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The Borel property for 4-dimensional matrices
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Abstract
In 1909 Borel has proved that “Almost all of the sequences of 0’s and 1’s

n

are Cesaro summable to 1 . Then Hill has generalized Borel’s result

to two dimensional matrices. In this paper we investigate the Borel
property for 4-dimensional matrices.
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1. Introduction

The summability of sequences of 0’s and 1’s has been studied by various authors ([1],
[3], [6], [7], [8], [10]). In 1909 Borel proved that “Almost all of the sequences of 0’s and

n

1’s are Cesaro summable to =". Then Hill [6] has generalized Borel’s result to general

matrices. We say that the matrix has the Borel property, if a matrix sums almost all
1 .
of the sequences of 0’s and 1’s to 5 Establishing a one-to-one correspondence between

the interval (0,1] and the collection of all sequences of 0’s and 1’s, Hill has given some
necessary conditions and also some sufficient conditions for matrices to have the Borel
property in [6], [7]. This property has also been examined in [5], [8].

In the present paper we investigate the Borel property for 4-dimensional matrices.
In particular we exhibit some necessary and some sufficient conditions for 4-dimensional
matrices to have the Borel property.

We first recall some basic notations and results related to double sequences.

A double sequence s = (s;;) is said to be Pringsheim convergent (i.e., it is convergent
in Pringsheim’s sense) to L if for every € > 0 there exists an N € N such that |s;; — L| < ¢
whenever ¢, > N ([2], [11]). In this case L is called the Pringsheim limit of s.

Throughout the paper when there is no confusion, convergence means the Pringsheim
convergence.
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Let X denote the set of all double sequences of 0’s and 1’s, that is
X = {z = (1) : zjx € {0,1} for each j,k € N}.

Let R be the smallest o-algebra of subsets of the set X which contains all sets of the
form

{z=(zj0) € X1 Tjyp, = a1, .00, Tjpky, = A}

where each a; € {0,1} and the pairs {(jik:)}]_, are pairwise distinct.
There exists a unique probability measure P on the set R, such that

1
P({z=(zjr) € X mjjpy = 01,1, Tjuk, = an}) = o

for all choices of n and all pairwise disjoint pairs {(jik:)};—,, and all choices of a1, ..., an.
Recall that the functions rjx (z) = 2z, — 1, for z € X, are the Rademacher functions
(see [4]).

Four dimensional Cesaro matrix (C,1,1) = (¢}") is defined by

o L 1<j<nand1<k<m
k= o ., otherwise.

It is known that the (C,1,1) matrix is an RH regular, i.e., it sums every bounded
convergent sequence to the same limit.
An element x of X is said to be normal ([4]) if for each e > 0 there is a natural

number N, such that for n,m > N. we have s Z Tjk — < €. Let n denote the set

k<m
of all elements = in X that are normal. This means that normal elements are (C, 1,1)-
summable to 1. It is also proved in [4] that P () = 1. So (C,1,1) method has the Borel
property.
It would be appropriate to recall the definition of bounded regularity.

1
2

1.1. Definition. Let A = (a?,;”) be a 4-dimensional matrix. If the limit

. nm _
J,k=1,1

exists, the double sequence (s;x) is called A-summable to L and denoted by sjz — L
(A). A matrix A = (a}{") is bounded regular if every bounded and convergent sequence
s = (s;k) is A-summable to the same limit and A-means are also bounded [9]. The next
corollary characterizes bounded regular matrices.
1.2. Proposition. A = (a%”) is bounded regular if and only if
(i) lim aj =0, (k=1.2,.)

n,

(#4) lim E a
n,m—0oQ

jk=1,1
(iii) }rizlz)looz la?| =0, (j=1,2,..)
(v nlrlLlI}looZ|a =0, (k=1,2,.)

(v) Z ‘a < C<oo, (mn=1,2,..).

G k=1,1
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These conditions were first established by Robison [12].

2. The Borel Property

This section is devoted to the Borel property for 4-dimensional matrices.
2.1. Theorem. If A = (a?;;”) has the Borel property, then the Z aj" series con-
J,k=1,1
verges for each n,m and tends to 1 as n,m — oo.

Proof. Since A has the Borel property, for almost all z € X, we obtain

00,00
lim E aji*xjr = 1. Indeed P (E) =1 where
n,m—o00
Jk=1,1

E = {x: (zj0) € X : (Ax),,, — %}
Let us define T = (Z;x) by

- 0, =z =1

J:Jk - 1 5 l’jk = 0

Let Y = ENnand Y = {(Tjx) : zjs €Y}. We get Y = ENn. Since the mapping
(zjk) = (T;k) preserves P measure, we obtain P (Y) =1. SoY NY # 0. If = (a;1) €

YNY,thenz e E,z€nand T € E, T € 7. Since z, T € FE, it follows that

00,00 00,00 00,00
nm nm-— nm
E ajy Tk + E asy Tk = E ay’ =1 (n,m— o0).
Jk=1,1 Jik=1,1 dik=1,1

This completes the proof. O

2.2. Theorem. If A = (a%") has the Borel property, then we have

3
8

(aji")* < oo

J,k=1,1

for each n,m € N.

Proof. Let rj, () = 2x;, — 1 be the Rademacher functions for double sequences. We
have
= nm 1 = nm 1 = nm
Qi Tjk = 5 Z Qg +§ Z Qi Tk (l’)
4k=1,1 Jok=1,1 Jok=1,1
Since A has the Borel property and it follows from Teorem 2.1 that the series Z agy " ik ()
jok=1,1
converges for each n,m € N and almost all x € X. Furthermore we obtain lim Z aly ik (z) =

n,m

Gk=1,1

0,00
0 for almost all z € X. So Z ajy"ri, () | is convergent uniformly on a set D with
Jk=1,1
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positive measure for each n,m € N with respect to . Hence for each n,m € N and for
every € > 0, there exists N1, N2 € N such that for p, u > N7 and q,v > N»

p,q v
Z ajy ik (x) — ajy'rik (x)] <e.
j,k=1,1 i k=1,1

From the last inequality we immediately get
2

(2.1) &2P(D)> > afitrik ()| dP(2)
D \Elmpv.d]
=P(D) > (4" +R
E(p,p;v,q]

where

Elppivig ={G:k): p<j<porv<k<gq},

R=2 a?{Zl a?zrzz /lekl () Tk, (x) dP (1)
I[p,p;v,q] D

and I [u,p;v,q] = Eu,p;v,q) N {(j,k) : j1 # j2 or k1 # k2}. On the other hand using
the Holder inequality, we obtain

1 2 %

nm nm 2
RI<2) 3 (i aim) 3 / Pk (%) Pias (2) dP (2)

I[p,p;v,q) I[p,psv,a] \D

=

2
Let 03 5, ioky = (grjlkl () rjyky () dP (a:)) . From the Bessel inequality, we get

Z vﬂglklj2k2 S/(XD (:C))Z dP(x) :P(D)-
1< <j2< o0 X
1< k1 < ks <o

For sufficiently large p, ¢, 4 and v, we have

Nl

2 P (D)
Z Vjikijoks < :

4
I[p,p;v,q]
Hence we obtain

1

P (D) ’

nm nm 2
‘R‘ < T Z (a’jlkla’j2k2)
I[p,p;v.q]

1
2

P (D)

IA

S (ha,)?

E(p,p;v,q]

P(D) nm \2
2 Z (aj1k1) :

E(p,p;v,q]

IN
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From (2.1) and last inequality, it follows that

cpo)>pPm) Y () - TP @y
Elu,p;v,q] Ep,p;v,q]
P(D nm
e SO
E(p,p;v,q]

Also since P (D) > 0, we obtain > (a%”)2 < 2¢2. So for each n,m € N, the series
E[w,p;v,q]

oo,
2 | . .
E (a?,:” ) is convergent. Hence we obtain the result. (]
jk=1,1

2.3. Theorem. If A = (a%") has the Borel property and satisfies (v), we have

00,00
2
(2.2) (aji’)" =0(1), (n,m — o0).
Jk=1,1
00,00
Proof. Let onm (x) = Z ajy"rik (z). Using the equality
jk=1,1
00,00 00,00
onm () = | D ik (@) > aitr (@)
Jrk=1,1 4 k=1,1
and (v), we can easily obtain
00,00 00,00
jonm @) < D [aii] D [afi] < o0
jk=1,1 Jk=1,1
and hence
0'72Lm (z) = Z a;le a;szzrjlkl (T) Tjgks (2)

1< j1,j2 < o0
1<k, k2 <00

is convergent uniformly almost everywhere. So we have

(2.3) / 02, (x) dP (z) = S A, / Pk (2) Py (2) dP (2)

X

Since A has the Borel property, the uniformly bounded sequence (onm (x)) converges
to 0 for almost all . From (2.3) and the Lebesgue convergence theorem, it follows that

00,00

. nm\2 .
n}rlll’l)loo I; 1 (ajk ) = 0. This completes the proof. O
ik=1,
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Now let us give sufficient conditions for the Borel property. First we consider the
following sets
Do(A)={z e X: (Ax),,, diverges},
Di(A)={z e X: (Ax),, converges},

Da (A) = {xeX: (Azx). % (n,m—)oo)}.

We examine the relationship between these sets in the sense of P-measure.

2.4. Theorem. Let A = (a%") be a 4-dimensional bounded regular matriz. The sets
D1 (A) and D2 (A) have the same measure and the value is either 0 or 1.

Proof. Choose an arbitrary « € D; (A) (or Dz (A)). Let T be a sequence obtained by
altering a finite term of z. We have the following equality

00,00 Jo,ko
nm-— _ nm-— nm -~
Qi Tjk = ajk Tk + aj Tk
J.k=1,1 7,k=1,1 Jj>jo veya k>kg
Jo,ko
_ nm-=s nm
= ajk .Tjk + ajk .’Ejk.
4,k=1,1 ji>jo veya k>kqo

From Proposition 1.2 (i), it follows T € D; (A) (or D2 (A)). Hence the sets Dj (A)
and Dj (A) are homogeneous [14]. Since homogeneous sets have measure 0 or 1 and
D> (A) C D1 (A), the proof will be completed if P (D; (A)) = 1 implies P (D2 (A)) = 1.
On the other hand we have

(2.4) Ll% Z agy x]k—lllr}rll* Z ajy +1L1r7rif Z agy ik (T

7,k=1,1 J,k=1,1 7,k=1,1
00,00
where 7, () = 2z, — 1. If we choose x € D1 (A), we get lim Z ajy ik (x) = h(x)
n
Jk=1,1

for almost all x € X. From (v), interchanging integral and sum we have

/h(w)dx:/ 1}1% Z aii'rie () | dP (x)

X X 7,k=1,1
= im/ Z a]k Tk ( dP (z)
) =
= lim Zaﬂn /Tjk()dP() =0.
n’mj,kzl,l X

Hence we have h (z) = 0 for almost all z € X. Also since first part of the right hand side
of (2.4) is 1 we get @ € Dy (A). This completes the proof. O

2.5. Corollary. Let A = ( ;L,zn) be a 4-dimensional bounded reqular matriz. The set
Dy (A) has measure 0 or 1.

2.6. Corollary. If A = ( "m) is a 4-dimensional bounded regular matrix sums almost
all sequences of 0’s and 1’s, then the matrix has the Borel property.
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2.7. Theorem. Let A = (a}{") be a 4-dimensional matriz. If P (D1 (A)) = 1, then we
have

00,00
nm . .
m = a;’ converges for each n,m and lim p,,, = p exists
ik I )
n,m
jk=1,1 ’
00,00
nm 2
HAnm = (ajk ) < oo for each n,m.
J,k=1,1

The proof of the theorem is similar to those of Theorems 2.1 and 2.2, and therefore
is omitted.

2.8. Lemma. If A satisfies condition (v), then we have

r 2r)! -
@5) [ oum @I dP (@) < 2 ()
X
where T is a positive integer, Ypm () = Z aly ik (x) and Apm = Z (a%n)g.
jk=1,1 Jk=1,1

The proof can be proved using Lemma 1 of [13].
2.9. Theorem. If A = (a}i") satisfies (ii), (v) and the series

r
00,00 00,00

(2.6) > ST (@)’

n,m=1,1 \ j,k=1,1
converges for some r > 0, then A has the Borel property.

Proof. To complete the proof it is sufficient to show that

00,00

1 00,00 1 00,00
nm _ nm nm .
(2.7) Qi Tik = 3 E ajk + ) E ajr Tk (T)
Gk=1,1 Jok=1,1 Gok=1,1

the limit of the right hand side of (2.7) equals % for almost all z € X. From Lemma 2.8,
the inequality (2.5) holds for every positive integer r. On the other hand since the series
in (2.6) converges for some r > 0, we easily get

Z /Iwnm (2)]*" dP (z) < .

n,m:l,lx
Using the Beppo-Levi theorem, we have Z [$nm (2)|*" < oo for almost all = € X.
n,m=1,1

Hence we obtain for almost all x € X that

lim  Ypm (z) =0.

n,m— oo

This completes the proof. O

It is shown in [4] that the 4-dimensional Cesaro matrix method (C, 1, 1) has the Borel
property. We can also deduce this result from Theorem 2.9. We have already observed
that (2.2) is a necessary condition for the Borel property. We raise the question whether
the converse of Theorem 2.3 is true. The answer is no as the following example shows.

Since a 4-dimensional matrix can be considered as a matrix of infinite matrices, we
can look at every entry as a matrix.
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Consider the 4-dimensional Cesaro matrix, (C,1,1) = (c;’,:”) Now we construct a
4-dimensional matrix A = (a%ﬂ ) as follows:

Shift the every column to the right in every possible order as the number of nonzero
elements.

For example since there exist two possible order, we have

1 00 .. 0 1 0
(aji) =10 0 0 .., (aj5)=]0 0 0
(5 5 0 0 10 10
(aji) = 0 0 0 0 , (ad) = 0 0 0 0
[0 5 5 O 00 3 350
(aji) =10 0 0 O , (aj)=10 0 0 0 0
in the above we have six possible orders. Now let us obtain (a?i), , (afg)
(L0 100 0 0 0
Lo .. 0 %+ o0 11 g
@=|z o 7| @=|y 30 =]z 7 ¢

Continuing this procedure we can construct the matrix A.
Observe that the matrix A constructed above satisfies the condition (2.2).

Now let us consider the sequence {z;,} having (nu + p) times 1 ve (nu — p) times 0
in the rectangle (n,2u).

In the case of p = 0, an element of the matrix A which consists of 0’s and =’s sums

the sequence {z;i} to 0 and the another one sums to 1. Let these terms be (ng, mo) and
(n1,m1) respectively.

1
If (a?(}c’m”) containing —’s, such that all the 0’s of the sequence in the rectangle (n,2u)
’ i

correspond with —’s, we have
no,mo L —
g a3 Tk = 0.
gk

1
Also if (a;}c””l) containing — s, such that all the 1’s of the sequence in the rectangle
’ nu

1
,2u) correspond with —’s, we have
(n,2p
nw
S =1
3k

1
In the case of p > 0 there is an entry (a;(}g’mo) containing —’s, such that all the 1’s of
’ e

1
the sequence in the rectangle (n,2u) correspond with —’s, we have
n

no,mo . —
E a;y e = 1.
3.k
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Also there is another entry (a

ny,mi
’

1
ik ) containing —’s, such that all the 0’s of the sequence
nu

1

in the rectangle (n, 2u) correspond with —’s; we have
n.

>oar M = L

gk s

ng,mo

1
In the case of p < 0 there is an entry (aj A ) containing —’s, such that all the 0’s of
’ nw

1
the sequence in the rectangle (n,2u) correspond with —’s; we have
ny

no,mo . p—
E a; 'y Tk =0.
3.k

1
Also there is another entry (a;.l}g’ml) containing —’s, such that all the 1’s of the sequence
’ ny

1
in the rectangle (n, 2u) correspond with —’s, we have
n

S =1+ 2
— T

In any cases above, the oscillation of the sum E a?’kmxjk in the inner matrix containing

Lgis at least 1 — 2L,
np nu

as n, L — 00.
1

Since almost all double sequences of 0’s and 1’s is (C, 1,1)-summable to 3, the set

of sequences which l% tends to 1 has P-measure 1. From this it follows that the set of

In order that {z;.} is A-summable we necessarrily have % — 1,

sequences for which 2l tends to 1 is of P-measure 0. T herefore, A does not have the
Borel property. That is condition (2.2) can not be sufficient.
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