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The Rayleigh paired comparison model with

Bayesian analysis
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Abstract

A paired comparison (PC) method is more reliable to rank or com-
pare more than two items/ objects at the same time. It is a well-
developed method of ordering attributes or characteristics of a given set
of items.The PC model is developed using Rayleigh random variables on
the basis of Stern’s criteria [17]. The Rayleigh PC model is analyzed in
Bayesian framework using non-informative (Jeffreys and Uniform) pri-
ors. The Bayesian inference of the developed model is compared with
existing the Bradley-Terry model. The preference and predictive proba-
bilities for current and future comparisons are calculated. The posterior
probabilities of hypotheses for comparing two parameters are evaluated.
The Bayesian 95% credible interval are calculated.Appropriateness of
the model is also examined. Graphs of marginal posterior distributions
of the parameters are drawn. The Bayesian analysis is performed using
real life data sets.
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1. Introduction

A pair of objects is presented for comparison and two are placed in the relationship

preferred or not preferred. If the differences among the objects are distinguishable and
fairly apparent then ranking of all objects will be preferable where the objects will be
given ranked values depends on preferences. For a detailed discussion on PC method and
its usefulness, one is referred to [4], [7] and [9]
A PC model based on two Cauchy random variables has been developed by [1]. The model
has been analyzed in the Bayesian frame work using informative, Conjugate and non-
informative (Jeffreys and Uniform) priors. The real data set of top five ranked one day
international cricket teams is collected for the Bayesian analysis. By study it is concluded
that Australia has been ranked on the top. The technique of collecting preference data
from judges through binary digits have been highlighted by [2]. The preferred item is
denoted by one and zero to the non-preferred item. The Bradley-Terry PC model is used
for analysis considering a real data set on ice-cream brands. [3] has been worked on two
types of models to use ordinal scales for PC analysis for several parameters. He shows
for binary scale that logit transformation for the models simplifies them to the basic
Bradley-Terry model. [4] has given the Bayesian analysis of the Bradley-Terry and the
Rao-Kupper model. The posterior means of the parameters, posterior probabilities of the
hypotheses and predictive probabilities for both the models are included in this study.
These results were using the non-informative (Jeffreys and Uniform) priors. [5] have
estimated the parameters of the Thurstone-Mosteller PC model by method of maximum
likelihood. The Bayesian analysis of the model is carried out using Jeffreys prior. The
Binomial discrete logistic model for the relation between sensory and consumer preference
have been presented by [8]. It is also concluded that no preference is better to model as
a function than considered as ties for the sensory data. The Thurstone-Mosteller model
for PCs has been modified by [10] which allows for widely differing proportions of draws.
Data relating to games between the 64 greatest chess player of the world is analyzed for
the model. [11] has discussed the technique of iterative maximum likelihood estimates
algorithms for the generalization of the Bradley Terry model. [13]| has presented that
PC allow a large number of draws and variability of draw percentages among the players
of chess or soccer matches. The results are based on matching the number of home
wins, home draws, away wins and away draws for each team with their expected values.
Glenn- David model is used for the estimation. [16] have recommended the procedure of
lasso that categorized the contestants with similar aptitudes. The standard maximum
likelihood method is used for the prediction of rankings. The teams ranking of National
football league 2010-2011 and the American college hockey men’s division I 2009-2010
have been used for the analysis.

In Section 2, the method of the Rayleigh model development and notations for the
model is discussed. The Bradley-Terry model is given in Section 3.The prior distributions
and the Bayesian analysis is provided in Sections 4 and 5. Concluding remarks are
provided in Section 6.

2. The Rayleigh Paired Comparisons Model

By considering PC experiments of the Rayleigh random variables with same shape
parameter and different scale (a;) parameter, the Rayleigh model is derived on the basis
of the Stern’s model criteria . The Rayleigh random variables are used to examine
wind velocity. The data of MRI images is also Rayleigh distributed. As the Rayleigh
distribution can be used in communication theory, so in paired comparison, perception
of the preference one object is communicated to the other object in a pair, for this
reason, Rayleigh distribution may be considered for PC model. The probability that the
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preference of T; over T} is denoted by ¢;.;; and defined as:

iy =P(T; <Ty)
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and ¢;.;; is the probability that T} is preferred over 7; and is obtained as:

¢j.i5 =1 — biij
o?
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where ay; (i < j) = 1,2,...m are the treatment parameters. The (2.1) and (2.2)
represent the model named as the Rayleigh model for PC.
We define the notations for the model. Let w;; be the random variable associated with
the rank of the treatments in the k'* repetition of the treatment pair (7;,7T;), where
(i#7;i>1,7<m;k=1,2,...,r;) and m is the number of observation.

w;.i55 =1 or 0 accordingly as treatment T; is preferred to treatment Tj

or not in the k" repetition of comparison.

wj.ijk =1 or 0 accordingly as treatment T} is preferred to treatment T

or not in the k'™ repetition of comparison.

Wi = Zwi_qjjk = the number of times treatment 7; is preferred to
k

treatment 7.

Wj.i5 = Z Wj.ijk = the number of times treatment T} is preferred to
&

treatment 7;.
r;; =the number of times treatment 7} is compared with treatment T}.

Tij =Wi.ij + Wjiij-
The likelihood function of the observed outcomes of the trial w and the parameters
QA=Q1, A2, .oy Ay, 1S ¢
?wi.ija?wj.u

m
7iz! i J
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A constraint is imposed on parameters of the model i.e., > " o; = 1. This condition
confirms that parameters are well defined.
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3. The Bradley-Terry Model

The Bradley-Terry model is the basic PC model. [7] proposed a model of PCs as-
suming the Logistic density instead of the standard normal density using [15] and [18].
The difference between two latent variables (T}, T;) has a Logistic density with location
parameters (In oy, In ;). The probability that treatment 75 is preferred to treatment 7
according to Bradley and Terry is given as:

Qg
3.1 iij =
B1 =t
s
3.2 I
6D =5 o

where (3.1) and (3.2) is known as the Bradley-Terry model for PC.

4. Non-Informative Prior Distributions
The non-informative (Uniform and Jeffreys) priors are assumed for the Bayesian anal-

ysis.

4.1. Uniform Prior. The Bayesian analysis of the unknown parameter using Uniform
prior is suggested by [6] and [14]. We use the Uniform U(0,1) as the prior distribution,
defined as:

(41) pu(a) x1
where « is defined in (2.3) and a; > 0. It is the improper prior.
4.2. Jeffreys Prior. The Jeffreys prior is defined as the density function proportional

to partially differentiating twice the log likelihood function and taking the square root of
the expected value, i.e.

NI

(4.2)  pslo) o det[I(a)]

2 2
E[a logQZ(.)} E[aalogl(.)]
where det[I(a)] = (=1)*| ., 6:1 0 o
E[ B(lngcfg)} E[ ‘;aggl()]

form=3and a3 =1 — a1 — as.
So, the Jeffreys prior for the parameters is derived as:

pa(e) o /4

where A; :204? — 604? + Gai’ag + 150/%0[5 — 14a‘11a2 + 7(1‘1l — 4a§ + 12a:fa2+
20a§o¢g — 2804?04% — 40420@ + a? — 2804?04% + 1505%0/% + 1804%04%—&—
12a1ag — 4a1a§ + 6a1ag — 14cz1a§l + a% + 7cz42l — 4ag — 6ag+
2043
Ao :(2043 +1—2a1 — 202+ a2+ 20¢10¢2)2(2a§ +1—2a1 — 200 + a2

+ 2041042)2(04% + 043)2

Maple-15 package is used for the mathematical derivation of Jeffreys prior.
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5. Bayesian Analysis of the Model for m=3

The joint posterior distribution of the Rayleigh model parameters given data using
the (2.3) and p(«) (prior distribution) is:

= QWi i 2w 4
(o clw) = & o) T[ rig! ag
ploi, o|lw) = = pla) [] e
K i<j=1 Wij- (Tij — wi]-)! (ai —+ aj) i1 j.ij
where K is the normalizing constant, defined as:
1 l—ay m=3 T’"' agwi_ij 2'“7j.ij
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The marginal posterior distribution of the Rayleigh model parameter «; given data under
Uniform prior using the (4.1) and Sec.5.1 is:

m=3

1 e i) a
5.1 w) = — . - 2 daj,
@) pledw) = ) vo@ TT GG =ay @ vapee

2wi.'ija2wj.ij

o > 0, Z:Z:ls a; = 1.
The marginal posterior distribution of the Rayleigh model parameter o given data under
Jeffreys prior using the (4.2) and Sec. 5.2 is:

m=3 ?wi.fzj a?wj.ij

I Tij! i J

(52 pladfw) = 7(/0 pJ(a)i<]111 wij! (rij —wig)! (af + af)viiateii a0
o > 0, 27;213 a; = 1.

The posterior distribution is not in closed form but can be used numerically using package
like SAS.
For illustrative purposes, two real data sets (r;;) of 5 and 30 respondents is collected
from the students of the Quaid-i-Azam University Pakistan. These data sets comprise
of the three different brands of cigarettes (Benson & Hedges (BH), Marlboro (ML) and
Dunhill (DH)) which are commonly used among students. Bayesian analysis for the data
sets in Table 1 is carried out using non-informative priors.

Table 1. Data of Cigarette Brands

. Data 1 . Data 2
Pairs Pairs

wi&ij w]ﬂij Tij wi.ij w]ﬂij Tij
(BH,ML) | 1 4 |5 [@®E,ML)| 11 | 13 |24
(BH,DH) | 2 3 | 5 | (BH,DH)| 12 | 15 |27
(ML ,DH) | 4 1 |5 |(MML,DH)| 16 | 11 |27

5.1. Posterior Estimates. The posterior means are used as the estimates of the pa-
rameters. In the Table 2, the posterior means of the Rayleigh and the Bradley-Terry
models are given.
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Table 2. Posterior Means under Non-Informative Priors

Data 1 Data 2
Parameters Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform
a1 0.15965 | 0.18604 | 0.23427 | 0.23063 | 0.28907 | 0.29027 | 0.31080 | 0.31051
a2 0.63030 | 0.57543 | 0.49461 | 0.49991 | 0.39659 | 0.39470 | 0.36483 | 0.36523
o3 0.21005 | 0.23853 | 0.27112 | 0.26946 | 0.31435 | 0.31502 | 0.32437 | 0.32426

From the Table 2, it is concluded that the cigarette brand Marlboro may be ranked
number one among the brands and commonly used by students. Dunhill is ranked number
two. Benson & Hedges has the lowest rank. Further observes that ranking of the brands
(of cigarettes) have same order under both the models and data sets using non-informative

priors.

5.2. Graphs of the Marginal Posterior Distribution. The graphs of the marginal
posterior distribution of the Bradley-Terry and the Rayleigh model using both data sets
for non-informative priors are drawn below.
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Figure 1. The Mar-
ginal Posterior Distri-
butions for «; of the
Rayleigh Model using
Uniform Prior (Data-
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Figure 2. The Mar-
ginal Posterior Dis-
tributions for «; of
the Rayleigh Model
using Jeffreys Prior
(Data-1)
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Figure 3. The Mar-
ginal Posterior Distri-
butions for «; of the
Bradley-Terry Model
using Uniform Prior
(Data-1)

Figure 5. The Mar-
ginal Posterior Distri-
butions for a; of the
Rayleigh Model using
Uniform Prior (Data-

Figure 7. The Mar-
ginal Posterior Distri-
butions for «; of the
Bradley-Terry Model
using Uniform Prior
(Data-2)
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Figure 4. The Mar-
ginal Posterior Distri-
butions for «; of the
Bradley-Terry Model
using Jeffreys Prior
(Data-1)
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Figure 6. The Mar-
ginal Posterior Dis-
tributions for «; of
the Rayleigh Model
using Jeffreys Prior
(Data-2)

Figure 8. The Mar-
ginal Posterior Distri-
butions for «; of the
Bradley-Terry Model
using Jeffreys Prior
(Data-2)
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The Figures 1, 2, 3 and 4 have skewed marginal posterior distributions for the Rayleigh
and the Bradley-Terry models under non-informative priors for the data set-1. Where as
figures 5, 6, 7 and 8 have symmetrical marginal posterior distributions for the Rayleigh
and the Bradley-Terry models under non-informative priors for the data set-2. Due to
large data set shows symmetrical graphs.

5.3. Credible Intervals. The 95 % credible intervals are constructed for the Bradley-

Terry and the Rayleigh models.

Table 3. 95% Credible Intervals under Non-Informative Priors

Data-1
Parameters Bradley-Terry Rayleigh
Jeffreys Uniform Jeffreys Uniform
i (0.11902, 0.20029) | (0.14547, 0.22662) | (0.20679, 0.26175) | (0.20296, 0.25830)
o2 (0.56769, 0.69291) | (0.51878, 0.63207) | (0.45733, 0.53189) | (0.46271, 0.53712)
s (0.16432, 0.25577) | (0.19459, 0.28247) | (0.24349, 0.29875) | (0.24151, 0.29741)
Data-2
Parameters Bradley-Terry Rayleigh
Jeffreys Uniform Jeffreys Uniform
ay (0.26477, 0.31336) | (0.26623, 0.31431) | (0.29806, 0.32354) | (0.29770, 0.32332)
a2 (0.37023, 0.42295) | (0.36881, 0.42060) | (0.35191, 0.37776) | (0.35222, 0.37823)
o3 (0.29121, 0.33748) | (0.29216, 0.33789) | (0.31254, 0.33619) | (0.31236, 0.33616)

From the Table 3, it is observed that 95 % interval are narrower for the data-2. Further
more it is concluded that the credible intervals for the Rayleigh model are narrower than
the Bradley Terry model under non-informative priors.

5.4. Preference Probability. The term preference probability is used for the superi-
ority of probability of T; over T; on some defined attribute or characteristic. Using the
posterior means of the Rayleigh and the Bradley-Terry model provided in the Table 2,
the preference probabilities are calculated using (2.1), (2.2), (3.1) and (3.2) presented in
the Table 4.

Table 4. Preference Probabilities under Non-Informative Priors

Data-1 Data-2
Pi.ij Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform
é1.12 | 0.20210 | 0.24431 [ 0.18323 | 0.17549 | 0.42159 | 0.42377 | 0.42054 | 0.41955
¢1.13 | 0.43184 | 0.43818 | 0.42747 | 0.42282 | 0.47905 | 0.47956 | 0.47865 | 0.47835
$2.23 | 0.75004 | 0.70695 | 0.76895 | 0.77487 | 0.55784 | 0.55613 | 0.55850 | 0.55921

From the Table 4, it is perceived that the preference probabilities implies the same
ranking order as the posterior means for both the models and data sets under non-

informative priors.

5.5. Predictive Probability. The predictive probabilities is used to predict the future
single preference of one treatment T; over treatment 7. It is denoted by P;.;; and defined

as:
1 11—y
Pii; = / /
a;=0Ja;=0

dij pla, aj|w) daj do
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Table 5. Predictive Probabilities under Non-Informative Priors

Data-1 Data-2

P Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform | Jeffreys | Uniform
Pi.12 | 0.20875 | 0.24877 | 0.20870 | 0.20078 | 0.42222 | 0.42434 | 0.42222 | 0.42128
P113 | 0.43393 | 0.43960 | 0.43388 | 0.43003 | 0.47895 | 0.47945 | 0.47895 | 0.47865
P23 | 0.74477 | 0.70352 | 0.74482 | 0.75080 | 0.55721 | 0.55556 | 0.55721 | 0.55788

The predictive probabilities are closed to the preference probabilities and favors the
same ranking order for both the models and data sets under non-informative priors.

5.6. Bayesian Hypotheses Testing. In Bayesian analysis, the task of deciding be-
tween the hypotheses is conceptually more straightforward. One merely calculates the
posterior probabilities and decides between hypotheses accordingly.

Hij:a; > (e Vs. H” oy < @y,

The posterior probability for the hypothesis H;; is:

1 A40)/2
Dij :/ / p(¢, nlw)dndc,
¢=0Jn

=C

The posterior probability for the hypothesis Hj; is:
qij =1 — pij
where n = a; and ( = o — .
The decision rule for the hypotheses is based on Bayes factor. It is denoted by 'B’ and

the most general form of the Bayes factor can be described as follows.:

B Posterior odd ratios
" Prior odd ratios

The central notion of Bayes factor is that prior and posterior information should be
combined in a ratio that provides evidence of one model specification over another.

It can be interpreted as the ’odds for H;; to Hj; that are given by the data. [12] gives
the following typology for comparing H;; Vs. Hj;

B>1 support H;;

107%® < B <1 minimal evidence against Hy;
107! < B < 10 *’substantial evidence against H;;
1072 < B < 107" strong evidence against Hi;

B < 10 2decisive evidence against Hj;
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Table 6. Posterior Probability under Non-Informative Priors

Data-1
Pairs Bradley-Terry Rayleigh
Jeffreys Uniform Jeffreys Uniform
Dij B Dij B Dij B Dij B
a1 > ao | 0.02872 | 0.02957 | 0.04139 | 0.04318 | 0.02872 | 0.02957 | 0.04139 | 0.04318
a1 > as | 0.33206 | 0.49714 | 0.34256 | 0.52105 | 0.33206 | 0.49714 | 0.34256 | 0.52105
a2 > ag | 0.92737 | 12.76842 | 0.90968 | 10.07174 | 0.92737 | 12.76842 | 0.90968 | 10.07174
Data-2
Pairs Bradley-Terry Rayleigh
Jeffreys Uniform Jeffreys Uniform
Dij B Dij B Dij B Dij B
a1 > az | 0.15254 | 0.17999 | 0.15566 | 0.18436 | 0.14174 | 0.16515 | 0.14048 | 0.16344
a1 > as | 0.37300 | 0.59490 | 0.37428 | 0.59816 | 0.35536 | 0.55125 | 0.35479 | 0.54988
a2 > as | 0.75584 | 3.09567 | 0.75208 | 3.03356 | 0.74108 | 2.86219 | 0.74275 | 2.88727

The Bayes factor in the Table 6 signify substantial evidence against Hi2, minimal
evidence against Hi3 and Has3 is supported for both the models and data sets under
non-informative priors. The preference order of treatments is confirmed through testing
of hypotheses.

5.7. Appropriateness of the Model. It is used to compare the discrepancies of the
observed preferences among the expected preferences. The Chi-square test is used for
the appropriateness of the models. The hypothesis is defined as:
Ho: The model is true for some values of &« = ag
H,: The model is not true for any values of the parameters.
where a=a1, as, ..., am, is the vector of the unknown parameters, a; > 0.
The x? has the following form:
= }

i<j {

with (m — 1)(m — 2)/2 degrees of freedom [4].
The expected number of preferences are obtained by the following form:

[ (wiy — 1ij)? ;i)*

- G
Wij

Wiq

2 2

A
and Wj.i; = rij

@ 2 2
— —— where ¢;; = aj + aj.
Gij bij oo
w;; and wj; are the observed number of preferences from the data set given in the Table
1.

Wi.ij = Tij

Table 7. Appropriateness of the Rayleigh Model

Data-1 Data-2
Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Jeffreys | Uniform | Jeffreys [ Uniform | Jeffreys | Uniform | Jeffreys | Uniform
X 0.0873 | 0.2918 | 0.0519 | 0.0495 | 0.3947 | 0.3963 | 0.3945 | 0.3947
P —wvalue | 0.2324 0.4109 0.1802 0.1761 0.4702 0.4710 0.4701 0.4702

From the Table 7 , the values of x? for the Rayleigh and the Bradley-Terry model
for both data sets under non-informative priors have high P-values as P-values > 0.05
. It is evident from the P-values that both the models have good fit. Furthermore, the
Rayleigh model is considered to be better fit for the small data set in the Table 1 than
the Bradley-Terry model under both the non-informative priors.
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6. Conclusion

A new model for paired comparison is developed, named as the Rayleigh paired com-
parison model. The Rayleigh paired comparison model is analyzed in the Bayesian
framework using non-informative (Uniform and Jeffreys ) priors. The results are also
compared with the existing Bradley-Terry model. For the analysis, we use the data
sets of the preferences of cigarette brands (Benson & Hedges, Marlboro and Dunbhill)
used by university students. It is noticed that the cigarette brand Marlboro is highly
preferred among the students of university. Benson & Hedges is the lowest preferred.
The graphs, preference probabilities, predictive probabilities and hypotheses testing also
confirm the same preference. The credible intervals for the Rayleigh model are narrower
than the Bradley Terry model under non-informative priors. The appropriateness of the
models (the Bradley-Terry and the Rayleigh model) through x?*- statistic suggests that
the fit is good but the proposed Rayleigh model is better fit for small data set than the
Bradley-Terry as the P-value of x>— statistic under the Rayleigh model is smaller than
the Bradley-Terry model.
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