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The Borel property for 4-dimensional matrices
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Abstract
In 1909 Borel has proved that “Almost all of the sequences of 0’s and 1’s

are Cesàro summable to
1

2
". Then Hill has generalized Borel’s result

to two dimensional matrices. In this paper we investigate the Borel
property for 4-dimensional matrices.
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1. Introduction
The summability of sequences of 0’s and 1’s has been studied by various authors ([1],

[3], [6], [7], [8], [10]). In 1909 Borel proved that “Almost all of the sequences of 0’s and

1’s are Cesàro summable to
1

2
". Then Hill [6] has generalized Borel’s result to general

matrices. We say that the matrix has the Borel property, if a matrix sums almost all

of the sequences of 0’s and 1’s to
1

2
. Establishing a one-to-one correspondence between

the interval (0, 1] and the collection of all sequences of 0’s and 1’s, Hill has given some
necessary conditions and also some sufficient conditions for matrices to have the Borel
property in [6], [7]. This property has also been examined in [5], [8].

In the present paper we investigate the Borel property for 4-dimensional matrices.
In particular we exhibit some necessary and some sufficient conditions for 4-dimensional
matrices to have the Borel property.

We first recall some basic notations and results related to double sequences.
A double sequence s = (sij) is said to be Pringsheim convergent (i.e., it is convergent

in Pringsheim’s sense) to L if for every ε > 0 there exists an N ∈ N such that |sij − L| < ε
whenever i, j ≥ N ([2], [11]). In this case L is called the Pringsheim limit of s.

Throughout the paper when there is no confusion, convergence means the Pringsheim
convergence.
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Let X denote the set of all double sequences of 0’s and 1’s, that is

X = {x = (xjk) : xjk ∈ {0, 1} for each j, k ∈ N} .
Let < be the smallest σ-algebra of subsets of the set X which contains all sets of the
form

{x = (xjk) ∈ X : xj1k1 = a1, ..., xjnkn = an}
where each ai ∈ {0, 1} and the pairs {(jiki)}ni=1 are pairwise distinct.

There exists a unique probability measure P on the set <, such that

P ({x = (xjk) ∈ X : xj1k1 = a1, ..., xjnkn = an}) =
1

2n

for all choices of n and all pairwise disjoint pairs {(jiki)}ni=1, and all choices of a1, ..., an.
Recall that the functions rjk (x) = 2xjk− 1, for x ∈ X, are the Rademacher functions

(see [4]).
Four dimensional Cesàro matrix (C, 1, 1) =

(
cnmjk

)
is defined by

cnmjk =

{
1
nm

, 1 ≤ j ≤ n and 1 ≤ k ≤ m
0 , otherwise.

It is known that the (C, 1, 1) matrix is an RH regular, i.e., it sums every bounded
convergent sequence to the same limit.

An element x of X is said to be normal ([4]) if for each ε > 0 there is a natural

number Nε such that for n,m ≥ Nε we have

∣∣∣∣∣∣ 1
nm

∑
j≤n
k≤m

xjk − 1
2

∣∣∣∣∣∣ < ε. Let η denote the set

of all elements x in X that are normal. This means that normal elements are (C, 1, 1)-
summable to 1

2
. It is also proved in [4] that P (η) = 1. So (C, 1, 1) method has the Borel

property.
It would be appropriate to recall the definition of bounded regularity.

1.1. Definition. Let A =
(
anmjk

)
be a 4-dimensional matrix. If the limit

lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk sjk = L

exists, the double sequence (sjk) is called A-summable to L and denoted by sjk → L
(A). A matrix A =

(
anmjk

)
is bounded regular if every bounded and convergent sequence

s = (sjk) is A-summable to the same limit and A-means are also bounded [9]. The next
corollary characterizes bounded regular matrices.

1.2. Proposition. A =
(
anmjk

)
is bounded regular if and only if

(i) lim
n,m→∞

anmjk = 0, (j, k = 1, 2, ...)

(ii) lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk = 1,

(iii) lim
n,m→∞

∞∑
k=1

∣∣anmjk ∣∣ = 0, (j = 1, 2, ...)

(iv) lim
n,m→∞

∞∑
j=1

∣∣anmjk ∣∣ = 0, (k = 1, 2, ...)

(v)

∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ ≤ C <∞, (m,n = 1, 2, ...).
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These conditions were first established by Robison [12].

2. The Borel Property
This section is devoted to the Borel property for 4-dimensional matrices.

2.1. Theorem. If A =
(
anmjk

)
has the Borel property, then the

∞,∞∑
j,k=1,1

anmjk series con-

verges for each n,m and tends to 1 as n,m→∞.

Proof. Since A has the Borel property, for almost all x ∈ X, we obtain

lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk xjk = 1
2
. Indeed P (E) = 1 where

E =

{
x = (xjk) ∈ X : (Ax)nm →

1

2

}
.

Let us define x = (x̄jk) by

x̄jk =

{
0 , xjk = 1
1 , xjk = 0

.

Let Y = E ∩ η and Y = {(xjk) : xjk ∈ Y }. We get Y = E ∩ η. Since the mapping
(xjk)→ (xjk) preserves P measure, we obtain P

(
Y
)

= 1. So Y ∩ Y 6= ∅. If x = (xjk) ∈
Y ∩ Y , then x ∈ E, x ∈ η and x ∈ E, x ∈ η. Since x, x ∈ E, it follows that

∞,∞∑
j,k=1,1

anmjk xjk +

∞,∞∑
j,k=1,1

anmjk xjk =

∞,∞∑
j,k=1,1

anmjk → 1 (n,m→∞) .

This completes the proof. �

2.2. Theorem. If A =
(
anmjk

)
has the Borel property, then we have

∞,∞∑
j,k=1,1

(
anmjk

)2
<∞

for each n,m ∈ N.

Proof. Let rjk (x) = 2xjk − 1 be the Rademacher functions for double sequences. We
have

∞,∞∑
j,k=1,1

anmjk xjk =
1

2

∞,∞∑
j,k=1,1

anmjk +
1

2

∞,∞∑
j,k=1,1

anmjk rjk (x) .

SinceA has the Borel property and it follows from Teorem 2.1 that the series
∞,∞∑
j,k=1,1

anmjk rjk (x)

converges for each n,m ∈ N and almost all x ∈ X. Furthermore we obtain lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x) =

0 for almost all x ∈ X. So

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 is convergent uniformly on a set D with
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positive measure for each n,m ∈ N with respect to x. Hence for each n,m ∈ N and for
every ε > 0, there exists N1, N2 ∈ N such that for p, µ > N1 and q, ν > N2∣∣∣∣∣∣

p,q∑
j,k=1,1

anmjk rjk (x)−
µ,ν∑

j,k=1,1

anmjk rjk (x)

∣∣∣∣∣∣ < ε.

From the last inequality we immediately get

ε2P (D) >

∫
D

 ∑
E[µ,p;ν,q]

anmjk rjk (x)

2

dP (x)(2.1)

= P (D)
∑

E[µ,p;ν,q]

(
anmjk

)2
+R

where

E [µ, p; ν, q] = {(j, k) : µ < j ≤ p or ν < k ≤ q} ,

R = 2
∑

I[µ,p;ν,q]

anmj1k1a
nm
j2k2

∫
D

rj1k1 (x) rj2k2 (x) dP (x)

and I [µ, p; ν, q] = E [µ, p; ν, q] ∩ {(j, k) : j1 6= j2 or k1 6= k2}. On the other hand using
the Hölder inequality, we obtain

|R| ≤ 2

 ∑
I[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2
 ∑
I[µ,p;ν,q]

∫
D

rj1k1 (x) rj2k2 (x) dP (x)

2
1
2

.

Let v2j1k1j2k2 =

(∫
D

rj1k1 (x) rj2k2 (x) dP (x)

)2

. From the Bessel inequality, we get

∑
1 ≤ j1 < j2 <∞
1 ≤ k1 < k2 <∞

v2j1k1j2k2 ≤
∫
X

(χD (x))2 dP (x) = P (D) .

For sufficiently large p, q, µ and ν, we have ∑
I[µ,p;ν,q]

v2j1k1j2k2


1
2

≤ P (D)

4
.

Hence we obtain

|R| ≤ P (D)

2

 ∑
I[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2

≤ P (D)

2

 ∑
E[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2

≤ P (D)

2

∑
E[µ,p;ν,q]

(
anmj1k1

)2 .
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From (2.1) and last inequality, it follows that

ε2P (D) > P (D)
∑

E[µ,p;ν,q]

(
anmjk

)2 − P (D)

2

∑
E[µ,p;ν,q]

(
anmjk

)2
=
P (D)

2

∑
E[µ,p;ν,q]

(
anmjk

)2 .
Also since P (D) > 0, we obtain

∑
E[µ,p;ν,q]

(
anmjk

)2
< 2ε2. So for each n,m ∈ N, the series

∞,∞∑
j,k=1,1

(
anmjk

)2 is convergent. Hence we obtain the result. �

2.3. Theorem. If A =
(
anmjk

)
has the Borel property and satisfies (v), we have

(2.2)
∞,∞∑
j,k=1,1

(
anmjk

)2
= o (1) , (n,m→∞) .

Proof. Let σnm (x) =

∞,∞∑
j,k=1,1

anmjk rjk (x). Using the equality

σ2
nm (x) =

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 ∞,∞∑
j,k=1,1

anmjk rjk (x)


and (v), we can easily obtain

∣∣σ2
nm (x)

∣∣ ≤ ∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ ∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ <∞
and hence

σ2
nm (x) =

∑
1 ≤ j1, j2 ≤ ∞
1 ≤ k1, k2 ≤ ∞

anmj1k1a
nm
j2k2rj1k1 (x) rj2k2 (x)

is convergent uniformly almost everywhere. So we have∫
X

σ2
nm (x) dP (x) =

∑
1 ≤ j1, j2 ≤ ∞
1 ≤ k1, k2 ≤ ∞

anmj1k1a
nm
j2k2

∫
X

rj1k1 (x) rj2k2 (x) dP (x)(2.3)

=

∞,∞∑
j,k=1,1

(
anmjk

)2 .
Since A has the Borel property, the uniformly bounded sequence (σnm (x)) converges
to 0 for almost all x. From (2.3) and the Lebesgue convergence theorem, it follows that

lim
n,m→∞

∞,∞∑
j,k=1,1

(
anmjk

)2
= 0. This completes the proof. �
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Now let us give sufficient conditions for the Borel property. First we consider the
following sets

D0 (A) =
{
x ∈ X : (Ax)nm diverges

}
,

D1 (A) =
{
x ∈ X : (Ax)nm converges

}
,

D2 (A) =

{
x ∈ X : (Ax)nm →

1

2
(n,m→∞)

}
.

We examine the relationship between these sets in the sense of P -measure.

2.4. Theorem. Let A =
(
anmjk

)
be a 4-dimensional bounded regular matrix. The sets

D1 (A) and D2 (A) have the same measure and the value is either 0 or 1.

Proof. Choose an arbitrary x ∈ D1 (A) (or D2 (A)). Let x̂ be a sequence obtained by
altering a finite term of x. We have the following equality

∞,∞∑
j,k=1,1

anmjk x̂jk =

j0,k0∑
j,k=1,1

anmjk x̂jk +
∑

j>j0 veya k>k0

anmjk x̂jk

=

j0,k0∑
j,k=1,1

anmjk x̂jk +
∑

j>j0 veya k>k0

anmjk xjk.

From Proposition 1.2 (i), it follows x̂ ∈ D1 (A) (or D2 (A)). Hence the sets D1 (A)
and D2 (A) are homogeneous [14]. Since homogeneous sets have measure 0 or 1 and
D2 (A) ⊂ D1 (A), the proof will be completed if P (D1 (A)) = 1 implies P (D2 (A)) = 1.
On the other hand we have

(2.4) lim
n,m

∞,∞∑
j,k=1,1

anmjk xjk = lim
n,m

1

2

∞,∞∑
j,k=1,1

anmjk + lim
n,m

1

2

∞,∞∑
j,k=1,1

anmjk rjk (x)

where rjk (x) = 2xjk − 1. If we choose x ∈ D1 (A), we get lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x) = h (x)

for almost all x ∈ X. From (v), interchanging integral and sum we have∫
X

h (x) dx =

∫
X

lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x)

 dP (x)

= lim
n,m

∫
X

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 dP (x)

= lim
n,m

∞,∞∑
j,k=1,1

anmjk

∫
X

rjk (x) dP (x)

 = 0.

Hence we have h (x) = 0 for almost all x ∈ X. Also since first part of the right hand side
of (2.4) is 1

2
we get x ∈ D2 (A). This completes the proof. �

2.5. Corollary. Let A =
(
anmjk

)
be a 4-dimensional bounded regular matrix. The set

D0 (A) has measure 0 or 1.

2.6. Corollary. If A =
(
anmjk

)
is a 4-dimensional bounded regular matrix sums almost

all sequences of 0’s and 1’s, then the matrix has the Borel property.
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2.7. Theorem. Let A =
(
anmjk

)
be a 4-dimensional matrix. If P (D1 (A)) = 1, then we

have

pnm =

∞,∞∑
j,k=1,1

anmjk converges for each n,m and lim
n,m

pnm = p exists,

Anm =

∞,∞∑
j,k=1,1

(
anmjk

)2
<∞ for each n,m.

The proof of the theorem is similar to those of Theorems 2.1 and 2.2, and therefore
is omitted.

2.8. Lemma. If A satisfies condition (v), then we have

(2.5)
∫
X

|ψnm (x)|2r dP (x) ≤ (2r)!

2rr!
(Anm)r

where r is a positive integer, ψnm (x) =

∞,∞∑
j,k=1,1

anmjk rjk (x) and Anm =

∞,∞∑
j,k=1,1

(
anmjk

)2.
The proof can be proved using Lemma 1 of [13].

2.9. Theorem. If A =
(
anmjk

)
satisfies (ii), (v) and the series

(2.6)
∞,∞∑

n,m=1,1

 ∞,∞∑
j,k=1,1

(
anmjk

)2r

converges for some r > 0, then A has the Borel property.

Proof. To complete the proof it is sufficient to show that

(2.7)
∞,∞∑
j,k=1,1

anmjk xjk =
1

2

∞,∞∑
j,k=1,1

anmjk +
1

2

∞,∞∑
j,k=1,1

anmjk rjk (x)

the limit of the right hand side of (2.7) equals 1
2
for almost all x ∈ X. From Lemma 2.8,

the inequality (2.5) holds for every positive integer r. On the other hand since the series
in (2.6) converges for some r > 0, we easily get

∞,∞∑
n,m=1,1

∫
X

|ψnm (x)|2r dP (x) <∞.

Using the Beppo-Levi theorem, we have
∞,∞∑

n,m=1,1

|ψnm (x)|2r < ∞ for almost all x ∈ X.

Hence we obtain for almost all x ∈ X that

lim
n,m→∞

ψnm (x) = 0.

This completes the proof. �

It is shown in [4] that the 4-dimensional Cesàro matrix method (C, 1, 1) has the Borel
property. We can also deduce this result from Theorem 2.9. We have already observed
that (2.2) is a necessary condition for the Borel property. We raise the question whether
the converse of Theorem 2.3 is true. The answer is no as the following example shows.

Since a 4-dimensional matrix can be considered as a matrix of infinite matrices, we
can look at every entry as a matrix.
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Consider the 4-dimensional Cesàro matrix, (C, 1, 1) =
(
cnmjk

)
. Now we construct a

4-dimensional matrix A =
(
anmjk

)
as follows:

Shift the every column to the right in every possible order as the number of nonzero
elements.

For example since there exist two possible order, we have

(
a11jk
)

=

 1 0 0 ...
0 0 0 ...
...

 ,
(
a12jk
)

=

 0 1 0 ...
0 0 0 ...
...

 .

(
a13jk
)

=

 1
2

1
2

0 0 ...
0 0 0 0 ...
...

 , (
a14jk
)

=

 1
2

0 1
2

0 ...
0 0 0 0 ...
...

 ...

(
a17jk
)

=

 0 1
2

1
2

0 ...
0 0 0 0 ...
...

 , (
a18jk
)

=

 0 0 1
2

1
2

0 ...
0 0 0 0 0 ...
...


in the above we have six possible orders. Now let us obtain

(
a21jk
)
, ... ,

(
a26jk
)
.

(
a21jk
)

=


1
2

0 ...
1
2

0 ...
0 0 ...
...

 ,
(
a22jk
)

=


1
2

0 0 ...
0 1

2
0 ...

0 0 0 ...
...

 ,...,
(
a26jk
)

=


0 0 0 ...
1
2

1
2

0 ...
0 0 0 ...
...

 .

Continuing this procedure we can construct the matrix A.
Observe that the matrix A constructed above satisfies the condition (2.2).
Now let us consider the sequence {xjk} having (ηµ+ p) times 1 ve (ηµ− p) times 0

in the rectangle (η, 2µ).
In the case of p = 0, an element of the matrix A which consists of 0’s and 1

ηµ
’s sums

the sequence {xjk} to 0 and the another one sums to 1. Let these terms be (n0,m0) and
(n1,m1) respectively.

If
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 0’s of the sequence in the rectangle (η, 2µ)

correspond with
1

ηµ
’s, we have

∑
j,k

an0,m0
j,k xjk = 0.

Also if
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 1’s of the sequence in the rectangle

(η, 2µ) correspond with
1

ηµ
’s, we have

∑
j,k

an1,m1
j,k xjk = 1.

In the case of p > 0 there is an entry
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 1’s of

the sequence in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have

∑
j,k

an0,m0
j,k xjk = 1.
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Also there is another entry
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 0’s of the sequence

in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an1,m1
j,k xjk =

p

ηµ
.

In the case of p < 0 there is an entry
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 0’s of

the sequence in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an0,m0
j,k xjk = 0.

Also there is another entry
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 1’s of the sequence

in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an1,m1
j,k xjk = 1 +

p

ηµ
.

In any cases above, the oscillation of the sum
∑

an,mj,k xjk in the inner matrix containing
1
ηµ

’s is at least 1− |p|
ηµ

. In order that {xjk} is A-summable we necessarrily have |p|
ηµ
→ 1,

as η, µ→∞.
Since almost all double sequences of 0’s and 1’s is (C, 1, 1)-summable to 1

2
, the set

of sequences which |p|
ηµ

tends to 1 has P -measure 1. From this it follows that the set of
sequences for which |p|

ηµ
tends to 1 is of P -measure 0. Therefore, A does not have the

Borel property. That is condition (2.2) can not be sufficient.
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