β2)ti

(h (ti; Θ))2

Thus, Fisher information matrix, In (Θ) of sample size n for Θ is as follows:

In (Θ) = −E

 Iβ1β1 Iβ1β2 Iβ1λ
Iβ2β1 Iβ2β2 Iβ2λ
Iλβ1 Iλβ2 Iλλ


Inverse of the Fisher-information matrix of single observation, i.e., I−11 (Θ) indicates as-
ymptotic variance-covariance matrix of maximum likelihood estimates of Θ. Hence, joint
distribution of maximum likelihood estimator for Θ is asymptotically normal with mean
Θ and variance-covariance matrix I−11 (Θ). Namely

√
n

 β̂1
β̂2
λ̂

−
 β1
β2
λ

 ∼ AN
 0

0
0

 , I−11 (Θ)

 . (15)

By solving this inverse dispersion matrix these solutions will yield asymptotic variance
and covariances of these ML estimators for these parameters. We can approximate
100 (1− γ) % confidence intervals for β1, β2 and λ by using (15) are obtained respec-
tively as

β̂1 ± z1− γ2
√
I−1β1β1 , β̂2 ± z1− γ2

√
I−1β2β2 , λ̂± z1− γ2

√
I−1λλ ,

where z γ
2
is the upper 100γ quantile of the standard normal distribution.

3.7. Rényi Entropy of the CCE-E Distribution. By using (3) for h (t) in the equation
(5) and applying the generalized Binomial expansion, then we have

(h (t))ρ =

∞∑
j=0

(
ρ

j

)(
(1− λ)

(
β1e
−β1t + β2e

−β2t
))ρ−j(

− (1− 2λ) (β1 + β2) e−(β1+β2)t
)j

=

∞∑
j=0

∞∑
k=0

(−1)j
(
ρ

j

)(
ρ− j
k

)
(1− λ)ρ−j(1− 2λ)jβρ−j−k1 βk2(β1 + β2)

je−((ρ−k)β1+(k+j)β2)t

Rényi entropy can be obtained as follows

IR (ρ) =
1

1− ρ log

[ ∞∑
j=0

∞∑
k=0

(−1)j
(
ρ

j

)(
ρ− j
k

)
(1− λ)ρ−j(1− 2λ)j

βρ−j−k1 βk2(β1 + β2)
j

(ρ− k)β1 + (k + j)β2

]
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3.8. Order Statistics of the CCE-E Distribution. Let’s T(1), T(2), . . . , T(n) denote
the order statistics of a random sample T1, T2, . . . , Tn from a continuous population with
p.d.f. h (t) and cdf H (t), then the p.d.f. of T(j) is given as follows

fT(j) (t) =
n!

(j − 1)! (n− j)!h (t) [H (t)]j−1[1−H (t)]n−j , j = 1, 2, . . . , n

=
n!

(j − 1)! (n− j)!

(
(1− λ)

(
β1e
−β1t + β2e

−β2t
)
− (1− 2λ) (β1 + β2) e

−(β1+β2)t
)

×
[
1− (1− λ)

(
e−β1t + e−β2t

)
+ (1− 2λ) e−(β1+β2)t

]j−1
×
[
(1− λ)

(
e−β1t + e−β2t

)
− (1− 2λ) e−(β1+β2)t

]n−j
therefore, the p.d.f. of the first order statistics T(1) is given by

fT(1) (t) = n
(

(1− λ)
(
β1e
−β1t + β2e

−β2t
)
− (1− 2λ) (β1 + β2) e

−(β1+β2)t
)

×
[
(1− λ)

(
e−β1t + e−β2t

)
− (1− 2λ) e−(β1+β2)t

]n−1
and the p.d.f. of the n. order statistics T(n) is given

fT(n) (t) = n
(

(1− λ)
(
β1 e

−β1t + β2e
−β2t

)
− (1− 2λ) (β1 + β2) e

−(β1+β2)t
)

×
[
1− (1− λ)

(
e−β1t + e−β2t

)
+ (1− 2λ) e−(β1+β2)t

]j−1
Note that λ = 1 yields the order statistics of the exponential distribution with parameter
(β1 + β2).

4. Numerical Examples

We illustrate the applicability of proposed distribution by considering three different
data sets which have been examined by a lot of other researchers. We compare the CCE-E
distribution with the different distributions that are defined before this work. In addition
to, we consider different p.d.f.s for the second baseline distribution in (3), such as Gamma
(CCE-G), Lognormal (CCE-Ln), Rayleigh (CCE-R) and Weibull (CCE-W) distributions.
In order to compare distributional models, some criteria as K-S (Kolmogorow-Smirnow),
−2LL (-2LogL), AIC (Akaike information criterion) and BIC (Bayesian information cri-
terion) are taken into account for the data sets. When comparing the CCE-E distribution
with the other distributions, only distributions with small K-S values are considered.

4.1. Data Set (Waiting time (in minutes) before customer service in Bank B).
The data set is given as the waiting time (in minutes) before customer service at bank B.
This data was analyzed by [4] and was also used by [23]. They fit this data to Lindley (L)
and generalized Lindley (GL) distributions and we fit this data to proposed distributions.
Thus, parameter estimates are β̂1 = 0.2082, β̂2 = 0.2082 and λ̂ = 0.1721. According to
the model selection criteria (K-S) tabulated in Table 1, it is said that the CCE-E takes
the best place in amongst these six models.
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Table 1. Model selection criteria for Bank B data
Data set K-S -2LL AIC BIC

L 0.080 338.203 340.203 341.759
GL 0.068 338.026 342.026 341.582

CCE-E 0.063 338.142 344.142 350.425
CCE-G 0.093 339.208 345.208 351.492
CCE-R 0.111 343.450 349.450 355.733
CCE-W 0.126 341.910 347.910 354.193

4.2. Data Set (Exceedances of Wheaton River flood data). The data consists of
the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon
Territory, Canada. The data consists of 72 exceedances for the years 1958—1984, rounded
to one decimal place. This data was used by [3] to apply Beta-Pareto (BP) distribution.
Merovci and Pukab [19] made a comparison between Pareto (P) and transmuted Pareto
(TP) distribution and they showed that better model is the transmuted Pareto distri-
bution (TP). Bourguignon et al. [9] proposed Kumaraswamy (Kw) Pareto distribution
(Kw-P). Yilmaz et al. [24] have proposed exponential modified discrete Lindley (EMDL)
distribution. We fit this data to the CCE-E distribution and get parameter estimates
as β̂1 = 0.0706, β̂2 = 0.9092 and λ̂ = 0.1536. According to the model selection criteria
(AIC, or BIC) tabulated in Table 2, we can see different form of proposed distribution
that defined in (3) is the best than other distribution and it is said that the CCE-E takes
second place in amongst ten models.

Table 2. Model selection criteria for river flood data
Model K-S -2LL AIC BIC
TP 0.389 572.401 578.4 580.9
P 0.456 606.128 610.1 610.4
BP 0.175 567.400 573.4 580.3
Kw-P 0.170 542.400 548.4 555.3
EMDL 0.116 503.574 507.6 512.1
CCE-E 0.079 499.164 505.164 511.994
CCE-G 0.063 495.971 501.971 508.801
CCE-Ln 0.144 537.013 543.013 549.843
CCE-R 0.093 497.484 503.484 510.314
CCE-W 0.142 503.855 509.855 516.685

4.3. Data Set (Bladder cancer). The data is extracted from [14] represents remission
times (in months) of a random sample of 128 bladder cancer patients. Several authors
analyzed this data set. Merovci [15], observed that the Lindley (L) and transmuted Lindley
(TL) distributions work quite well for this data. Also, this data was fitted to the two
parameter Lindley (TPL) and transmuted two parameter Lindley (TTL) distribution with
[2] to the subject data. This data is fitted to the CCE-E distribution and the parameter
estimates are β̂1 = 0.1064, β̂2 = 0.3519 and λ̂ = 0.09. K-S and AIC values in Table 3
indicate that the CCE-E fits well among the other distributions considered here.
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Table 3. Model selection criteria for bladder cancer
Distributions K-S -2LL AIC BIC

L 0.0740 839.040 841.040 –
TL 0.2265 830.310 834.310 –
TPLD 0.0846 828.684 832.684 –
TTLD 0.0637 825.884 825.884 –
CCE-E 0.0539 822.074 828.074 836.630
CCE-G 0.1222 839.073 845.073 853.629
CCE-Ln 0.1735 873.574 879.574 888.131
CCE-R 0.0433 820.967 826.967 835.523
CCE-W 0.0841 828.207 834.207 842.763

5. Conclusions

This work focuses on two new ideas. The first one is that a transmuted distribution
is actually a convex composition of min-max distributions of 2-sized sample. In the last
three years under the name of the transmuted distribution, over 50 studies have been
carried out. All of these are innovative contributions in terms of statistical modeling. The
second is that the proposed new distribution has two baselines. According to the obtained
results for real data sets, we can conclude that this method achieves success in modeling by
giving more flexibility to the distribution. Therefore, many more new distributions such
as Exp-Weib, Weib-Rayleigh, and Weib-Lindley can be derived for subsequent studies.
Obviously, this will bring innovation in addition to the existing works.
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