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Weak solutions of a hyperbolic-type partial
dynamic equation in Banach spaces

Ahmet Yantir∗ and Duygu Soyoğlu†

Abstract
In this article, we prove an existence theorem regarding the weak solu-
tions to the hyperbolic-type partial dynamic equation

zΓ∆(x, y) = f(x, y, z(x, y)),
z(x, 0) = 0, z(0, y) = 0

, x ∈ T1, y ∈ T2

in Banach spaces. For this purpose, by generalizing the definitions and
results of Cichoń et.al. we develop weak partial derivatives, double
integrability and the mean value results for double integrals on time
scales. DeBlasi measure of weak noncompactness and Kubiaczyk’s fixed
point theorem for the weakly sequentially continuous mappings are the
essential tools to prove the main result.
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1. Introduction
The time scale which unifies the discrete and continuous analysis was initiated by

Hilger [24]. Henceforth, the equations which can be described by continuous and dis-
crete models are unified as "dynamic equations". Nevertheless, the theory of dynamic
equations does not provide only a unification of continuous and discrete models. It also
gives an opportunity to study some difference schemes based on variable step-size such
as q-difference (quantum) models under the frame of dynamic equations. The landmark
studies in the theory of dynamic equations are collected in the books by Bohner and
Peterson [5, 6].
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Since the difference and differential equations are also studied in infinite dimensional
Banach spaces [1, 9, 10, 11, 12, 16, 18, 21, 29, 28, 30, 37], it is reasonable to study dynamic
equations in Banach spaces. The pioneering work on dynamic equations in Banach spaces
is by Hilger [25]. Nevertheless this area is not sufficiently developed. Recently, Cichoń
et. al. [13] study the existence of weak solutions of Cauchy dynamic problem. After
this work, there have been some research activities in the theory of dynamic equations
in Banach spaces [14, 15, 31].

On the other hand, the bi-variety calculus on time scales dates back to the landmark
articles of Bohner and Guseinov [7, 8]. Authors study the partial differentiation and
multiple integration on time scales respectively. Jackson [26] and Ahlbrandt and Morian
[2] employ these background for studying some specific kinds of partial dynamic equations
on R. However, there is no result for the partial dynamic equations in Banach spaces.

The hyperbolic Goursat problem

uxy = f(x, y, u, ux, uy), u(x, 0) = u(0, y) = 0, (x, y) ∈ V

where V is a rectangle containing (0, 0), has been studied by many authors for years.
Picard proved that when f(x, y, z1, z2, z3) is Lipschitz continuous in the z− variable, then
the solution exists and unique [17, 27]. The existence of solutions when f is independent
from z2 and z3 was proved by Montel [33]. Then the sharper results followed by weakening
the conditions on f (see [32, 22, 3, 34, 35]). For an application of a hyperbolic partial
differential equations in stochastic process, see [36].

Motivated by the above studies and the lack of the results for nonlinear partial dynamic
equations, in this article, we concentrate on the hyperbolic type partial dynamic problem

(1.1) zΓw∆w (x, y) = f(x, y, z(x, y)),
z(x, 0) = 0, z(0, y) = 0

, x ∈ T1, y ∈ T2

in Banach spaces. Here the time scales T1 and T2 both include 0 and the differential
operators Γw and ∆w are weak partial derivative operators with respect to the variables
x and y respectively.

We assume that f is Banach space-valued, weakly-weakly sequentially continuous func-
tion. We also assume some regularity conditions expressed in terms of DeBlasi measure
of weak noncompactness [19] on f . We define a weakly sequentially continuous integral
operator associated to an integral equation which is equivalent to (1.1). The existence
of a fixed point of such operator is verified by using the fixed point theorem for weakly
sequentially continuous mappings given by Kubiaczyk [28].

2. Preliminaries and Notations
The time scale calculus (and weak calculus) for the Banach space valued functions is

created by Cichoń et.al. [13, 15]. Authors generalize the definitions of Hilger [24]. On the
other hand, the multi-variable time scale calculus is created by Ahlbrandt and Morian [2]
and Jackson [26]. In this section, we construct the definitions of weak partial derivatives
and the weak double integral of a Banach space valued function defined on T = T1 ×T2.
Also the mean value result of Cichoń et.al. (see Thm 2.11 of [13]) is generalized for the
multivariable case.

Before we state the preliminary definitions, we remark the readers about the notations.
Throughout this article, if a function of two variables f : T1 × T2 → E is considered,
by fΓ(s, t), we mean the forward Γ-derivative with respect to the first variable s ∈ T1.
Similarly f∆(s, t) stands for the forward ∆-derivative with respect to the second variable
t ∈ T2. For a function of single variable f : T→ E, the ordinary notation f∆(t) is used.
The similar considerations are also valid for the integrals.



We refer to [13] for the weak calculus of functions of single variable defined on a time
scale. We only state the core definitions to clarify the weak calculus of functions of several
variables defined on product time scale.

Let (E, || · ||) be a Banach space with the supremum norm and E∗ be its dual space.

2.1. Definition. [13] Let f : T → E. Then we say that f is ∆-weak differentiable at
t ∈ T if there exists an element F (t) ∈ E such that for each x∗ ∈ E∗ the real valued
function x∗f is ∆-differentiable at t and (x∗f)∆(t) = (x∗F )(t). Such a function F is
called ∆-weak derivative of f and denoted by f∆w .

2.2. Definition. [26](Partial Differentiability) Let f : T = T1 × T2 → R be a function
and let (s, t) ∈ Tk. We define fΓ(s, t) to be the number (provided that it exists) with
the property that given any ε > 0, there exists a neighborhood N of s, with N =
(s− δ, s+ δ) ∩ T1 for δ > 0 such that∣∣∣[f(σ(s), t)− f(u, t)]− fΓ(s, t)[σ(s)− u]

∣∣∣ ≤ ε |σ(s)− u|

for all u ∈ N. fΓ(s, t) is called the partial delta derivative of f with respect to the variable
s.

Similarly we define f∆(s, t) to be the number (provided that it exists) with the prop-
erty that given any ε > 0, there exists a neighborhood N of t, with N = (t− δ, t+ δ)∩T2

for δ > 0 such that∣∣∣[f(s, σ(t))− f(s, u)]− f∆(s, t)[σ(t)− u]
∣∣∣ ≤ ε |σ(t)− u|

for all u ∈ N. f∆(s, t) is called the partial delta derivative of f with respect to the
variable t.

Since we have the definitions of weak ∆-derivative and the partial derivatives on time
scales, it is reasonable to combine these definitions to construct the definition of weak
partial derivative of a Banach space valued function.

2.3. Definition. Let f : T1×T2 → E. Then we say that f is Γ-weak partial differentiable
at (s, t) ∈ T if there exists an element F (s, t) ∈ E such that for each z∗ ∈ E∗ the real
valued function z∗f is Γ partial differentiable at (s, t) and (z∗f)Γ(s, t) = (z∗F )(s, t).
Such a function F is called Γ-weak partial derivative of f and denoted by fΓw .

Similarly, f is said to be ∆-weak partial differentiable at (s, t) ∈ T if there exists an
element F (s, t) ∈ E such that for each z∗ ∈ E∗ the real valued function z∗f is ∆ partial
differentiable at (s, t) and (z∗f)∆(s, t) = (z∗F )(s, t). Such a function F is called ∆-weak
partial derivative of f and denoted by f∆w .

2.4. Definition. If FΓw (s, t) = f(s, t) for all (s, t), then we define Γ-weak Cauchy
integral by

(Cw)

∫ s

a

f(τ, t)Γτ = F (s, t)− F (a, t).

The Riemann, Cauchy-Riemann, Borel and Lebesgue integrals on time scales for the
Banach space-valued functions are defined by Aulbach et. al. [4]. Since the weak Cauchy
integral is defined by means of weak anti-derivativatives, the space of weak integrable
functions is too restricted. Therefore it is conceivable to define the weak Riemann inte-
gral.

2.5. Definition. [13] Let P = {a0, a1, · · · , an} be a partition of the interval [a, b]. P is
called finer than δ > 0 either µT([ai−1, ai]) ≤ δ or µT([ai−1, ai]) > δ only if ai = σ(ai−1),
where µT denotes the time scale measure.



2.6. Definition. (Riemann Double Integrability) A Banach space valued-function f :
[a, b] × [c, d] → E is called weak Riemann double integrable if there exists I ∈ E such
that for any ε > 0 there exists a positive number δ with the following property: For any
partition P1 = {a0, a1, · · · , an} of [a, b] and P2 = {c0, c1, · · · , cn} of [c, d] which are finer
than δ and the set of points sj ∈ [aj−1, aj) and tj ∈ [cj−1, cj) for j = 1, 2, · · · , n one has∣∣∣∣∣z∗(I)−

n∑
j=1

z∗(f(sj , tj))µT([aj−1, aj)× [cj−1cj))

∣∣∣∣∣ ≤ ε, for all z∗ ∈ E∗.

The uniquely determined function I is called weak Riemann double integral f and denoted
by

I = (Rw)

∫ ∫
[a,b]×[c,d]

f(s, t)∆tΓs.

Using Theorem 4.3 of Guseinov [23] and regarding the definition of weak Cauchy and
Riemann integrals, it can be remarked that every Riemann weak integrable function is
Cauchy weak integrable and therefore these two integrals coincide.

The measure of weak noncompactness which is developed by DeBlasi [19] is the fun-
damental tool in our main result. The regularity conditions on the nonlinear term f is
expressed in terms of measure of weak noncompactness. Let A be a bounded nonempty
subset of E. The measure of weak noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB1}
where Kω is the set of weakly compact subsets of E and B1 is the unit ball in E.

We make use of the following properties of the measure of weak noncompactness β.
For bounded nonempty subsets A and B of E,

(1) If A ⊂ B then β(A) ≤ β(B),
(2) β(A) = β(Āw), where Āw denotes the weak closure of A,
(3) β(A) = 0 if and only if A is relatively weakly compact,
(4) β(A ∪B) = max {β(A), β(B)},
(5) β(λA) = |λ|β(A) (λ ∈ R),
(6) β(A+B) ≤ β(A) + β(B),
(7) β(conv(A)) = β(conv(A)) = β(A), where conv(A) denotes the convex hull of A.

If β is an arbitrary set function satisfying the above properties i.e., if β is an axiomatic
measure of weak noncompactness, then the following lemma is true.

2.7. Lemma. If ||E1|| = sup{||x|| : x ∈ E1} < 1 then

β(E1 + E2) ≤ β(E2) + ||E1||β(K(E2, 1)),

where K(E2, 1) = {x : d(E2, x) ≤ 1}.

The generalization of Ambrosetti Lemma for C(T1 × T2, E) is as follows:

2.8. Lemma. Let H ⊂ C(T1 × T2, E) be a family of strongly equicontinuous functions.
Let H(x, y) = {h(x, y) ∈ E, h ∈ H}, for (x, y) ∈ T1 × T2. Then

β(H(T1 × T2)) = sup
(x,y)∈T1×T2

β(H(x, y)),

and the function (x, y) 7→ β(H(x, y)) is continuous on T1 × T2.

Proof. The proof directly follows by generalizing the proof of Lemma 2.9 of [13]. �

2.9. Theorem. (Mean Value Theorem for Double Integrals) If the function φ : T1×T2 →
E is ∆- and Γ-weak integrable, then∫∫

Ω

φ(s, t)∆tΓs ∈ µT(Ω) · conv φ(Ω)



where Ω is an arbitrary subset of T1 × T2.

Proof. Let
∫∫

Ω

φ(s, t)∆tΓs = w and µT(R) · conv φ(Ω) = W . Suppose to the contrary,

that w /∈W . By separation theorem for the convex sets there exists z∗ ∈ E∗ such that

sup
ϕ∈W

z∗(ϕ) = α < z∗(w).

However

z∗(w) = z∗
(

(Cw)

∫∫
Ω

φ(s, t)∆tΓs

)
=

∫∫
Ω

z∗(φ(s, t))∆tΓs.

Moreover, for (s, t) ∈ Ω, we have φ(s, t) ∈ φ(Ω) and therefore

µT(Ω) · φ(s, t) ⊆ µT(Ω) · conv φ(Ω) = W, i.e. φ(s, t) ⊆ W

µT(Ω)
.

Hence

z∗(φ(s, t)) ≤ z∗
(

W

µT(Ω)

)
<

α

µT(Ω)
.

Finally we obtain,

z∗(w) =

∫∫
Ω

z∗(φ(s, t))∆tΓs ≤
∫∫

Ω

α

µT(Ω)
∆tΓs =

α

µT(Ω)
· µT(Ω) = α

which is a contradiction. �

In the proof of the main theorem, we make use of the following fixed point theorem
of Kubiaczyk.

2.10. Theorem. [28] Let X be a metrizable, locally convex topological vector space, D
be a closed convex subset of X, and F be a weakly sequentially continuous map from D
into itself. If for some x ∈ D the implication

(2.1) V = conv({x} ∪ F (V ))⇒ V is relatively weakly compact,

holds for every subset V of D, then F has a fixed point.

3. The Existence Result
We claim that in the case of weakly-weakly continuous f , finding a weak solution of

(1.1) is equivalent to solving the integral equation

(3.1) z(x, y) = (Cw)

∫ x

0

∫ y

0

f(s, t, z(s, t))∆tΓs, (s, t) ∈ T1 × T2.

To justify the equivalence, we first assume that a weakly continuous function z : T1×T2 →
E is a weak solution of (1.1). We show that z solves the integral equation (3.1). By the
definition of weak Cauchy integral (Definition 2.4), we have

(Cw)

∫ y

0

f(x, t, z(x, t))∆t = (Cw)

∫ y

0

zΓ∆(x, t)∆t = zΓ(x, y)− zΓ(x, 0) = zΓ(x, y)

Note that zΓ(x, 0) = 0 since z(x, 0) = 0. If we integrate the resulting equation on [0, x]T1 ,
we obtain

(Cw)

∫ x

0

∫ y

0

f(s, t, z(s, t))∆tΓs = (Cw)

∫ x

0

zΓ(s, y)Γs = z(x, y)− z(0, y) = z(x, y)

which points out that z solves the integral equation (3.1).



Conversely, we assume that z(x, y) is a solution of the integral equation (3.1). For any
z∗ ∈ E∗, we have

(z∗z)(x, y) = z∗
(∫ x

0

∫ y

0

f(s, t, z(s, t))∆tΓs

)
and therefore

(z∗z)Γ(x, y) =

(∫ x

0

∫ y

0

z∗(f(s, t, z(s, t)))∆tΓs

)Γ

=

∫ y

0

z∗(f(x, t, z(x, t)))∆t.

Differentiating the last expression we get

(z∗z)Γ∆(x, y) =

(∫ y

0

z∗(f(x, t, z(x, t)))∆t

)∆

= z∗(f(x, y, z(x, y))).

By the definition of weak partial derivatives (Definition 2.3), we obtain

zΓw∆w (x, y) = f(x, y, z(x, y)).

Clearly the boundary conditions of (1.1) hold. Hence z(x, y) is the weak solution of (1.1).
We consider the space of continuous functions T1 × T2 → E with its weak topology,

i.e.,

(C(T1 × T2, E), w) = (C(T1 × T2, E), τ(C(T1 × T2, E), C∗(T1 × T2, E))) .

Let G : T1 × T2 × [0,∞)→ [0,∞) be a continuous function and nondecreasing in the
last variable. Assume that the scalar integral inequality

g(x, y) ≥
∫ x

0

∫ y

0

G(s, t, g(s, t))∆tΓs(3.2)

has locally bounded solution g0(x, y) existing on T1 × T2.
We define the ball Bg0 as follows:

Bg0 =
{
z ∈ (C(T1 × T2, E), w) : ||z(x, y)|| ≤ g0(x, y) on T1 × T2,

||z(x1, y1)− z(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(s, t, g0(s, t))∆tΓs

∣∣∣∣
+

∣∣∣∣∫ x2

x1

∫ y1

0

G(s, t, g0(s, t))∆tΓs

∣∣∣∣ for x1, x2 ∈ T1 and y1, y2 ∈ T2

}
(3.3)

Clearly the set Bg0 is nonempty, closed, bounded, convex and equicontinuous.
Assume that a nonnegative, real-valued, continuous function (x, y, r) 7→ h(x, y, r)

defined on T1 × T2 × R+ satisfies the following conditions:
(H1) h(x, y, 0) = 0,
(H2) z(x, y) ≡ 0 is the unique continuous solution of the integral inequality

u(x, y) ≤
∫ x

0

∫ y

0

h(s, t, u(s, t))∆tΓs

satisfying the condition u(0, 0)=0.
We define the integral operator F : (C(T1 × T2, E), w)→ (C(T1 × T2, E), w) associated
to the integral equation (3.1) by

(3.4) F (z)(x, y) = (Rw)

∫ x

0

∫ y

0

f(s, t, z(s, t))∆tΓs, x ∈ T1, y ∈ T2.



By the considerations presented above, the fixed point of the integral operator F is the
weak solution of (1.1). Our main result is as follows:

3.1. Theorem. Assume that the function f : T1 × T2 ×Bg0 → E satisfies the following
conditions:

(C1) f(x, y, ·) is weakly-weakly sequentially continuous for each (x, y) ∈ T1 × T2,
(C2) For each strongly absolutely continuous function z : T1×T2 → E, f(·, ·, z(·, ·))is

weakly continuous
(C3) ||f(x, y, u)|| ≤ G(x, y, ||u||) for all (x, y) ∈ T1 × T2 and u ∈ E,
(C4) For any function h satisfying the conditions (H1) and (H2)

β(f(Ix × Iy ×W )) ≤ h(x, y, β(W ))

for each W ⊂ Bg0 and Ix ⊂ T1, Iy ⊂ T2.

Then there exists a weak solution of the partial dynamic problem (1.1).

Proof. By virtue of the condition (C2), the operator F : Bg0 → (C(T1×T2, E), w) is well-
defined. Next we clarify that the operator F maps Bg0 into Bg0 . For this purpose first we
verify ||F (z)(x, y)|| ≤ g0(x, y). For z(x, y) ∈ Bg0 , the condition (C3), the monotonicity
of G in the last variable and the existence of locally bounded solution g0(x, y) of (3.2)
guarantee that

||F (z)(x, y)|| =

∣∣∣∣∣∣∣∣∫ x

0

∫ y

0

f(s, t, z(s, t))∆tΓs

∣∣∣∣∣∣∣∣
≤

∫ x

0

∫ y

0

||f(s, t, z(s, t))||∆tΓs

≤
∫ x

0

∫ y

0

G(s, t, ||z(s, t)||)∆tΓs

≤
∫ x

0

∫ y

0

G(s, t, ||g0(x, y)||)∆tΓs ≤ g0(x, y).(3.5)

Consequently, we claim that

||F (z)(x1, y1)− F (z)(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(s, t, g0(s, t))∆tΓs

∣∣∣∣
+

∣∣∣∣∫ x2

x1

∫ y1

0

G(s, t, g0(s, t))∆tΓs

∣∣∣∣ .
For all z∗ ∈ E∗ with ||z∗|| ≤ 1, we have

|z∗(f(s, t, z(s, t)))| ≤ sup
z∗∈E∗,||z∗||≤1

|z∗(f(s, t, z(s, t)))|

= ||(f(s, t, z(s, t)))||
≤ G(s, t, ||z(s, t)||),

where we use the condition (C3) for the last step. Hence

|z∗ [F (z)(x1, y1)− F (z)(x2, y2)]| =

∣∣∣∣z∗(∫ x2

0

∫ y2

y1

f(s, t, z)∆tΓs−
∫ x2

x1

∫ y1

0

f(s, t, z)∆tΓs

)∣∣∣∣
≤
∫ x2

0

∫ y2

y1

|z∗(f(s, t, z))|∆tΓs+

∫ x2

x1

∫ y1

0

|z∗(f(s, t, z))|∆tΓs



Utilizing the condition (C2) we acquire,

||F (z)(x1, y1)− F (z)(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(s, t, ||z(s, t)||)∆tΓs
∣∣∣∣

+

∣∣∣∣∫ x2

x1

∫ y1

0

G(s, t, ||z(s, t)||)∆tΓs
∣∣∣∣ .

Since G is nondecreasing in the last variable, the desired result

||F (z)(x1, y1)− F (z)(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(s, t, g0(s, t))∆tΓs

∣∣∣∣
+

∣∣∣∣∫ x2

x1

∫ y1

0

G(s, t, g0(s, t))∆tΓs

∣∣∣∣
follows.
Next, we substantiate the weakly sequentially continuity of the integral operator F . Let
zn

w→ z in Bg0 . Then for given ε > 0 there exists N ∈ N such that for any n > N
and (x, y) ∈ Iα × Iβ ⊂ T1 × T2, we have |z∗zn(x, y) − z∗z(x, y)| < ε. Apparently, from
condition (C1), one can obtain

|z∗f(x, y, zn(x, y))− z∗f(x, y, z(x, y))| ≤ ε

αβ
.

Hence

|z∗(F (zn)(x, y)− F (z)(x, y))| =

∣∣∣∣z∗(∫ x

0

∫ y

0

f(s, t, zn)∆tΓs−
∫ x

0

∫ y

0

f(s, t, z)∆tΓs

)∣∣∣∣
≤
∫ x

0

∫ y

0

|z∗ (f(s, t, zn(s, t))− f(s, t, z(s, t)))|∆tΓs

≤
∫ α

0

∫ β

0

|z∗f(s, t, zn(s, t))− z∗f(s, t, z(s, t))|∆tΓs

<

∫ α

0

∫ β

0

ε

αβ
∆tΓs = ε,

(for the first integral inequality see [23, 5, 6]). Owing to the closedness of T1 × T2, is it
locally compact Hausdorff space. Thanks to the result of Dobrakov (see [20], Thm 9),
F (zn) converges weakly to F (z) in (C(T1×T2, E), w). Therewith F is weakly sequentially
continuous mapping.

As a result, F is well-defined, weakly sequentially continuous and maps Bg0 into Bg0 .
Now we prove that the fixed point of the integral operator (3.4) exists by employing

Kubiaczyk’s fixed point theorem (Theorem 2.10).
Let W ⊂ Bg0 satisfying the condition

(3.6) W = conv ({z} ∪ F (W ))

for some z ∈ Bg0 . We prove thatW is relatively weakly compact. For (x, y) ∈ T1×T2, we
define W (x, y) = {w(x, y) ∈ E : w ∈ W}. Resulting from Ambrosetti’s Lemma (Lemma
2.8), the function (x, y) 7→ w(x, y) = β(W (x, y)) is continuous on T1 × T2.

Since the integral is
∫ x

0

∫ y

0

G(s, t, g(s, t))∆tΓs is bounded, there exist ξ ∈ T1 and

η ∈ T2 such that ∫∫
R

G(s, t, ||z(s, t)||)∆tΓs < ε

where R = T1 × T2 − ([0, ξ]T1 × [0, η]T2). We divide the interval [0, ξ]T1 into m parts

0 < s1 < s2 < . . . < sm = ξ



and [0, η]T2 into n parts
0 < t1 < t2 < . . . < tm = η

in a way that each partition is finer than δ > 0. Also we define Ti1 = [si, si+1]T1 and
Tj2 = [tj , tj+1]T2 . By Abrosetti’s Lemma there exists (σi, τj) ∈ Ti1 × Tj2 = Pij such that

β(W (Pij)) = sup{β(W (s, t)) : (s, t) ∈ Pij} = w(σi, τj).

On the other hand, for x > ξ, y > η and for any w ∈W , we have

F (w)(x, y) =

∫ x

0

∫ y

0

f(s, t, w(s, t))∆tΓs

=

∫ ξ

0

∫ η

0

f(s, t, w(s, t))∆tΓs+

∫∫
R1

f(s, t, w(s, t))∆tΓs.

Therefore the mean value theorem (Theorem 2.9) entails

F (w(x, y)) ∈
m−1∑
i=0

n−1∑
j=0

µT(Pij)conv(f(Pij ×W (Pij))) +

∫∫
R1

f(s, t, w(s, t))∆tΓs,

which has the consequence

F (W (x, y)) ⊂
m−1∑
i=0

n−1∑
j=0

µT(Pij)conv(f(Pij ×W (Pij))) +

∫∫
R1

f(s, t,W (s, t))∆tΓs.

Using (C4), Lemma 2.7 and the properties of measure of weak noncompactness, we
acquire

β(F (W (x, y))) ≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)β(conv(f(Pij ×W (Pij)))) +

∣∣∣∣∣∣∣∣∫∫
R1

f(s, t, w(s, t))∆tΓs

∣∣∣∣∣∣∣∣
≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)β(f(Pij ×W (Pij))) + sup
w∈W

∫∫
R1

f(s, t, w(s, t))∆tΓs

≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)h((Pij × β(W (Pij)))) + sup
w∈W

∫∫
R1

f(s, t, w(s, t))∆tΓs

≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)h((Pij × β(W (Pij)))) + sup
w∈W

∫∫
R

f(s, t, w(s, t))∆tΓs

≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)h((Pij × w(σi, τj)) + sup
w∈W

∫∫
R

f(s, t, w(s, t))∆tΓu

≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)h((Pij × w(σi, τj)) + sup
w∈W

∫∫
R

G(s, t, ||w(s, t)||)∆tΓs

≤
m−1∑
i=0

n−1∑
j=0

µT(Pij)h((Pij × w(σi, τj)) + ε

Since ε is arbitrary,

(3.7) β(F (W )(x, y)) ≤
∫ x

0

∫ y

0

h(s, t, w(s, t))∆tΓs.

By the condition (3.6), inequality (3.7) and the properties of measure of weak noncom-
pactness

w(x, y) ≤
∫ x

0

∫ y

0

h(s, t, w(s, t))∆tΓs.



The condition (H2) implies that the integral inequality above has only trivial solution,
i.e. w(x, y) = β(W (x, y)) = 0 which means that W ie relatively weakly compact. Thus
the condition (2.1) of Theorem 2.10 is substantiated. So the integral operator F defined
by (3.4) has a fixed point which is actually a weak solution of the hyperbolic partial
dynamic equation (1.1). �
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