

IKONION JOURNAL OF MATHEMATICS

YEAR: 2019 VOLUME: 1 ISSUE: 1

ON GEOMETRIC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES

Birsen SAĞIR*1 and İrem ALAŞALVAR2

¹ Ondokuz Mayıs University, Department of Mathematics, 55139, Samsun, Turkey, E-mail: bduyar@omu.edu.tr

(Received: 10.12.2018, Accepted:24.01.2019, Published Online: 03.02.2019)

Abstract

In this paper we introduce some geometrical and topological properties of weighted Lebesgue sequence spaces $l_{p,w}$ as a generalization of the Lebesgue sequences spaces l_p , where w a weighted sequence.

Keywords: Striclty Convexity; Uniformly Convexity; Weighted Lebesgue Sequence Spaces.

1. Introduction

If $1 \le p < \infty$, then l_p will denote the space of sequences of real numbers $x = (x_n)$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$ [2,8]. A weight sequence $w = w(n) = w_n$ is a positive decreasing sequence such that w(1) = 1, $\lim_{n \to \infty} w_n = 0$ and $\sum_{n=1}^{\infty} w_n$ divergent. The weighted Lebesgue sequence space $l_{p,w}$ for 0 is defined as follows:

$$l_{p,w} = \left\{ x = (x_n) : \sum_{n=1}^{\infty} w_n |x_n|^p < \infty, (x_n) \subset \mathbb{R} \right\}$$

and

$$||x||_{p,w} = \left(\sum_{n=1}^{\infty} w_n |x_n|^p\right)^{1/p} \tag{1}$$

where $p \ge 1$.

In other words, the weighted sequence space is defined the weight as a multiplier. That is $x \in l_{p,w} \Leftrightarrow xw^{1/p} \in l_p$ weighted sequence spaces $l_{p,w}$ which is considered by author in [9],[10] . It is known that $l_{p,w}$ a Banach space.

A Banach space X is said to be *strictly convex* if $x, y \in X$ with ||x|| = 1, ||y|| = 1 and $x \neq y$, then $||(1 - \lambda)x + \lambda y|| < 1$ for all $\lambda \in (0,1)$. A Banach space X is said to be *uniformly convex* if the conditions

$$||x|| \le 1, ||y|| \le 1 \text{ and } ||x - y|| \ge \varepsilon \text{ imply } \left\| \frac{x + y}{2} \right\| \le 1 - \delta$$
 (2)

Ondokuz Mayıs University, Department of Mathematics, 55139, Samsun, Turkey, E-mail: iremalaslvr@gmail.com

holds for all $x, y \in X$. The number

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| = 1, \|y\| = 1, \|x-y\| \ge \varepsilon \right\}$$
 (3)

is called the *modulus of convexity*. If $\varepsilon_1 < \varepsilon_2$, then $\delta(\varepsilon_1) < \delta(\varepsilon_2)$ and $\delta(0) = 0$ since x = y if $\varepsilon = 0$ [1]. Recently there has been a lot of interest in investigating geometric properties of sequence spaces besides topological. The geometric properties of different sequence spaces are discusssed by some authors. Agarwal, O'regan&Sahu [1] and Castillo&Rafeiro [2] have studied the strict convexity and uniform convexity properties of sequence spaces l_p where $1 . Savaş, Karakaya and Şimşek [11] have studied some geometric properties of l(p)- type new sequence spaces. Oğur, O [7] has studied some geometric properties of weighted function spaces <math>L_{p,w}(G)$ where $1 . In this paper, we introduce some geometric properties of topological of weighted sequence spaces <math>l_{p,w}$ as a generalization of the l_p .

We will need some auxiliary lemmas to prove that the spaces $l_{p,w}$ are uniformly convex whenever 1 .

Proposition 1. (Hölder Inequality) Let $x = (x_n) \in l_p$, $y = (y_n) \in l_q$ and $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\sum_{k=1}^{\infty} |x_k y_k| \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^q\right)^{1/q} \tag{4}$$

Proposition 2. (Minkowski Inequality) Let $x = (x_n)$, $y = (y_n) \in l_p$, If $p \in [1, \infty)$, then

$$\left(\sum_{k=1}^{\infty} (|x_k| + |y_k|)^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p} \tag{5}$$

If $p \in (0,1)$, then

$$\left(\sum_{k=1}^{\infty} (|x_k| + |y_k|)^p\right)^{1/p} \ge \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p} \tag{6}$$

We need some lemmas dealing with inequalities.

Lemma 1. Let 0 , we have

$$(a+b)^p \le a^p + b^p \tag{7}$$

for $a \ge 0$, $b \ge 0$ [8].

Lemma 2. If $p \ge 1$ and a, b > 0, then

$$(a+b)^p \le 2^{p-1}(a^p + b^p) \tag{8}$$

[6].

2. Main Results

Proposition 3. Let $w = (w_k)$ a weighted sequence and $w_k > 1$ for all $k \in \mathbb{N}$. Then $l_{p,w} \subset l_p$. Also if $0 , <math>l_{p,w} \subsetneq l_{q,w}$ for $w_k > 1$.

Proof. It can be easily seen that $l_{p,w} \subset l_p$ and $l_{p,w} \subset l_{q,w}$ for $0 . To show that <math>l_{p,w} \neq l_{q,w}$, we take the sequences $x_k = k^{-1/2p}$ and $w_k = \frac{1}{\sqrt{k}}$ for all $k \in \mathbb{N}$ with $1 \leq p < q < \infty$. Since p < q, we have $\frac{q}{p} > 1$ and $\frac{q}{2p} + \frac{1}{2} > 1$. We write

$$\sum_{k=1}^{\infty} w_k |x_k|^q = \sum_{k=1}^{\infty} \frac{1}{k^{1/2}} \cdot \frac{1}{k^{q/2p}} = \sum_{k=1}^{\infty} \frac{1}{k^{q/2p+1/2}} < \infty$$

The last series is convergent since it is a hyper-harmonic series with exponent bigger than 1, therefore $x \in l_{q,w}$. On the other hand

$$\sum_{k=1}^{\infty} w_k |x_k|^p = \sum_{k=1}^{\infty} \frac{1}{k^{1/2}} \cdot \frac{1}{k^{1/2}} = \sum_{k=1}^{\infty} \frac{1}{k}$$

and $x \notin l_{p,w}$.

Proposition 4. The space $l_{p,w}$ is separable whenever $1 \le p < \infty$ and w a weighted sequence.

Proof. Let M be the set of all sequences of the form $q=(q_1,q_2,\cdots,q_n,0,0,\cdots)$ where $n\in\mathbb{N}$ and $q_k\in\mathbb{Q}$. We will show that M is dense in $l_{p,w}$. Since $\sum_{k=1}^{\infty}|x_k|^pw_k$ there exists $n_{\varepsilon}\in\mathbb{N}$ such that

$$\sum_{k=n+1}^{\infty} |x_k|^p w_k < \frac{\varepsilon^p}{2}$$

for all $\varepsilon>0$. Since $\overline{\mathbb{Q}}=\mathbb{R}$, we have that for each (x_k) there exists a rational q_k such that

$$|x_k - q_k| < \frac{\varepsilon}{\sqrt[p]{2^n}}$$

hence

$$\sum_{k=1}^{n} |x_k - q_k| w_k < \frac{\varepsilon^p}{2K}$$

where $K = maks\{w_1, w_2, \dots, w_n\}$. We write

$$||x-q||_{p,w}^p = \sum_{k=1}^n |x_k - q_k|^p w_k + \sum_{k=n+1}^\infty |x_k|^p w_k < \varepsilon^p$$

and so $||x-q||_{p,w} < \varepsilon$. This shows that M is dense in $l_{p,w}$.

Theorem 1. The space $l_{p,w}$ is convex, whenever 0 .

Proof. This show that $tx + (1-t)y \in l_{p,w}$ for $x = (x_n), y = (y_n) \in l_{p,w}$ and $t \in [0,1]$. Let us distinguish two cases:

First case $p \ge 1$. By Lemma 2 and Minkowski's inequality, we write

$$\begin{split} \sum_{n=1}^{\infty} |tx_n + (1-t)y_n|^p w_n &= \sum_{n=1}^{\infty} \left| (tx_n + (1-t)y_n)w_n^{-1/p} \right|^p \\ &= \left[\left(\sum_{n=1}^{\infty} \left| (tx_n + (1-t)y_n)w_n^{-1/p} \right|^p \right)^{1/p} \right]^p \\ &\leq \left[\left(\sum_{n=1}^{\infty} \left| (tx_n)w_n^{-1/p} \right|^p \right)^{1/p} + \left(\sum_{n=1}^{\infty} \left| ((1-t)y_n)w_n^{-1/p} \right|^p \right)^{1/p} \right]^p \\ &\leq 2^{p-1} \left[\sum_{n=1}^{\infty} \left| (tx_n)w_n^{-1/p} \right|^p + \sum_{n=1}^{\infty} \left| ((1-t)y_n)w_n^{-1/p} \right|^p \right] \\ &= 2^{p-1} \sum_{n=1}^{\infty} |tx_n|^p w_n + 2^{p-1} \sum_{n=1}^{\infty} |(1-t)y_n|^p w_n \\ &= 2^{p-1} |t|^p \sum_{n=1}^{\infty} |x_n|^p w_n + 2^{p-1} |1-t|^p \sum_{n=1}^{\infty} |y_n|^p w_n \\ &< \infty \end{split}$$

which shows that $tx + (1 - t)y \in l_{p,w}$ for $p \ge 1$.

Second case $0 . Let <math>x = (x_n)$, $y = (y_n) \in l_{p,w}$ and $t \in [0,1]$. By Lemma 1, we have

$$\begin{split} \sum_{n=1}^{\infty} |tx_n + (1-t)y_n|^p w_n &= \sum_{n=1}^{\infty} \left| (tx_n + (1-t)y_n)w_n^{-1/p} \right|^p \\ &\leq \sum_{n=1}^{\infty} \left| (tx_n)w_n^{-1/p} \right|^p + \sum_{n=1}^{\infty} \left| ((1-t)y_n)w_n^{-1/p} \right|^p \\ &= \sum_{n=1}^{\infty} |tx_n|^p w_n + \sum_{n=1}^{\infty} \left| ((1-t)y_n) \right|^p w_n \\ &= |t|^p \sum_{n=1}^{\infty} |x_n|^p w_n + |1-t|^p \sum_{n=1}^{\infty} |y_n|^p w_n < \infty \end{split}$$

This completes the proof. It is known that the space l_p is strictly convex for $p \ge 1$ [1].

Theorem 2. The space $l_{p,w}$ is strictly convex for $p \ge 1$.

Proof. Let $x = (x_n), y = (y_n) \in l_{p,w}$ with $x \neq y$, $||x||_{p,w} = 1$, $||y||_{p,w} = 1$ and $0 . Then <math>||xw^{\frac{1}{p}}||_p = 1$, $||yw^{\frac{1}{p}}||_p = 1$. Since l_p is strictly convex for $p \ge 1$, we have $||(1-t)xw^{\frac{1}{p}} + tyw^{\frac{1}{p}}||_p = ||((1-t)x + ty)w^{\frac{1}{p}}||_p < 1.$

Hence

$$\|(1-t)x + ty\|_{p,w} = \left(\sum_{n=1}^{\infty} \left| ((1-t)x + ty)w^{\frac{1}{p}} \right|^{p} \right)^{1/p}$$
$$= \left\| ((1-t)x + ty)w^{\frac{1}{p}} \right\|_{p} < 1$$

We will need the following inequality.

Lemma 3. Let $p \ge 2$. We have

$$(|a+b|^p + |a-b|^p)^{1/p} \le (|a+b|^2 + |a-b|^2)^{1/2} \tag{9}$$

for all $a, b \in \mathbb{R}$ [2].

Lemma 4. Let $2 \le p < \infty$ and $x, y \in l_p$, we have

$$||x+y||_p^p + ||x-y||_p^p \le 2^{p-1} (||x||_p^p + ||y||_p^p)$$
(10)

[1].

Proposition 5. If $2 \le p < \infty$, then we have

$$||x+y||_{p,w}^p + ||x-y||_{p,w}^p \le 2^{p-1} (||x||_{p,w}^p + ||y||_{p,w}^p)$$
(11)

for $x = (x_n)$, $y = (y_n) \in l_{p,w}$.

Proof. Let $x, y \in l_{p,w}$. Then $xw^{\frac{1}{p}}, yw^{\frac{1}{p}} \in l_p$. By Lemma 4, we write

$$||x + y||_{p,w}^{p} + ||x - y||_{p,w}^{p} = \left| \left| xw^{\frac{1}{p}} + yw^{\frac{1}{p}} \right| \right|_{p}^{p} + \left| \left| xw^{\frac{1}{p}} - yw^{\frac{1}{p}} \right| \right|_{p}^{p}$$

$$\leq 2^{p-1} \left(\left| \left| xw^{\frac{1}{p}} \right| \right|_{p}^{p} + \left| \left| yw^{\frac{1}{p}} \right| \right|_{p}^{p} \right)$$

$$= 2^{p-1} \left(||x||_{p,w}^{p} + ||y||_{p,w}^{p} \right)$$

Theorem 3. The space $l_{p,w}$ is uniformly convex for $2 \le p < \infty$.

Proof. Let $x = (x_n), y = (y_n) \in l_{p,w}$ with

$$||x||_{p,w} \le 1$$
, $||y||_{p,w} \le 1$ and $||x - y||_{p,w} \ge \varepsilon$

By Proposition 5, we have

$$\begin{aligned} \|x + y\|_{p,w}^p &\leq 2^{p-1} \big(\|x\|_{p,w}^p + \|y\|_{p,w}^p \big) - \|x - y\|_{p,w}^p \\ &\leq 2^{p-1} \cdot 2 - \varepsilon^p \\ &= 2^p \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right) \end{aligned}$$

so it follows that $\left\|\frac{x+y}{2}\right\|_{p,w}^p \le 1 - \left(\frac{\varepsilon}{2}\right)^p$ and hence we get $\left\|\frac{x+y}{2}\right\|_{p,w} \le 1 - \delta$ such that

$$\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{1/p}$$

Lemma 6. Let $1 and <math>q = \frac{p}{p-1}$, then

$$|a+b|^{q} + |a-b|^{q} \le 2(|a|^{p} + |b|^{p})^{q-1}$$
(12)

for all real numbers a and b [3].

Lemma 7. $1 and <math>q = \frac{p}{p-1}$, we have

$$\|x + y\|_{p}^{q} + \|x - y\|_{p}^{q} \le 2(\|x\|_{p}^{p} + \|y\|_{p}^{p})^{q-1}$$
(13)

for all $x, y \in l_p$ [5].

Proposition 6. If 1 , then

$$||x + y||_{p,w}^{q} + ||x - y||_{p,w}^{q} \le 2(||x||_{p,w}^{p} + ||y||_{p,w}^{p})^{q-1}$$
(14)

for $x=(x_n)$, $y=(y_n)\in l_{p,w}$ and $q=\frac{p}{p-1}$.

Proof. Let $x = (x_n), y = (y_n) \in l_{p,w}$ and by the Minkowski's inequality for 0 < r < 1, we have

$$\left(\sum_{n=1}^{\infty} |a_n|^r\right)^{1/r} + \left(\sum_{n=1}^{\infty} |b_n|^r\right)^{1/r} \le \left(\sum_{n=1}^{\infty} |a_n + b_n|^r\right)^{1/r} \tag{15}$$

If 1 , we replace <math>r by $\frac{p}{q}$ in Equation (15), for $a_n = \left| \left((x_n + y_n) w_n^{-1/p} \right) \right|^q$, $b_n = \left| (x_n - y_n) w_n^{-1/p} \right|^q$, then by Lemma 6 we get

$$\left(\sum_{n=1}^{\infty} \left| (x_n + y_n) w_n^{1/p} \right|^p \right)^{q/p} + \left(\sum_{n=1}^{\infty} \left| (x_n - y_n) w_n^{1/p} \right|^p \right)^{q/p} \\
\leq \left[\sum_{n=1}^{\infty} \left(\left| (x_n + y_n) w_n^{1/p} \right|^q + \left| (x_n - y_n) w_n^{1/p} \right|^q \right)^{p/q} \right]^{q/p} \\
= \left[\sum_{n=1}^{\infty} \left(\left| x_n w_n^{1/p} + y_n w_n^{1/p} \right|^q + \left| x_n w_n^{1/p} - y_n w_n^{1/p} \right|^q \right)^{p/q} \right]^{q/p} \\
\leq \left(\sum_{n=1}^{\infty} \left[2 \left(\left| x_n w_n^{1/p} \right|^p + \left| y_n w_n^{1/p} \right|^p \right)^{q-1} \right]^{p/q} \right)^{q/p} \\
= 2 \left[\sum_{n=1}^{\infty} \left(\left| x_n w_n^{1/p} \right|^p + \left| y_n w_n^{1/p} \right|^p \right) \right]^{q/p}$$

$$= 2 \left[\sum_{n=1}^{\infty} |x_n|^p w_n + \sum_{n=1}^{\infty} |y_n|^p w_n \right]^{q/p}$$

where $q = \frac{p}{p-1} \Rightarrow q - 1 = \frac{q}{p}$. Thus, we obtain

$$||x + y||_{p,w}^q + ||x - y||_{p,w}^q \le 2(||x||_{p,w}^p + ||y||_{p,w}^p)^{q-1}$$

Theorem 4. The space $l_{p,w}$ is uniformly convex for 1 .

Proof. Let
$$x = (x_n), y = (y_n) \in l_{p,w}$$
 , $1 with$

$$||x||_{p,w} \le 1$$
, $||y||_{p,w} \le 1$ and $||x - y||_{p,w} \ge \varepsilon$

Then by the Proposition 6, we have

$$\begin{aligned} \|x + y\|_{p,w}^{q} &\leq 2 \left[\|x\|_{p,w}^{p} + \|y\|_{p,w}^{p} \right]^{q-1} - \|x - y\|_{p,w}^{q} \\ &\leq 2 \cdot 2^{q-1} - \varepsilon^{q} \\ &= 2^{q} \left(1 - \left(\frac{\varepsilon}{2} \right)^{q} \right) \end{aligned}$$

Hence, we write

$$\left\| \frac{x+y}{2} \right\|_{n,w} \le \left(1 - \left(\frac{\varepsilon}{2} \right)^q \right)^{1/q}$$

where
$$\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^q\right)^{1/q}$$
.

Acknowledgement

This work was supported by the Research Fund of Ondokuz Mayıs University, Project No: 1904.17.014.

References

- [1] Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitzian-type Mapping with Applications. Springer Science Business Media, New York.
- [2] Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
- [3] Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
- [4] Clarkson, J., 1936. Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40(3): 396-414. [5] Mitronovic, D.S., Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
- [6] Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.

- [7] Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces $L_{p,w}(G)$, Facta Universitatis, Series: Mathematics and Informatics, In press.
- [8] Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
- [9] Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
- [10] Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
- [11] Savaş, E. Karakaya, V. Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties. Abstract and Applied Analysis, Article ID 696971, 12 pages. doi:10.1155/2009/696971.