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Abstract 

Generally bivariate probability density function defined in a rectangular area is used to calculate the cumulative 

distribution function from the bivariate probability density function. However, definition limits of the probability 

density functions being non-rectangular are in existence in practice. In this paper, primarily arbitrary non-rectangular 

areas are defined by applying a polygonal approach. The polygonal area obtained as a result of this approach constitutes 

boundaries of the probability density function. Thus, the bivariate piecewise probability density function can be defined 

in an arbitrary area. Then the cumulative distribution function is calculated in the obtained area. Two types of 

approaches are used for these calculations. The first approach is applied to take integral analytically of bivariate 

continuous probability density function in the polygonal area. The second approach is developed a numerical method 

since the explicit integral of the selected probability density function cannot be found. 

 

Keywords: Cumulative distribution function, Probability density function based on polygon, Bivariate distribution 

functions, Bivariate piecewise distribution functions 

 

 

Öz 

İki değişkenli olasılık yoğunluk fonksiyonundan, birikimli dağılım fonksiyonunu hesaplamak için genellikle 

dikdörtgensel bir alanda tanımlanmış iki değişkenli olasılık yoğunluk fonksiyonu kullanılır. Ancak uygulamada, tanım 

bölgesi dikdörtgensel bir alan olmayan birçok olasılık yoğunluk fonksiyonu mevcuttur. Bu çalışmada öncelikle 

dikdörtgen olmayan keyfi alanlar, çokgensel bir yaklaşım uygulanarak tanımlanmıştır. Bu yaklaşım sonucunda elde 

edilen çokgensel bölge, olasılık yoğunluk fonksiyonunun tanımlandığı sınırlarını oluşturmuştur. Böylece, iki değişkenli 

parçalı olasılık yoğunluk fonksiyonu, keyfi bir alanda tanımlanabilir. Elde edilen tanım bölgesinde birikimli dağılım 

fonksiyonu hesaplamaları yapılmıştır. Bu hesaplamalarda iki tür yaklaşım kullanılmıştır. İlk yaklaşım çokgensel alan 

üzerinden iki değişkenli sürekli olasılık yoğunluk fonksiyonunun analitik integrali alınarak yapılmıştır. İkinci yaklaşım 

ise seçilen olasılık yoğunluk fonksiyonun integralinin açık bir şekilde hesaplanamaması durumunda uygulanması için 

geliştirilen sayısal yöntemdir. 

 

Anahtar kelimeler: Birikimli dağılım fonksiyonu, Çokgen tabanlı olasılık yoğunluk fonksiyonu, İki değişkenli dağılım 

fonksiyonları, İki değişkenli parçalı dağılım fonksiyonları 
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1. Introduction 

 

Usage of bivariate distribution functions are 

existence as well as usage of a univariate 

probability functions generally (Martinez and 

Martinez, 2002). Usually, the definition range of 

bivariate probability density function is shown 

with either a semi-infinite or infinite range such as 

𝑓(𝑥, 𝑦): (−∞, ∞) × (−∞, ∞) → ℝ2 or finite 

range such as 𝑓(𝑥, 𝑦): [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ2 

(Roussas, 2003; Miller and Childers, 2012). In 

both cases, it is possible to calculate the 

cumulative distribution function by conventional 

methods. However, the definition range of 

bivariate probability density function is a 

rectangular or infinite width area is not always 

possible in practice. Therefore, probability density 

function in an arbitrary area (Ω) can be defined as 

𝑓𝑋𝑌(𝑥, 𝑦): (𝑋, 𝑌) ∈ Ω → ℝ2. Consequently, 

different approaches must be used for calculations 

in an arbitrary field. 

 

In this paper, an arbitrary area is defined by 

converting into to the polygonal area with the 

determination of its dominant points because of 

the difficulty of mathematical definition of an 

arbitrary area. As a result of this conversion, the 

polygonal area constitutes the boundaries of 

probability density function. Geometric 

approaches can be used for calculation of 

distribution function in the obtained polygonal 

area (confined area) based on the defined 

boundaries. A similar approach was applied to this 

probability density function in the polygonal area 

which has a uniform distribution by (Kesemen 

and Doğru, 2011). When it has a non-uniform 

distribution, the cumulative distribution function 

is calculated approximately by using column 

blocks based on small rectangles. This method 

does not provide desired perfection in terms of 

both computational accuracy and computational 

time. Unlike their work, the cumulative 

distribution function is calculated by using 

column blocks based on small triangles instead of 

rectangle blocks here. Two types of approaches 

are used for calculating cumulative distribution 

function. The first approach is performed by 

taking integral over the continuous functions. The 

second approach is a numerical method which is 

used on the above-mentioned triangle.  In this 

case integral of the selected probability density 

function is not calculated explicitly. 

 

Bivariate probability density function, which is 

bounded by arbitrary non-uniform limits, fields of 

application can be given examples such as rate of 

pollution or crime rate in a city, distribution of 

earthquake frequency in a country, dispersion 

density of insects in the field, traffic congestion in 

a specific region, seen locations and frequency of 

epidemic disease in a country. Thus, the region we 

mentioned may have many partial density 

functions in rectangular area. Many cities divided 

physically or politically may be given as examples 

for this situation (e.g. Belfast, Beirut, Jerusalem, 

Mostar, and Nicosia). Especially, the data in the 

cities which are divided politically starts to 

change gradually. In this case, it may not be 

possible to evaluate the entire city as a region. 

Probability density function whose boundaries are 

entirely arbitrary polygonal area may be needed in 

each of these examples. 

 

2. Bivariate Distribution Functions 
 

Some definitions have to be explained as the 

bivariate cumulative distribution function before 

calculating the distribution value of it. These 

definitions can be given as joint and marginal 

probability density functions. 

 

2.1. Joint Cumulative Distribution Function 

(JCDF) 
 

We assume that 𝑋 and 𝑌 are continuous random 

variables to calculate the cumulative distribution 

function of a bivariate probability density 

function. In this case, the joint cumulative 

distribution function of (𝑋, 𝑌) is calculated as in 

Equation (1) (Walck, 2007; Kobayashi et al., 

2011). 

 

𝐹𝑋𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑢, v) 𝑑𝑣 𝑑𝑢
𝑦

−∞

𝑥

−∞
                   (1) 

 

Also, the joint cumulative distribution function of 

(X, Y) is defined as volume in 3-dimensional 

under the condition below. 

 

0 ≤ 𝐹𝑋𝑌(𝑥, 𝑦) ≤ 1                                              (2) 

 

If the probability density function is defined in a 

limited rectangular area ([𝑎, 𝑏] × [𝑐, 𝑑]), the joint 

cumulative distribution function is calculated as 

follows (Kay, 2006; Montgomery and Runger, 

2010). 

 

𝐹𝑋𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑢, v) 𝑑𝑣 𝑑𝑢
𝑦

𝑐

𝑥

𝑎
                       (3) 

 

2.2. Marginal Probability Density Function 
 

The marginal probability density function is used 

to obtain one-way variation of bivariate 

cumulative distribution function. The marginal 
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probability density function of a random variable 

𝑋 is shown with 𝑓𝑋(𝑥) and function curve is 

called the probability density function curve of 𝑋. 

Integrating over all 𝑦's in the range of (−∞, ∞) is 

adequate for obtaining the marginal probability 

density function of 𝑋 by using the joint 

probability density function as in the following 

equation. 

 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
∞

−∞
                                     (4) 

 

Cumulative distribution function (CDF) of the 

probability density function (𝑓𝑋(𝑥)) is calculated 

as follows (Kay, 2006; Montgomery and Runger, 

2010). 

 

𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑥) 𝑑𝑥
𝑥

−∞
                                       (5) 

 

Also, the same procedure can be performed for 

the variable 𝑌. 

 

3. Computation JCDF in Polygonal Area 
 

The most appropriate method is polygonal 

definition to determine an arbitrary area as a 

geometric shape in two dimensions (Kesemen and 

Doğru, 2011). The calculations can be performed 

by defining suitable polygon in an arbitrary given 

area. In this situation, dominant points of the 

boundaries are determined to define a polygonal 

area for arbitrary area. These dominant points can 

be determined manually or automatically by using 

polygonal approximation algorithms (Douglas and 

Peucker, 1973). An arbitrary region being 

bounded by the shape of the Australian mainland 

is selected as an example for this situation (Figure 

1(a)). The shape of the Australian mainland is 

converted into a polygonal area with the help of 

the dominant points so as to calculate the 

cumulative distribution function from the 

probability density function in a given region in 

this way (Figure 1(b)). Australian mainland is 

defined approximately in a representative manner 

with a polygon Ω = {𝑝𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑁} 

consists of the thirty-three corner points which are 

selected manually (Figure 1). 

 

Firstly, the polygonal area is divided into triangles 

to calculate the cumulative distribution function 

with the help of Delaunay triangulation algorithm 

(Shewchuk, 1996; Gudmundsson et al., 2005) by 

using the corner and grid points (Figure 2(a)). In a 

polygonal structure, these grid points and the 

triangular grid width are chosen by the researcher. 

If this width is too small, the computation time 

will increase while the calculated error reduces. 

Conversely, if the grid width is too large, the 

calculation time will decrease while the 

calculation error increases. Consequently, the 

optimal grid width is determined when the 

calculation difference between two different grid 

widths is smaller than a certain tolerance value. 

 

 

  
(a) (b) 

Figure 1. The representation of two-dimensional area (Australia) which consists of thirty-three corner 

points; (a) Arbitrary area; (b) The polygonal area 

 

 

If the polygonal area is not a convex polygon as in 

the Figure 2(a), the triangulation algorithm finds 

triangles outside of the polygon. Each triangles 

which are fallen out the polygon are eliminated 

(Figure 2(b)). In some cases, the edge lines of the 

triangle intersect the edges of the polygon. In this 

case, the Delaunay algorithm develops an 

algorithm for being edges of the triangle instead 

of polygon edges. Whether a point is in the 

polygon need to be investigated while deleting the 

centroids which are fallen outside the polygon. 

This problem is known as the point problem in the 

polygons (Haines, 1994; Hormann and Agathos, 

2001). A perpendicular straight line is drawn from 
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randomly selected point (𝑋, 𝑌), according the 

proposed odd-even method to line 𝑦 = 𝑥𝑚𝑖𝑛 for 

solving this problem. Also, how many points of 

constituting all lines of the polygon are intersected 

by the perpendicular straight line must be 

determined. If the number of point of intersection 

is odd, the selected point is inside of the polygon, 

or else the selected point is outside of the polygon. 

 

Two-dimensional colored view of the probability 

density function defined in Equation (19) which is 

bounded by Australian continent and the 

triangulation in this area are shown in Figure 3. 

Furthermore, the change of color shows the 

probability density function in the area. 

 

 

 

  
(a) (b) 

Figure 2. The division of the polygon into triangles; (a) Definition of the grid points in polygon; (b) 

Triangulation of the polygon (Ω). 

 

 

 

  
(a) (b) 

Figure 3. The probability density function bounded by the Australian continent; (a) Two-dimensional 

colored view of the probability density function; (b) The mesh view of the probability density function. 

 

 

After the triangulation process, the probability 

value of the triangle can be calculated by taking 

integral separately from each triangle as in the 

following equation. 

 

𝑃𝑟 ((𝑋, 𝑌) ∈ Ω𝑗) = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
Ωj

                (6) 

 

 

Here, intersections of 𝛺𝑗’s are empty and 𝛺𝑗 

shows the calculated triangular area. Also, 𝑗 

indicates subscript of the selected triangle. The 

sum of the probability values of each triangle 

allows to calculate probability value of the whole 

polygon because of the union of 𝛺𝑗 is equal to the 

area of 𝛺. The sum of all the triangles 

probabilities must be equal to 1 below. 

 

𝑃𝑟((𝑋, 𝑌) ∈ Ω) = ∑ 𝑃𝑟 ((𝑋, 𝑌) ∈ Ω𝑗)𝑗 = 1     (7) 

 

3.1. Definition of Intersection Region 
 

The intersection of Ω area and the area of 

(−∞, 𝑥0) × (−∞, 𝑦0) is to be determined for 

calculation of the cumulative distribution function 

from probability density function bounded by a 

polygonal area (Figure 4). The probability density 

function in Figure 4 is defined in Equation (19) 

and is the same with Figure 3. 
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The intersection area is denoted by 𝑄 = {𝑞𝑖 =
(𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2, … , 𝑀}. For this calculation, 

perpendicular lines are drawn from point (𝑥0, 𝑦0) 

which is supposed to be calculated the cumulative 

distribution function value to both 𝑥 and 𝑦 axes. 

Left bottom area of the point (𝑥0, 𝑦0) is denoted 

by the intersection area 𝑄. In other words, 

remaining area between the boundaries of the 

polygon and these perpendicular lines are 

determined as the intersection area of 𝑄 (Figure 

4(a)). As the intersection area can be only a 

confined area, it can be in the form of multi 

confined area as well (Margalit and Knott, 1989). 

Primarily, the intersection area (𝑄) is divided into 

triangles for determining the cumulative 

distribution function with both analytical and 

numerical methods. Intersection area triangles are 

obtained by eliminating triangles fallen out the 

intersection area (𝑄) (Figure 4(b)). The value of 

the cumulative distribution function can be 

calculated by summing up probability values of 

these triangles. 

 

Although the integration is quite easy to calculate 

from the bivariate probability density function 

according to a fixed limit on the rectangular area, 

the integration in the triangular area is a bit 

complicated. To eliminate this complexity, the 

median of the components {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐} of 𝑥 is 

found from the corners coordinates of triangle 

area 𝑄𝑗 in Figure 5(a).  Drawing a parallel line 

from y-axis to the median value divides the 

triangle into two parts. Hence, the division 

process makes easy to calculate integral in the 

triangle area 𝑄𝑗 in Figure 5(b). 

 

 

  
(a) (b) 

Figure 4. Intersection area; (a) Determination of the intersection area (𝑄); (b) Triangulation of the 

intersection area. 

 

 

  

(a) (b) 

  

Figure 5. Representation of the triangular area; (a) The area 𝑄𝑗; (b) Determination of the triangular areas 

Q𝑗𝐿
and Q𝑗𝑅
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The region 𝑄𝑗 is divided into two triangles 

(𝑄𝑗𝐿 , Q𝑗𝑅
) and integral calculus is performed 

separately in each triangles. Also, their total 

probability value can be found in the total 

integration as follows. 

 

 

𝑃𝑟 ((𝑋, 𝑌) ∈ 𝑄𝑗) = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
𝑄𝑗

=

∬ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
Q𝑗𝐿

+ ∬ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
Q𝑗𝑅

          (8) 

 

 

Marginal probability density function of the 

triangle Q𝑗𝐿
 is given as Equation (9). 𝐴𝐵̅̅ ̅̅  shows 

the equation of the line through points A and B, 

also 𝐴𝐶̅̅ ̅̅  shows the equation of the line through 

points A and C. 

 

𝑓𝑗𝐿
(𝑥) = |∫ 𝑓(𝑥, 𝑦) 𝑑𝑦

𝐴𝐶̅̅ ̅̅

𝐴𝐵̅̅ ̅̅ |                                  (9) 

 

Volume (probability value) of the left side region 

of the triangle 𝑄𝑗 is obtained as follows: 

 

𝑃𝑟 ((𝑋, 𝑌) ∈ Q𝑗𝐿
) = ∫ 𝑓𝑗𝐿

(𝑥)𝑑𝑥
𝑥𝑏

𝑥𝑎
                  (10) 

 

Likewise, the marginal probability density 

function of the triangle Q𝑗𝑅
 is defined as in 

Equation (11). 𝐵𝐶̅̅ ̅̅  shows the equation of the line 

through points B and C, also 𝐴𝐶̅̅ ̅̅  shows the 

equation of the line through points A and C. 

 

𝑓𝑗𝑅
(𝑥) = |∫ 𝑓(𝑥, 𝑦) 𝑑𝑦

𝐴𝐶̅̅ ̅̅

𝐵𝐶̅̅ ̅̅ |                                (11) 

 

Volume (probability value) of the right-side 

region of the triangle 𝑄𝑗 is obtained below. 

 

𝑃𝑟 ((𝑋, 𝑌) ∈ Q𝑗𝑅
) = ∫ 𝑓𝑗𝑅

(𝑥)𝑑𝑥
𝑥𝑐

𝑥𝑏
                  (12) 

 

The total probability of the triangle 𝑄𝑗 is 

calculated as follows. 

 

 

𝑃𝑟 ((𝑋, 𝑌) ∈ Q𝑗) = 𝑃𝑟 ((𝑋, 𝑌) ∈ Q𝑗𝐿
) +

𝑃𝑟 ((𝑋, 𝑌) ∈ Q𝑗𝑅
)                                               (13) 

 

 

Total probability value of all triangles Q𝑗 in the 

intersection region 𝑄 gives the distribution value 

of point (𝑥0, 𝑦0) as in the following equation. 

 

 

𝐹𝑋𝑌(𝑥0, 𝑦0) = 𝑃𝑟((𝑋, 𝑌) ∈ 𝑄) = ∑ 𝑃𝑟 ((𝑋, 𝑌) ∈ 𝑄𝑗)𝑗   (14) 

3.3. Numerical Computation of CDF in a 

Triangle Area 
 

Analytical methods which are mentioned in the 

previous sections can be preferred for the 

calculation of probability values in a polygonal 

area. However, the analytical calculation may not 

be possible in the case of failure of integration of 

marginal function from the given probability 

density function. In this case, numerical methods 

are applied to calculate the probability value. 

Whereas, the area under the curve and the volume 

under the surface is calculated with the univariate 

function and bivariate function respectively. 

 

The trapezoidal rule is the most common method 

which used to calculate numerical integration of 

the univariate functions (Howard and Musto, 

2008). When trapezoidal rule is applied to 

calculate the integral of bivariate function in 

three-dimensional situation, the truncated right 

rectangle prism can be used instead of trapezoid. 

However, the voids around edges of the 

rectangular pieces in polygon increase the error 

value in the calculation. Furthermore, triangles are 

the best shapes to define a surface (Boissonnat 

and Teillaud, 2007). The volume remaining below 

surface in the polygonal area which is divided into 

triangles can be easily calculated with the help of 

truncated right triangular prisms (Figure 6). The 

calculation of integral in the area we mentioned 

can be easily performed by summing volume of 

all triangular prisms. Also, K shows that the 

number of parts in an edge of the triangle. 

 

An example is given in Figure 7 for finding the 

probability value by using the trapezoidal rule in 

triangle area in concern with sub-triangle division. 

The triangle area is divided into a triangle in 

Figure 7(a), when divided into four sub-triangles 

in Figure 7(b), when divided into nine sub-

triangles in Figure 7(c), when divided into sixteen 

sub-triangles in Figure 7(d), when divided into 

twenty-five sub-triangles in Figure 7(e) finally, 

when divided into thirty-six sub-triangles in 

Figure 7(f) are shown in Figure 7. 

 

Edge height of the sub-triangle prism is found by 

calculating the probability density function value 

of each sub-triangle's corner coordinates. The area 

of polygon which consists of the known 

coordinates of 𝑁 corners in two-dimensional 

plane is given as in Equation (15) (Preparata and 

Shamos, 2012). This equation is found by 

𝑖 + 1 → 1 when 𝑖 = 𝑁. Also, Equation (15) is used 

when the polygonal area is a triangle (Figure 8). 
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(a) (b) 

  
(c) (d) 

Figure 6. The division of a triangle into the sub-triangles; (a) Not to occur a triangle division for 𝐾 = 1 (b) 

Four sub-triangles division of the triangle area for 𝐾 = 2; (c) Nine sub-triangles division of the triangle area 

for 𝐾 = 3 ; (d) Sixteen sub-triangles division of the triangle area for 𝐾 = 4 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. (a) The division to one sub-triangles in the triangle area.; (b) The division to four sub-triangles in 

the triangle area; (c) The division to nine sub-triangles in the triangle area; (d) The division to sixteen sub-

triangles in the triangle area; (e) The division to twenty-five sub-triangles in the triangle area; (f) The 

division to thirty-six sub-triangles in the triangle area. 
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𝐴 =
1

2
|∑ (𝑥𝑖+1𝑦𝑖 − 𝑥𝑖𝑦𝑖+1)𝑁

𝑖=1 |                        (15) 

 

The volume of prism, whose base area is known is 

calculated below, 

 

𝑉 = 𝐴. ℎ                                                            (16) 

 

where ℎ is the height of the prism. 

 

If the perpendicular triangle prism has a truncated 

surface, the volume of 𝑘𝑡ℎ prism is calculated as 

in (17) (Eshbach et al., 1990; Badiru and 

Omitaomu, 2010; Straszewicz, 2014). 

{ℎk1, ℎk2, ℎk3} are the heights of corner 

coordinates of the triangular prism (Figure 8(b)). 

 

𝑉𝑘 = 𝐴𝑘
ℎk1+ℎk2+ℎk3

3
                                         (17) 

  
(a) (b) 

Figure 8. The calculation of volume of the truncated triangular prism; (a) The base area; (b) The truncated 

triangular prism. 

 

 

After the calculation of volume of all sub-

triangles, the total volume of all sub-triangles is 

equal to the total probability value for the triangle 

as follows. Also, K shows that the number of parts 

in an edge of the triangle. 

 

𝑃 ((𝑋, 𝑌) ∈ 𝑄𝑗) = ∑ 𝑉𝑘
𝐾2

𝑘=1                               (18) 

 

 

4. Experimental Results 
 

In this section, the cumulative distribution 

function is calculated from a probability density 

function whose definition area (Ω) is bounded by 

the shape of the continent of Australia for 

different points (𝑥, 𝑦) by using both analytical and 

numerical methods. 

 

Example 1. The arbitrary probability density 

function which is defined in region Ω is given as 

in the following equation. 

 

𝑓(𝑥, 𝑦) = {

1

2.2909×107 𝑥𝑦 𝑒−
(𝑥+𝑦)

100 , (𝑥, 𝑦) ∈ Ω

0, (𝑥, 𝑦) ∉ Ω

        (19) 

 

The values of the probability density function are 

arbitrarily determined to provide that the total 

value of the probability density function 

calculated in the polygonal area (Ω) equals to 1. 

The polygon’s (Ω) corner points also are 

arbitrarily determined. The mesh and contour 

view of the probability density function explained 

in Equation (19) is shown in Figure 3. Firstly, the 

cumulative distribution values 𝐹(𝑥, 𝑦) of each 

grid points (𝑥, 𝑦) in area Ω are calculated 

analytically in Table 1. The cumulative 

distribution value of 99 grid points is calculated in 

the Table 1. The cumulative distribution value of 

the points in (𝑥 < 𝑥𝑚𝑖𝑛 𝐴𝑁𝐷 𝑦 < 𝑦𝑚𝑖𝑛) area is 

zero. The reason of this is that the region whose 

left and below points do not intersect the polygon. 

On the other points, the cumulative distribution 

value is bigger than zero, because the region 

whose left and below points intersects the 

polygon. On the other hand, the cumulative 

distribution value of the points in (𝑥 >
𝑥𝑚𝑎𝑥 𝐴𝑁𝐷 𝑦 > 𝑦𝑚𝑎𝑥) area is 1, for the region 

whose left and below points intersect the whole 

polygon. 

 

Secondly, the cumulative distribution values 

𝐹(𝑥, 𝑦) of each grid points (𝑥, 𝑦) in area Ω are 

calculated by using numerical method. The 

cumulative distribution values of 99 grid points 

calculated by using numerical method is given in 

Table 2. This calculation is processed by division 

of each intersection region with thirty-pixel 

interval of grid points into sub-triangles. Similar 

to the analytical method, the cumulative 

distribution value of the points in (𝑥 <
𝑥𝑚𝑖𝑛 𝐴𝑁𝐷 𝑦 < 𝑦𝑚𝑖𝑛) area is zero. On the other 

points, the cumulative distribution value is bigger 
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than zero. Also, the cumulative distribution value 

of the (250, 200) point in (𝑥 > 𝑥𝑚𝑎𝑥 𝐴𝑁𝐷 𝑦 >
𝑦𝑚𝑎𝑥) area is 0.988. Thus, the cumulative 

distribution value of the (250, 200) point must be 

equal to 1 as the analytical method. The difference 

stems from the numerical method. The difference 

will be decreased if the number of division of 

each intersection region into sub-triangles 

increases in Ω area. 

 

Table 1. The cumulative distribution values calculated by using analytical method 

x 

y 
0 25 50 75 100 125 150 175 200 225 250 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.028 0.037 0.037 

75 0.000 0.000 0.017 0.038 0.053 0.061 0.081 0.119 0.162 0.194 0.195 

100 0.000 0.001 0.043 0.097 0.148 0.192 0.246 0.315 0.387 0.444 0.452 

125 0.000 0.004 0.071 0.158 0.245 0.326 0.414 0.516 0.616 0.695 0.705 

150 0.000 0.004 0.078 0.188 0.310 0.425 0.546 0.678 0.803 0.885 0.895 

175 0.000 0.004 0.078 0.189 0.331 0.473 0.618 0.760 0.898 0.980 0.990 

200 0.000 0.004 0.078 0.189 0.331 0.477 0.627 0.769 0.908 0.990 1.000 

 
Table 2. The cumulative distribution function values calculated by numerical method 

x 

y 
0 25 50 75 100 125 150 175 200 225 250 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.027 0.037 0.037 

75 0.000 0.000 0.017 0.037 0.052 0.060 0.080 0.117 0.160 0.191 0.193 

100 0.000 0.001 0.042 0.095 0.145 0.189 0.243 0.311 0.382 0.439 0.447 

125 0.000 0.004 0.069 0.155 0.241 0.320 0.408 0.507 0.607 0.685 0.695 

150 0.000 0.004 0.076 0.185 0.305 0.418 0.538 0.669 0.793 0.874 0.884 

175 0.000 0.004 0.076 0.186 0.326 0.466 0.610 0.750 0.887 0.968 0.978 

200 0.000 0.004 0.076 0.186 0.326 0.470 0.619 0.759 0.897 0.978 0.988 

 

 

After calculating the cumulative distribution 

function values both numerically and analytically, 

the cumulative distribution values calculated 

numerically are subtracted from the cumulative 

distribution values calculated analytically to make 

comparison between each other. The mean 

relative absolute performance can be calculated as 

in the following equation. 

 

 

𝑆 =
1

99
∑ ∑ (1 −

|𝐹𝑡(𝑥,𝑦)−𝐹𝑛30(𝑥,𝑦)|

𝐹𝑡(𝑥,𝑦)
)𝑦𝑥                (20) 

 

 

𝐹𝑡(𝑥, 𝑦) shows the calculated analytically values 

of the cumulative distribution function, and 

𝐹𝑛30(𝑥, 𝑦) shows the calculated numerically 

values of triangles which are obtained from the 

division of each intersection region with thirty-

pixel interval of grid points into sub-triangles. As 

a result, the performance of the numerical method 

is found as 99.10%. When the intersection region 

is defined in ten-pixel interval of grid points, the 

performance of numerical method is found as 

99.85%. 

 

The contour graphic of the cumulative distribution 

function values obtained analytically in the area Ω 

is given in Figure 9(a) and the contour graphic of 

the cumulative distribution function values 

obtained numerically in the area Ω is given Figure 

9(b). 

 

Example 2. Another example is a model based on 

the annual average amount of rainfall in the 

Australian mainland (Figure 10(a)). The 

determination of the probability density function 

is quite hard because this model is taken from real 
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life. Here, the annual average amount of rainfall 

data is obtained from [-40, -10] × [110,155] 

latitude-longitude and 0.05 grid interval. The joint 

probability density function (JPDF) is determined 

as a discrete distribution function from the rainfall 

data (Climate Change in Australia, 2016). The 

region is divided into small triangles. The constant 

coefficient of the discrete JPDF is calculated from 

the total volume of which is summed up volume 

of all the triangular prism. An analytical method is 

difficult for calculation of the JCDF. Therefore, 

the numerical method is calculated and results of 

the numerical method are given in Figure 10(b). 

 

 

  
(a) (b) 

Figure 9. The contour graphic of the cumulative distribution values calculated in each grid points in 

region Ω; (a) The contour display of the cumulative distribution function calculated analytically; (b) 

The contour display of the cumulative distribution function calculated numerically. 

 

  
(a) (b) 

Figure 10. The contour graphic of the cumulative distribution values calculated in each grid points in region 

Ω; (a) The contour display of the annual average amount of rainfall as the probability density function (b) 

The contour display of the cumulative distribution function calculated numerically. 
 

 

5. Conclusion 
 

In this paper, two useful methods are proposed to 

find the cumulative distribution function when the 

probability density function is bounded by an 

arbitrary polygon. For bivariate probability 

density function which is bounded by an arbitrary 

polygon has a uniform distribution, the 

cumulative distribution function can be calculated 

as a continuous function. However, the calculation 

of the cumulative distribution function is quite 

hard when probability density function whose 

definition range is bounded by a polygon has not a 

uniform distribution. Analytical and numerical 

methods are proposed to calculate the cumulative 

distribution function. These methods can find the 

cumulative distribution function of a point which 

is supposed to calculate the cumulative 

distribution function. Therefore, the cumulative 

distribution values which cannot be calculated in 

practice can be calculated quite easily. The 

cumulative distribution function values are 

calculated for points which are chosen from the 

probability density function bounded by the shape 

of the Australian continent to express these two 

methods. As the analytical method calculates 

accurately, the numerical method calculates with 

regard to the number of triangles. When the 

number of triangles is increased in the numerical 

method, the values close to the analytical results 

are obtained. 
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On the other hand, another issue is which method 

will be used firstly. When it is thought that the 

analytical method gives faultless results in 

comparison with the numerical method, primarily 

preferred method must be analytical method. 

However, the analytical calculation may not be 

possible in most cases. In this case, numerical 

methods must be used. Thus, the bivariate 

piecewise cumulative distribution function can be 

calculated in an arbitrary area. 
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