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Abstract

In this paper, we introduce the generalized Gompertz-power series class
of distributions which is obtained by compounding generalized Gom-
pertz and power series distributions. This compounding procedure fol-
lows same way that was previously carried out by [25] and [3] in intro-
ducing the compound class of extended Weibull-power series distribu-
tion and the Weibull-geometric distribution, respectively. This distri-
bution contains several lifetime models such as generalized Gompertz,
generalized Gompertz-geometric, generalized Gompertz-poisson, gen-
eralized Gompertz-binomial distribution, and generalized Gompertz-
logarithmic distribution as special cases. The hazard rate function
of the new class of distributions can be increasing, decreasing and
bathtub-shaped. We obtain several properties of this distribution such
as its probability density function, Shannon entropy, its mean residual
life and failure rate functions, quantiles and moments. The maximum
likelihood estimation procedure via a EM-algorithm is presented, and
sub-models of the distribution are studied in details.
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1. Introduction

The exponential distribution is commonly used in many applied problems, particularly
in lifetime data analysis [15]. A generalization of this distribution is the Gompertz
distribution. It is a lifetime distribution and is often applied to describe the distribution of
adult life spans by actuaries and demographers. The Gompertz distribution is considered
for the analysis of survival in some sciences such as biology, gerontology, computer, and
marketing science. Recently, [13] de�ned the generalized exponential distribution and in
similar manner, [9] introduced the generalized Gompertz (GG) distribution. A random
variable X is said to have a GG distribution denoted by GG(α, β, γ), if its cumulative
distribution function (cdf) is

G(x) = [1− e−
β
γ
(eγx−1)

]α, α, β > 0, γ > 0; x ≥ 0.(1.1)

and the probability density function (pdf) is

g(x) = αβeγxe
− β
γ
(eγx−1)

[1− e
−β
γ

(eγx−1)
]α−1.(1.2)

The GG distribution is a �exible distribution that can be skewed to the right and
to the left, and the well-known distributions are special cases of this distribution: the
generalized exponential proposed by [13] when γ → 0+, the Gompertz distribution when
α = 1, and the exponential distribution when α = 1 and γ → 0+.

In this paper, we compound the generalized Gompertz and power series distribu-
tions, and introduce a new class of distribution. This procedure follows similar way that
was previously carried out by some authors: The exponential-power series distribution
is introduced by [7] which is concluded the exponential- geometric [1, 2], exponential-
Poisson [14], and exponential- logarithmic [27] distributions; the Weibull- power series
distributions is introduced by [22] and is a generalization of the exponential-power series
distribution; the generalized exponential-power series distribution is introduced by [19]
which is concluded the Poisson-exponential [5, 18] complementary exponential-geometric
[17], and the complementary exponential-power series [10] distributions; linear failure
rate-power series distributions [20].

The remainder of our paper is organized as follows: In Section 2, we give the proba-
bility density and failure rate functions of the new distribution. Some properties such as
quantiles, moments, order statistics, Shannon entropy and mean residual life are given
in Section 3. In Section 4, we consider four special cases of this new distribution. We
discuss estimation by maximum likelihood and provide an expression for Fisher's infor-
mation matrix in Section 5. A simulation study is performed in Section 6. An application
is given in the Section 7.

2. The generalized Gompertz-power series model

A discrete random variable, N is a member of power series distributions (truncated
at zero) if its probability mass function is given by

(2.1) pn = P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . ,

where an ≥ 0 depends only on n, C(θ) =
∑∞
n=1 anθ

n, and θ ∈ (0, s) (s can be ∞) is
such that C(θ) is �nite. Table 1 summarizes some particular cases of the truncated (at
zero) power series distributions (geometric, Poisson, logarithmic and binomial). Detailed
properties of power series distribution can be found in [23]. Here, C′(θ), C′′(θ) and C′′′(θ)
denote the �rst, second and third derivatives of C(θ) with respect to θ, respectively.
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Table 1. Useful quantities for some power series distributions.

Distribution an C(θ) C′(θ) C′′(θ) C′′′(θ) s

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 6(1− θ)−4 1

Poisson n!−1 eθ − 1 eθ eθ eθ ∞
Logarithmic n−1 − log(1− θ) (1− θ)−1 (1− θ)−2 2(1− θ)−3 1

Binomial
(
m
n

)
(1 + θ)m − 1 m

(θ+1)1−m
m(m−1)

(θ+1)2−m
m(m−1)(k−2)

(θ+1)3−m ∞

We de�ne generalized Gompertz-Power Series (GGPS) class of distributions denoted
as GGPS(α, β, γ, θ) with cdf

(2.2) F (x) =

∞∑
n=1

an(θG(x))n

C(θ)
=
C(θG(x))

C(θ)
=
C(θtα)

C(θ)
, x > 0,

where t = 1− e−
β
γ
(eγx−1)

. The pdf of this distribution is given by

(2.3) f(x) =
θαβ

C(θ)
eγx(1− t)tα−1C′ (θtα) .

This class of distribution is obtained by compounding the Gompertz distribution and
power series class of distributions as follows. Let N be a random variable denoting the
number of failure causes which it is a member of power series distributions (truncated
at zero). For given N , let X1, X2, . . . , XN be a independent random sample of size N
from a GG(α, β, γ) distribution. Let X(N) = max1≤i≤N Xi. Then, the conditional cdf of
X(N) | N = n is given by

GX(N)|N=n(x) = [1− e−
β
γ
(eγx−1)

]nα,

which has GG(nα, β, γ) distribution. Hence, we obtain

P (X(N) ≤ x,N = n) =
an(θG(x))n

C(θ)
=
anθ

n

C(θ)
[1− e−

β
γ
(eγx−1)

]nα.

Therefore, the marginal cdf of X(N) has GGPS distribution. This class of distributions
can be applied to reliability problems. Therefore, some of its properties are investigated
in the following.

2.1. Proposition. The pdf of GGPS class can be expressed as in�nite linear combination
of pdf of order distribution, i.e. it can be written as

f(x) =

∞∑
n=1

pn g(n)(x;nα, β, γ),(2.4)

where g(n)(x;nα, β, γ) is the pdf of GG(nα, β, γ).

Proof. Consider t = 1− e−
β
γ
(eγx−1)

. So

f(x) =
θαβ

C(θ)
eγx(1− t)tα−1C′ (θtα) =

θαβ

C(θ)
eγx(1− t)tα−1

∞∑
n=1

nan(θtα)n−1

=

∞∑
n=1

anθ
n

C(θ)
nαβ(1− t)eγxtnα−1 =

∞∑
n=1

png(n)(x;nα, β, γ).

�
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2.2. Proposition. The limiting distribution of GGPS(α, β, γ, θ) when θ → 0+ is

lim
θ→0+

F (x) = [1− e−
β
γ
(eγx−1)

]cα,

which is a GG distribution with parameters cα, β, and γ, where c = min{n ∈ N : an > 0}.

Proof. Consider t = 1− e−
β
γ
(eγx−1)

. So

lim
θ→0+

F (x) = lim
θ→0+

C(λtα)

C(θ)
= lim
λ→0+

∞∑
n=1

anθ
ntnα

∞∑
n=1

anθn

= lim
θ→0+

act
cα +

∞∑
n=c+1

anθ
n−ctnα

ac +
∞∑

n=c+1

anθn−c
= tcα.

�

2.3. Proposition. The limiting distribution of GGPS(α, β, γ, θ) when γ → 0+ is

lim
γ→0+

F (x) =
C(θ(1− e−βx)α)

C(θ)
,

i.e. the cdf of the generalized exponential-power series class of distribution introduced by
[19].

Proof. When γ → 0+, the generalized Gompertz distribution becomes to generalized
exponential distribution. Therefore, proof is obvious. �

2.4. Proposition. The hazard rate function of the GGPS class of distributions is

h(x) =
θαβeγx(1− t)tα−1C′(θtα)

C(θ)− C(θtα)
,(2.5)

where t = 1− e
−β
γ

(eγx−1)
.

Proof. Using (2.2), (2.3) and de�nition of hazard rate function as h(x) = f(x)/(1−F (x)),
the proof is obvious. �

2.5. Proposition. For the pdf in (2.3), we have

lim
x→0+

f(x) =


∞ 0 < α < 1
C′(0)θβ
C(θ)

α = 1

0 α > 1,

lim
x→∞

f(x) = 0.

Proof. The proof is a forward calculation using the following limits

lim
x→0+

tα−1 =


∞ 0 < α < 1
1 α = 1
0 α > 1,

lim
x→0+

tα = 0, lim
x→∞

t = 1.

�

2.6. Proposition. For the hazard rate function in (2.5), we have

lim
x→0+

h(x) =


∞ 0 < α < 1
C′(0)θβ
C(θ)

α = 1

0 α > 1,

lim
x→∞

h(x) =

{
∞ γ > 0
β γ → 0
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Figure 1. Plots of pdf and hazard rate functions of GGPS with
C (θ) = θ + θ20.

Proof. Since limx→0+(1− F (x)) = 1, we have limx→0+ h(x) = limx→0+ f(x).
For limx→∞ h(x), the proof is satis�ed using the limits

lim
x→∞

C′(θtα) = C′(θ), lim
x→∞

tα−1 = 1,

lim
x→∞

eγx(1− t)
C(θ)− C(θtα)

= lim
x→∞

eγx(1− t)[βeγx − γ]

θβαC′(θ)eγx(1− t) =

{
∞ γ > 0

1
θαC′(θ) γ → 0.

�

As a example, we consider C (θ) = θ+ θ20. The plots of pdf and hazard rate function
of GGPS for parameters β = 1, γ = .01, θ = 1.0, and α = 0.1, 0.5, 1.0, 2.0 are given in
Figure 1. This pdf is bimodal when α = 2.0, and the values of modes are 0.7 and 3.51.

3. Statistical properties

In this section, some properties of GGPS distribution such as quantiles, moments,
order statistics, Shannon entropy and mean residual life are obtained.

3.1. Quantiles and Moments. The quantile q of GGPS is given by

xq = G−1(
C−1(qC(θ))

θ
), 0 < q < 1,

where G−1(y) = 1
γ

log[1 − γ log(1−y
1
γ )

β
] and C−1(.) is the inverse function of C(.). This

result helps in simulating data from the GGPS distribution with generating uniform
distribution data.

For checking the consistency of the simulating data set form GGPS distribution, the
histogram for a generated data set with size 100 and the exact pdf of GGPS with C (θ) =
θ+ θ20, and parameters α = 2, β = 1, γ = 0.01, θ = 1.0, are displayed in Figure 2 (left).
Also, the empirical cdf and the exact cdf are given in Figure 2 (right).

Consider X ∼ GGPS(α, β, γ, θ). Then the Laplace transform of the GGPS class can
be expressed as

L(s) = E(e−sX) =

∞∑
n=1

P (N = n)Ln(s),(3.1)
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Figure 2. The histogram of a generated data set with the pdf (left)
and the empirical cdf with cdf (right) of GGPS distribution.

where Ln(s) is the Laplace transform of GG(nα, β, γ) distribution given as

Ln(s) =

∫ +∞

0

e−sxnαβeγxe
− β
γ
(eγx−1)

[1− e
−β
γ

(eγx−1)
]nα−1dx

= nαβ

∫ +∞

0

e(γ−s)xe
− β
γ
(eγx−1)

∞∑
j=0

(
nα− 1

j

)
(−1)je

−β
γ
j(eγx−1)

dx

= nαβ

∞∑
j=0

(
nα− 1

j

)
(−1)je

β
γ
(j+1)

∫ +∞

0

e(γ−s)xe
−β
γ

(j+1)eγx
dx

= nαβ

∞∑
j=0

(
nα− 1

j

)
(−1)je

β
γ
(j+1)

×
∫ +∞

0

e(γ−s)x
∞∑
k=0

(−1)k(β
γ

(j + 1))keγkx

Γ(k + 1)
dx

= nαβ

∞∑
j=0

∞∑
k=0

(
nα− 1

j

)
(−1)j+ke

β
γ
(j+1)

[β
γ

(j + 1)]k

Γ(k + 1)(s− γ − γk)
, s > γ.(3.2)

Now, we obtain the moment generating function of GGPS.

MX(t) = E(etX) =

∞∑
n=1

P (N = n)Ln(−t)

= αβ

∞∑
n=1

anθ
n

C(θ)

∞∑
k=0

∞∑
j=0

n
(
nα−1
j

)
(−1)j+k+1e

β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(t+ γ + γk)

= αβEN [

∞∑
k=0

∞∑
j=0

N
(
Nα−1
j

)
(−1)j+k+1e

β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(t+ γ + γk)
],(3.3)

where N is a random variable from the power series family with the probability mass
function in (2.1) and EN [U ] is expectation of U with respect to random variable N .
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We can use MX(t) to obtain the non-central moments, µr = E[Xr]. But from the
direct calculation, we have

µr =

∞∑
n=1

anθ
n

C(θ)

∞∑
k=0

∞∑
j=0

nαβ
(
nα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1

= αβEN [

∞∑
k=0

∞∑
j=0

N
(
Nα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1
].(3.4)

3.1. Proposition. For non-central moment function in 3.4, we have

lim
θ→0+

µr = E[Y r],

where Y has GG(cα, β, γ) and c = min{n ∈ N : an > 0}.

Proof. If Y has GG(cα, β, γ), then

E[Y r] =

∞∑
k=0

∞∑
j=0

cαβ
(
cα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1
.

Therefore,

lim
θ→0+

µr = lim
θ→0+

∞∑
n=1

anθ
nE[Y r]

∞∑
n=1

anθn

= lim
θ→0+

acE[Y r] +
∞∑

n=c+1

anθ
n−cE[Y r]

ac +
∞∑

n=c+1

anθn−c

= E[Y r].

�

3.2. Order statistic. Let X1, X2, . . . , Xn be an independent random sample of size n
from GGPS(α, β, γ, θ). Then, the pdf of the ith order statistic, say Xi:n, is given by

fi:n(x) =
n!

(i− 1)!(n− i)!f(x)[
C(θtα)

C(θ)
]i−1[1− C(θtα)

C(θ)
]n−i,

where f is the pdf given in (2.3) and t = 1 − e−
β
γ
(eγx−1)

. Also, the cdf of Xi:n is given
by

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n−i
k

)
k + i+ 1

[
C(tα)

C(θ)
]k+i.

An analytical expression for rth non-central moment of order statistics Xi:n is obtained
as

E[Xr
i:n] = r

n∑
k=n−i+1

(−1)k−n+i−1

(
k − 1

n− i

)(
n

k

)∫ +∞

0

xr−1S(x)kdx

= r

n∑
k=n−i+1

(−1)k−n+i−1

[C(θ)]k

(
k − 1

n− i

)(
n

k

)∫ +∞

0

xr−1[C(θ)− C(θtα)]kdx,

where S(x) = 1− F (x) is the survival function of GGPS distribution.
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3.3. Shannon entropy and mean residual life. If X is a none-negative continuous
random variable with pdf f , then Shannon's entropy of X is de�ned by [24] as

H(f) = E[− log f(X)] = −
∫ +∞

0

f(x) log(f(x))dx,

and this is usually referred to as the continuous entropy (or di�erential entropy). An
explicit expression of Shannon entropy for GGPS distribution is obtained as

H(f) = E{− log[
θαβ

C(θ)
eγX(e

− β
γ
(eγX−1)

)(1− e−
β
γ
(eγX−1)

)α−1

×C′
(
θ(1− e−

β
γ
(eγX−1)

)α
)

]}

= − log[
θβα

C(θ)
]− γE(X) +

β

γ
E(eγX)− β

γ

−(α− 1)E[log(1− e−
β
γ
(eγX−1)

)]

−E[log(C′
(
θ(1− e−

β
γ
(eγX−1)

)α
)

)]

= − log[
θβα

C(θ)
]− γµ1 +

β

γ
MX(γ)− β

γ

−(α− 1)

∞∑
n=1

P (N = n)

∫ 1

0

nαtnα−1 log(t)dt

−
∞∑
n=1

P (N = n)

∫ 1

0

nun−1 log(C′(θu))du

= − log[
θβα

C(θ)
]− γµ1 +

β

γ
MX(γ)− β

γ

+
(α− 1)

α
EN [

1

N
]− EN [A(N, θ)],(3.5)

where A(N, θ) =
∫ 1

0
NuN−1 log(C′(θu))du, N is a random variable from the power series

family with the probability mass function in (2.1), and EN [U ] is expectation of U with
respect to random variable N . In reliability theory and survival analysis, X usually
denotes a duration such as the lifetime. The residual lifetime of the system when it is
still operating at time s, is Xs = X − s | X > s which has pdf

f(x; s) =
f(x)

1− F (s)
=

θg(x)C′(θG(x))

C(θ)− C(θG(s))
, x ≥ s > 0.

Also, the mean residual lifetime of Xs is given by

m(s) = E[X − s|X > s] =

∫ +∞
s

(x− s)f(x)dx

1− F (s)

=

∫ +∞
s

xf(x)dx

1− F (s)
− s

=
C(θ)EN [Z(s,N)]

C(θ)− C(θ[1− e−
β
γ
(eγs−1)

]α)
− s,

where Z(s, n) =
∫ +∞
s

xg(n)(x;nα, β, γ)dx, and g(n)(x;nα, β, γ) is the pdf of GG (nα, β, γ).

4. Special cases of GGPS distribution

In this Section, we consider four special cases of the GGPS distribution. To simplify,

we consider t = 1− e−
β
γ
(eγx−1)

, x > 0, and Aj =
(
nα−1
j

)
.
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4.1. Generalized Gompertz-geometric distribution. The geometric distribution
(truncated at zero) is a special case of power series distributions with an = 1 and C(θ) =
θ

1−θ (0 < θ < 1). The pdf and hazard rate function of generalized Gompertz-geometric

(GGG) distribution is given respectively by

f(x) =
(1− θ)αβeγx(1− t)tα−1

(θtα − 1)2
, x > 0,(4.1)

h(x) =
(1− θ)αβeγx(1− t)tα−1

(1− θtα)(1− tα)
, x > 0.(4.2)

4.1. Remark. Consider

fM (x) =
θ∗αβeγx(1− t)tα−1

((1− θ∗)tα − 1)2
, x > 0,(4.3)

where θ∗ = 1− θ. Then fM (x) is pdf for all θ∗ > 0 (see [21]). Note that when α = 1 and
γ → 0+, the pdf of extended exponential geometric (EEG) distribution [1] is concluded
from (4.3). The EEG hazard function is monotonically increasing for θ∗ > 1; decreasing
for 0 < θ∗ < 1 and constant for θ∗ = 1.

4.2. Remark. If α = θ∗ = 1, then the pdf in (4.3) becomes the pdf of Gompertz
distribution. Note that the hazard rate function of Gompertz distribution is h(x) = βeγx

which is increasing.

The plots of pdf and hazard rate function of GGG for di�erent values of α, β, γ and
θ∗ are given in Figure 3.

4.3. Theorem. Consider the GGG hazard function in (4.2). Then, for α ≥ 1, the
hazard function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. See Appendix A.1. �

The �rst and second non-central moments of GGG are given by

E(X) = αβ(1− θ)
∞∑
n=1

nθn−1
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) = 2αβ(1− θ)
∞∑
n=1

nθn−1
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

4.2. Generalized Gompertz-Poisson distribution. The Poisson distribution (trun-
cated at zero) is a special case of power series distributions with an = 1

n!
and C(θ) = eθ−1

(θ > 0). The pdf and hazard rate function of generalized Gompertz-Poisson (GGP) dis-
tribution are given respectively by

f(x) = θαβeγx−θ(1− t)tα−1eθt
α

, x > 0(4.4)

h(x) =
θαβeγx(1− t)tα−1eθt

α

eθ − eθtα , x > 0.(4.5)

4.4. Theorem. Consider the GGP hazard function in (4.5). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. See Appendix A.2. �



1588

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Density

x

f(
x)

α=0.7,β=1,γ=0.01

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Density

x

f(
x)

α=3,β=1,γ=0.1

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Density

x

f(
x)

α=3,β=1,γ=1

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Hazard

x

h(
x)

α=1,β=1,γ=0.01

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

0.0 0.5 1.0 1.5

0
1

2
3

4

Hazard

x

h(
x)

α=0.7,β=1,γ=1

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

Hazard

x

h(
x)

α=3,β=1,γ=1

θ*=0.1
θ*=0.5
θ*=0.9
θ*=2.0

Figure 3. Plots of pdf and hazard rate function of GGG for di�erent
values α, β, γ and θ∗.

The �rst and second non-central moments of GGP can be computed as

E(X) =
αβ

eθ − 1

∞∑
n=1

θn

(n− 1)!

∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

eθ − 1

∞∑
n=1

θn

(n− 1)!

∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.
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Figure 4. Plots of pdf and hazard rate function of GGP for di�erent
values α, β, γ and θ.

The plots of pdf and hazard rate function of GGP for di�erent values of α, β, γ and θ
are given in Figure 4.

4.3. Generalized Gompertz-binomial distribution. The binomial distribution (trun-
cated at zero) is a special case of power series distributions with an =

(
m
n

)
and C(θ) =

(θ+1)m−1 (θ > 0), where m (n ≤ m) is the number of replicas. The pdf and hazard rate
function of generalized Gompertz-binomial (GGB) distribution are given respectively by

f(x) = mθαβeγx(1− t)tα−1 (θtα + 1)m−1

(θ + 1)m − 1
, x > 0,(4.6)
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h(x) =
mθαβeγx(1− t)tα−1(θtα + 1)m−1

(θ + 1)m − (θtα + 1)m
, x > 0.(4.7)

The plots of pdf and hazard rate function of GGB for m = 4, and di�erent values
of α, β, γ and θ are given in Figure 5. We can �nd that the GGP distribution can be
obtained as limiting of GGB distribution if mθ → λ > 0, when m→∞.

4.5. Theorem. Consider the GGB hazard function in (4.7). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. The proof is omitted, since θ > 0 and therefore the proof is similar to the proof
of Theorem 4.4. �

The �rst and second non-central moments of GGB are given by

E(X) =
αβ

(θ + 1)m − 1

∞∑
n=1

θnn

(
m

n

)
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

(θ + 1)m − 1

∞∑
n=1

θnn

(
m

n

)
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

4.4. Generalized Gompertz-logarithmic distribution. The logarithmic distribu-
tion (truncated at zero) is also a special case of power series distributions with an = 1

n

and C(θ) = − log(1 − θ) (0 < θ < 1). The pdf and hazard rate function of generalized
Gompertz-logarithmic (GGL) distribution are given respectively by

f(x) =
θαβeγx(1− t)tα−1

(θtα − 1) log(1− θ) , x > 0,(4.8)

h(x) =
θαβeγx(1− t)tα−1

(θtα − 1) log( 1−θ
1−θtα )

, x > 0.(4.9)

The plots of pdf and hazard rate function of GGL for di�erent values of α, β, γ and
θ are given in Figure 6.

4.6. Theorem. Consider the GGL hazard function in (4.9). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. The proof is omitted, since 0 < θ < 1 and therefore the proof is similar to the
proof of Theorem 1. �

The �rst and second non-central moments of GGL are

E(X) =
αβ

− log(1− θ)

∞∑
n=1

θn
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

− log(1− θ)

∞∑
n=1

θn
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

5. Estimation and inference

In this section, we will derive the maximum likelihood estimators (MLE) of the un-
known parameters Θ = (α, β, γ, θ)T of the GGPS(α, β, γ, θ). Also, asymptotic con�dence
intervals of these parameters will be derived based on the Fisher information. At the
end, we proposed an Expectation-Maximization (EM) algorithm for estimating the pa-
rameters.
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Figure 5. Plots of pdf and hazard rate function of GGB for m = 5,
and di�erent values α, β, γ and θ.

5.1. MLE for parameters. Let X1, . . . , Xn be an independent random sample, with
observed values x1, . . . , xn from GGPS(α, β, γ, θ) and Θ = (α, β, γ, θ)T be a parameter
vector. The log-likelihood function is given by

ln = ln(Θ;x) = n log(θ) + n log(αβ) + nγx̄

+
n∑
i=1

log(1− ti) + (α− 1)

n∑
i=1

log(ti)
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Figure 6. Plots of pdf and hazard rate function of GGL for di�erent
values α, β, γ and θ.

+

n∑
i=1

log(C′(θtαi ))− n log(C(θ)),

where ti = 1 − e
− β
γ
(eγxi−1)

. Therefore, the score function is given by U(Θ;x) =
( ∂ln
∂α
, ∂ln
∂β
, ∂ln
∂γ
, ∂ln
∂θ

)T , where

∂ln
∂α

=
n

α
+

n∑
i=1

log(ti) +

n∑
i=1

θtαi log(ti)C
′′(θtαi )

C′(θtαi )
,(5.1)
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∂ln
∂β

=
n

β
− 1

γ
(

n∑
i=1

eγxi − n) + (α− 1)

n∑
i=1

∂ti
∂β

ti
+

n∑
i=1

θ
∂(tαi )

∂β
C′′(θtαi )

C′(θtαi )
,(5.2)

∂ln
∂γ

= nx̄+
β

γ2
(

n∑
i=1

eγxi − n)− β

γ
(

n∑
i=1

xie
γxi)

+(α− 1)

n∑
i=1

∂ti
∂γ

ti
+

n∑
i=1

θ
∂(tαi )

∂γ
C′′(θtαi )

C′(θtαi )
,(5.3)

∂ln
∂θ

=
n

θ
+

n∑
i=1

tαi C
′′(θtαi )

C′(θtαi )
− nC′(θ)

C(θ)
.(5.4)

The MLE of Θ, say Θ̂, is obtained by solving the nonlinear system U(Θ;x) = 0. We can-
not get an explicit form for this nonlinear system of equations and they can be calculated
by using a numerical method, like the Newton method or the bisection method.

For each element of the power series distributions (geometric, Poisson, logarithmic
and binomial), we have the following theorems for the MLE of parameters:

5.1. Theorem. Let g1(α;β, γ, θ, x) denote the function on RHS of the expression in
(5.1), where β, γ and θ are the true values of the parameters. Then, for a given β > 0,
γ > 0 and θ > 0, the roots of g1(α, β; γ, θ,x) = 0, lies in the interval(

−n
θC′′(θ)
C′(θ) + 1

(

n∑
i=1

log(ti))
−1,−n(

n∑
i=1

log(ti))
−1)

)
,

Proof. See Appendix B.1. �

5.2. Theorem. Let g2(β;α, γ, θ, x) denote the function on RHS of the expression in
(5.3), where α, γ and θ are the true values of the parameters. Then, the equation
g2(β;α, γ, θ, x) = 0 has at least one root.

Proof. See Appendix B.2. �

5.3. Theorem. Let g3(θ;α, β, γ, x) denote the function on RHS of the expression in
(5.4) and x̄ = n−1∑n

i=1 xi, where α, β and γ are the true values of the parameters.
a) The equation g3(θ;α, β, γ, x) = 0 has at least one root for all GGG, GGP and GGL
distributions if

∑n
i=1 t

α
i >

n
2
.

b) If g3(p;α, β, γ, x) = ∂ln
∂p

, where p = θ
θ+1

and p ∈ (0, 1) then the equation g3(p;α, β, γ, x) =

0 has at least one root for GGB distribution if
∑n
i=1 t

α
i >

n
2
and

∑n
i=1 t

−α
i > nm

m−1
.

Proof. See Appendix B.3. �

Now, we derive asymptotic con�dence intervals for the parameters of GGPS distribu-
tion. It is well-known that under regularity conditions (see [6], Section 10), the asymptotic

distribution of
√
n(Θ̂−Θ) is multivariate normal with mean 0 and variance-covariance

matrix J−1
n (Θ), where Jn(Θ) = limn→∞ In(Θ), and In(Θ) is the 4 × 4 observed infor-

mation matrix, i.e.

In (Θ) = −


Iαα Iαβ Iαγ Iαθ
Iβα Iββ Iβγ Iβθ
Iγα Iγβ Iγγ Iγθ
Iθα Iθβ Iθγ Iθθ

 ,
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whose elements are given in Appendix C. Therefore, an 100(1−η) asymptotic con�dence
interval for each parameter, Θr, is given by

ACIr = (Θ̂r − Zη/2
√
Îrr, Θ̂r + Z η

2

√
Îrr),

where Îrr is the (r, r) diagonal element of I−1
n (Θ̂) for r = 1, 2, 3, 4 and Zη/2 is the quantile

η
2
of the standard normal distribution.

5.2. EM-algorithm. The traditional methods to obtain the MLE of parameters are
numerical methods by solving the equations (5.1)-(5.4), and sensitive to the initial values.
Therefore, we develop an Expectation-Maximization (EM) algorithm to obtain the MLE
of parameters. It is an iterative method, and is a very powerful tool in handling the
incomplete data problem [8].

We de�ne a hypothetical complete-data distribution with a joint pdf in the form

g(x, z; Θ) =
azθ

z

C(θ)
zαβeγx(1− t)tzα−1,

where t = 1 − e
−β
γ

(eγx−1)
, and α, β, γ, θ > 0, x > 0 and z ∈ N. Suppose Θ(r) =

(α(r), β(r), γ(r), θ(r)) is the current estimate (in the rth iteration) of Θ. Then, the E-step

of an EM cycle requires the expectation of (Z|X; Θ(r)). The pdf of Z given X = x is
given by

g(z|x) =
azθ

z−1ztzα−α

C′(θtα)
,

and since

C′(θ) + θC′′(θ) =

∞∑
z=1

azzθ
z−1 + θ

∞∑
z=1

azz(z − 1)θz−2 =

∞∑
z=1

z2azθ
z−1,

the expected value of Z|X = x is obtained as

E(Z|X = x) = 1 +
θtαC′′(θtα)

C′(θtα)
.(5.5)

By using the MLE over Θ, with the missing Z's replaced by their conditional expec-
tations given above, the M-step of EM cycle is completed. Therefore, the log-likelihood
for the complete-data is

l∗n(y,Θ) ∝
n∑
i=1

zi log(θ) + n log(αβ) + nγx̄+

n∑
i=1

log(1− ti)

+

n∑
i=1

(ziα− 1) log(ti)− n log(C(θ)),(5.6)

where y = (x;z), x = (x1, . . . , xn) and z = (z1, . . . , zn). On di�erentiation of (5.6) with
respect to parameters α, β, γ and θ, we obtain the components of the score function,

U(y; Θ) = (
∂l∗n
∂α
,
∂l∗n
∂β
,
∂l∗n
∂γ
,
∂l∗n
∂θ

)T , as

∂l∗n
∂α

=
n

α
+

n∑
i=1

zi log[1− e
−β
γ

(eγxi−1)
],

∂l∗n
∂β

=
n

β
− 1

γ
(

n∑
i=1

eγxi − n) +

n∑
i=1

(ziα− 1)

1
γ

(eγxi − 1)

[e
β
γ
(eγxi−1) − 1]

,

∂l∗n
∂γ

= nx̄+
β

γ2
(

n∑
i=1

eγxi − n)− β

γ
(

n∑
i=1

xie
γxi)
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+

n∑
i=1

(ziα− 1)

−β
γ2

(eγxi − 1) + βxie
γxi

γ

[e
β
γ
(eγxi−1) − 1]

,

∂l∗n
∂θ

=

n∑
i=1

zi
θ
− nC

′(θ)

C(θ)
.

From a nonlinear system of equations U(y; Θ) = 0, we obtain the iterative procedure of
the EM-algorithm as

α̂(j+1) =
−n∑n

i=1 ẑi
(j) log[1− e

−β̂(j)

γ̂(j)
(eγ̂

(j)xi−1)
]

,

θ̂(j+1) − C(θ̂(j+1))

nC′(θ̂(j+1))

n∑
i=1

ẑ
(j)
i = 0,

n

β̂(j+1)
− 1

γ̂(j)
(

n∑
i=1

eγ̂
(j)xi − n) +

n∑
i=1

(ẑiα̂
(j) − 1)

1

γ̂(j)
(eγ̂

(j)xi − 1)

[e
β̂(j+1)

γ̂(j)
(eγ̂

(j)xi−1)
− 1]

= 0,

nx̄+
β̂(j)

[γ̂(j+1)]2
(

n∑
i=1

eγ̂
(j+1)xi − n)− β̂(j)

γ̂(j+1)
(

n∑
i=1

xie
γ̂(j+1)xi)

+

n∑
i=1

(ẑiα̂
(j) − 1)

−β̂(j)

[γ̂(j+1)]2
(eγ̂

(j+1)xi − 1) + β̂(j)xie
γ̂(j+1)xi

γ̂(j+1)

[e
β̂(j)

γ̂(j+1)
(eγ̂

(j+1)xi−1)
− 1]

= 0,

where θ̂(j+1), β̂(j+1) and γ̂(j+1) are found numerically. Here, for i = 1, 2, . . . , n, we have
that

ẑ
(j)
i = 1 +

θ∗(j)C′′(θ∗(j))

C′(θ∗(j))
,

where θ∗(j) = θ̂(j)[1− e
− β̂

(j)

γ̂(j)
(eγ̂

(j)xi−1)
]α̂

(j)

.
We can use the results of [16] to obtain the standard errors of the estimators from the

EM-algorithm. Consider lc(Θ;x) = E(Ic(Θ;y)|x), where Ic(Θ;y) = −[ ∂U(y;Θ)
∂Θ

] is the
4 × 4 observed information matrix.If lm(Θ;x) = V ar[U(y; Θ)|x], then, we obtain the
observed information as

I(Θ̂;x) = lc(Θ̂;x)− lm(Θ̂;x).

The standard errors of the MLEs of the EM-algorithm are the square root of the diagonal

elements of the I(Θ̂;x). The computation of these matrices are too long and tedious.
Therefore, we did not present the details. Reader can see [19] how to calculate these
values.

6. Simulation study

We performed a simulation in order to investigate the proposed estimator of α, β, γ
and θ of the proposed EM-scheme. We generated 1000 samples of size n from the GGG
distribution with β = 1 and γ = 0.1. Then, the averages of estimators (AE), standard
error of estimators (SEE), and averages of standard errors (ASE) of MLEs of the EM-
algorithm determined though the Fisher information matrix are calculated. The results
are given in Table 2. We can �nd that
(i) convergence has been achieved in all cases and this emphasizes the numerical stability
of the EM-algorithm,
(ii) the di�erences between the average estimates and the true values are almost small,
(iii) the standard errors of the MLEs decrease when the sample size increases.
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Table 2. The average MLEs, standard error of estimators and aver-
ages of standard errors for the GGG distribution.

parameter AE SEE ASE

n α θ α̂ β̂ γ̂ θ̂ α̂ β̂ γ̂ θ̂ α̂ β̂ γ̂ θ̂

50 0.5 0.2 0.491 0.961 0.149 0.204 0.114 0.338 0.265 0.195 0.173 0.731 0.437 0.782
0.5 0.5 0.540 0.831 0.182 0.389 0.160 0.337 0.260 0.263 0.210 0.689 0.421 0.817
0.5 0.8 0.652 0.735 0.154 0.684 0.304 0.377 0.273 0.335 0.309 0.671 0.422 0.896
1.0 0.2 0.988 0.972 0.129 0.206 0.275 0.319 0.191 0.209 0.356 0.925 0.436 0.939
1.0 0.5 1.027 0.852 0.147 0.402 0.345 0.352 0.226 0.283 0.408 0.873 0.430 0.902
1.0 0.8 1.210 0.711 0.178 0.745 0.553 0.365 0.230 0.342 0.568 0.799 0.433 0.898
2.0 0.2 1.969 0.990 0.084 0.216 0.545 0.305 0.151 0.228 0.766 1.135 0.422 0.902
2.0 0.5 1.957 0.842 0.113 0.487 0.608 0.334 0.192 0.277 0.820 1.061 0.431 0.963
2.0 0.8 2.024 0.713 0.161 0.756 0.715 0.396 0.202 0.353 1.143 0.873 0.402 0.973

100 0.5 0.2 0.491 0.977 0.081 0.212 0.084 0.252 0.171 0.179 0.125 0.514 0.283 0.561
0.5 0.5 0.528 0.883 0.109 0.549 0.124 0.275 0.178 0.247 0.155 0.504 0.275 0.567
0.5 0.8 0.602 0.793 0.136 0.769 0.215 0.323 0.194 0.299 0.220 0.466 0.259 0.522
1.0 0.2 0.974 0.997 0.102 0.226 0.195 0.242 0.129 0.206 0.251 0.645 0.280 0.767
1.0 0.5 1.030 0.875 0.113 0.517 0.262 0.291 0.155 0.270 0.298 0.651 0.295 0.843
1.0 0.8 1.113 0.899 0.117 0.846 0.412 0.342 0.177 0.331 0.400 0.600 0.287 0.781
2.0 0.2 1.952 0.995 0.138 0.221 0.424 0.237 0.117 0.209 0.524 0.922 0.321 0.992
2.0 0.5 2.004 0.885 0.110 0.518 0.493 0.283 0.131 0.274 0.601 0.873 0.321 0.966
2.0 0.8 2.028 0.981 0.104 0.819 0.605 0.350 0.155 0.339 0.816 0.717 0.289 0.946

7. Real examples

In this Section, we consider two real data sets and �t the Gompertz, GGG, GGP,
GGB (with m = 5), and GGL distributions. The �rst data set is negatively skewed, and
the second data set is positively skewed, and we show that the proposed distributions
�t both positively skewed and negatively skewed data well. For each data, the MLE
of parameters (with standard deviations) for the distributions are obtained. To test
the goodness-of-�t of the distributions, we calculated the maximized log-likelihood, the
Kolmogorov-Smirnov (K-S) statistic with its respective p-value, the AIC (Akaike Infor-
mation Criterion), AICC (AIC with correction), BIC (Bayesian Information Criterion),
CM (Cramer-von Mises statistic) and AD (Anderson-Darling statistic) for the six distri-
butions. Here, the signi�cance level is 0.10. To show that the likelihood equations have
a unique solution in the parameters, we plot the pro�le log-likelihood functions of β, γ,
α and θ for the six distributions.

First, we consider the data consisting of the strengths of 1.5 cm glass �bers given
in [26] and measured at the National Physical Laboratory, England. This data is also
studied by [4] and is given in Table 3.

The results are given in Table 5 and show that the GGG distribution yields the best
�t among the GGP, GGB, GGL, GG and Gompertz distributions. Also, the GGG, GGP,
and GGB distribution are better than GG distribution. The plots of the pdfs (together
with the data histogram) and cdfs in Figure 7 con�rm this conclusion. Figures 9 show
the pro�le log-likelihood functions of β, γ, α and θ for the six distributions.

As a second example, we consider a data set from [11], who studied the soil fertility
in�uence and the characterization of the biologic �xation of N2 for the Dimorphandra
wilsonii rizz growth. For 128 plants, they made measures of the phosphorus concentration
in the leaves. This data is also studied by [25] and is given in Table 4. Figures 10 show
the pro�le log-likelihood functions of β, γ, α and θ for the six distributions.
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Table 3. The strengths of glass �bers.

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74,
1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11,
1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29,
1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51,
1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89

Table 4. The phosphorus concentration in the leaves.

0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23, 0.24,
0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12,
0.12, 0.10, 0.09, 0.17, 0.19, 0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19,
0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 0.19, 0.27, 0.16, 0.28,
0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12, 0.09, 0.14, 0.07, 0.09, 0.05, 0.06, 0.11,
0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 0.08, 0.22, 0.11, 0.13, 0.12, 0.15,
0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12, 0.18, 0.14, 0.18, 0.13, 0.12,
0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16,
0.19, 0.15, 0.07, 0.09, 0.17, 0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08,
0.12, 0.13

The results are given in Table 6. Since the estimation of parameter θ for GGP, GGB,
and GGL is close to zero, the estimations of parameters for these distributions are equal
to the estimations of parameters for GG distribution. In fact, The limiting distribution
of GGPS when θ → 0+ is a GG distribution (see Proposition 2.2). Therefore, the
value of maximized log-likelihood, log(L), are equal for these four distributions. The
plots of the pdfs (together with the data histogram) and cdfs in Figure 8 con�rm these
conclusions. Note that the estimations of parameters for GGG distribution are not equal
to the estimations of parameters for GG distribution. But the log(L)'s are equal for these
distributions. However, from Table 6 also we can conclude that the GG distribution is
simpler than other distribution because it has three parameter but GGG, GGP, GGB,
and GGL have four parameter. Note that GG is a special case of GGPS family.
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Figure 7. Plots (pdf and cdf) of �tted Gompertz, generalized Gom-
pertz, GGG, GGP, GGB and GGL distributions for the �rst data set.
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Table 5. Parameter estimates (with std.), K-S statistic, p-value, AIC,
AICC and BIC for the �rst data set.

Distribution

Gompertz GG GGG GGP GGB GGL

β̂ 0.0088 0.0356 0.7320 0.1404 0.1032 0.1705

s.e.(β̂) 0.0043 0.0402 0.2484 0.1368 0.1039 0.2571

γ̂ 3.6474 2.8834 1.3499 2.1928 2.3489 2.1502
s.e.(γ̂) 0.2992 0.6346 0.3290 0.5867 0.6010 0.7667

α̂ � 1.6059 2.1853 1.6205 1.5999 2.2177
s.e.(α̂) � 0.6540 1.2470 0.9998 0.9081 1.3905

θ̂ � � 0.9546 2.6078 0.6558 0.8890

s.e.(θ̂) � � 0.0556 1.6313 0.5689 0.2467

−log(L) 14.8081 14.1452 12.0529 13.0486 13.2670 13.6398
K-S 0.1268 0.1318 0.0993 0.1131 0.1167 0.1353
p-value 0.2636 0.2239 0.5629 0.3961 0.3570 0.1992
AIC 33.6162 34.2904 32.1059 34.0971 34.5340 35.2796
AICC 33.8162 34.6972 32.7956 34.78678 35.2236 35.9692
BIC 37.9025 40.7198 40.6784 42.6696 43.1065 43.8521
CM 0.1616 0.1564 0.0792 0.1088 0.1172 0.1542
AD 0.9062 0.8864 0.5103 0.6605 0.7012 0.8331

Table 6. Parameter estimates (with std.), K-S statistic, p-value, AIC,
AICC and BIC for the second data set.

Distribution

Gompertz GG GGG GGP GGB GGL

β̂ 1.3231 13.3618 10.8956 13.3618 13.3618 13.3618

s.e.(β̂) 0.2797 4.5733 8.4255 5.8585 6.3389 7.3125

γ̂ 15.3586 3.1500 4.0158 3.1500 3.1500 3.1500
s.e.(γ̂) 1.3642 2.1865 3.6448 2.4884 2.6095 2.5024

α̂ � 6.0906 5.4236 6.0906 6.0906 6.0905
s.e.(α̂) � 2.4312 2.8804 2.6246 2.7055 2.8251

θ̂ � � -0.3429 1.0× 10−8 1.0× 10−8 1.0× 10−8

s.e.(θ̂) � � 1.2797 0.8151 0.2441 0.6333

− log(L) -184.597 -197.133 -197.181 -197.133 -197.133 -197.133
K-S 0.1169 0.0923 0.0898 0.0923 0.0923 0.0923
p-value 0.0602 0.2259 0.2523 0.2259 0.2259 0.2259
AIC -365.194 -388.265 -386.362 -386.265 -386.265 -386.265
AICC -365.098 -388.072 -386.0371 -385.940 -385.940 -385.940
BIC -359.490 -379.709 -374.954 -374.857 -374.857 -374.857
CM 0.3343 0.1379 0.1356 0.1379 0.1379 0.1379
AD 2.3291 0.7730 0.7646 0.7730 0.7730 0.7730

Appendix

A. We demonstrate those parameter intervals for which the hazard function is decreasing,
increasing and bathtub shaped, and in order to do so, we follow closely a theorem given
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Figure 8. Plots (pdf and cdf) of �tted Gompertz, generalized Gom-
pertz, GGG, GGP, GGB and GGL distributions for the second data
set.
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Figure 9. The pro�le log-likelihood functions for Gompertz, general-
ized Gompertz, GGG, GGP, GGB and GGL distributions for the �rst
data set.

by [12]. De�ne the function τ(x) = −f ′(x)
f(x)

where f ′(x) denotes the �rst derivative of

f(x) in (2.3). To simplify, we consider u = 1− exp(−θ
γ

(eγx − 1)).
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Figure 10. The pro�le log-likelihood functions for Gompertz, gener-
alized Gompertz, GGG, GGP, GGB and GGL distributions for the
second data set.

A.1. Consider the GGG hazard function in (4.2), then we de�ne

τ(u) =
−f ′(u)

f(u)
=

1− α
u

+
2αθuα−1

1− θuα .

If α ≥ 1, then τ ′(u) > 0, and h(.) is an increasing function. If 0 < α < 1, then

lim
u→0

τ ′(u) = −∞, lim
u→1

τ ′(u) =
2αθ2

(1− θ)2 + (α− 1)(1− 1

(1− θ)2 ) > 0.

Since the limits have di�erent signs, the equation τ ′(u) = 0 has at least one root. Also,
we can show that τ ′′(u) > 0. Therefore, the equation τ ′(u) = 0 has one root. Thus the
hazard function is decreasing and bathtub shaped in this case.

A.2. The GGP hazard rate is given by h(u) = θαβuα−1eθu
α

/(eθ − eθu
α

). We de�ne
η(u) = log[h(u)]. Then, its �rst derivative is

η′(u) =
α− 1

u
+ αθeθ

uα−1

eθ − eθuα .

It is clearly for α ≥ 1, η′(u) > 0 and h(u) is increasing function. If 0 < α < 1, then

lim
u→0

η′(u) = −∞, lim
u→1

η′(u) = 0,

So the equation τ ′(u) = 0 has at least one root. Also, we can show that τ ′′(u) > 0. It
implies that equation η′(u) = 0 has a one root and the hazard rate increase and bathtub
shaped.
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B.

B.1. Let w1(α) =
∑n
i=1

θtαi log(ti)C
′′(θtαi )

C′(θtαi )
= ∂

∂α

∑n
i=1 log(C′(θtαi )). For GGG,

w1(α) = 2θ

n∑
i=1

tαi log ti
1− θtαi

,
∂w1(α)

∂α
= 2θ

n∑
i=1

tαi [
log ti

1− θtαi
]2 > 0.

For GGP,

w1(α) = θ

n∑
i=1

tαi log ti,
∂w1(α)

∂α
= θ

n∑
i=1

tαi [log ti]
2 > 0.

For GGL,

w1(α) = θ

n∑
i=1

tαi log ti
1− θtαi

,
∂w1(α)

∂α
= θ

n∑
i=1

tαi [
log ti

1− θtαi
]2 > 0.

For GGB,

w1(α) = (m− 1)θ

n∑
i=1

tαi log ti
1 + θtαi

,
∂w1(α)

∂α
= (m− 1)θ

n∑
i=1

tαi [
log ti

1 + θtαi
]2 > 0.

Therefore, w1(α) is strictly increasing in α and

lim
α→0+

g1(α;β, γ, θ, x) =∞, lim
α→∞

g1(α;β, γ, θ, x) =

n∑
i=1

log(ti).

Also,

g1(α;β, γ, θ, x) <
n

α
+

n∑
i=1

log(ti), g1(α;β, γ, θ, x) >
n

α
+ (

θC′′(θ)

C′(θ)
+ 1)

n∑
i=1

log(ti).

Hence, g1(α;β, γ, θ, x) < 0 when n
α

+
∑n
i=1 log(ti) < 0, and g1(α;β, γ, θ, x) > 0 when

n
α

+ ( θC
′′(θ)

C′(θ) + 1)
∑n
i=1 log(ti) > 0. The proof is completed.

B.2. It can be easily shown that

lim
β→0+

g2(β;α, γ, θ, x) =∞, lim
β→∞

g2(β;α, γ, θ, x) =
−1

γ

n∑
i=1

(eγxi − 1).

Since the limits have di�erent signs, the equation g2(β;α, γ, θ, x) = 0 has at least one
root with respect to β for �xed values α, γ and θ. The proof is completed.

B.3. a) For GGP, it is clear that

lim
θ→0

g3(θ;α, β, γ, x) =

n∑
i=1

tαi −
n

2
, lim

θ→∞
g3(θ;α, β, γ, x) = −∞.

Therefore, the equation g3(θ;α, β, γ, x) = 0 has at least one root for θ > 0, if
∑n
i=1 t

α
i −

n
2
> 0 or

∑n
i=1 t

α
i >

n
2
.

b) For GGG, it is clear that

lim
θ→∞

g3(θ;α, β, γ, x) = −∞, lim
θ→0+

g3(θ;α, β, γ, x) = −n+ 2
n∑
i=1

tαi .

Therefore, the equation g3(θ, β, γ, x) = 0 has at least one root for 0 < θ < 1, if −n +
2
∑n
i=1 t

α
i > 0 or

∑n
i=1 t

α
i >

n
2
.

For GGL, it is clear that

lim
θ→0

g3(θ;α, β, γ, x) =

n∑
i=1

tαi −
n

2
, lim

θ→1
g3(θ;α, β, γ, x) = −∞.
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Therefore, the equation g3(θ;α, β, γ, x) = 0 has at least one root for 0 < θ < 1, if∑n
i=1 t

α
i − n

2
> 0 or

∑n
i=1 t

α
i >

n
2
.

For GGB, it is clear that

lim
p→0

g3(p;α, β, γ, x) =

n∑
i=1

tαi (m− 1)− n(m− 1)

2
,

lim
p→0

g3(p;α, β, γ, x) =

n∑
i=1

−m+ 1 +mtαi
ti

,

Therefore, the equation g3(p;α, β, γ, x) = 0 has at least one root for 0 < p < 1, if∑n
i=1 t

α
i (m−1)− n(m−1)

2
> 0 and

∑n
i=1

−m+1+mtαi
tαi

< 0 or
∑n
i=1 t

α
i >

n
2
and

∑n
i=1 t

−α
i >

nm
1−m .

C. Consider ti = 1 − e−
β
γ
(eγxi−1)

. Then, the elements of 4 × 4 observed information
matrix In(Θ) are given by

Iαα =
∂2ln
∂α2

=
−n
α2

+ θ

n∑
i=1

tαi [log(ti)]
2[
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαβ =
∂2ln
∂α∂β

=

n∑
i=1

[
eγxi − 1

γ
] +

θ

γ

n∑
i=1

tαi [eγxi − 1][(α log(ti) + 1)
C′′(θtαi )

C′(θtαi )

+αθtαi log(ti)
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαγ =
∂2ln
∂α∂γ

= β

n∑
i=1

[
eγxi(γxi − 1) + 1

γ2
]

+
θβ

γ2

n∑
i=1

[eγxi(γxi−1) + 1][(α log(ti) + 1)
C′′(θtαi )

C′(θtαi )

+αθtαi log(ti)
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαθ =
∂2ln
∂α∂θ

=

n∑
i=1

tαi log(ti)[
C′′(θtαi )

C′(θtαi )
+ θtαi

C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iββ =
∂2ln
∂β2

=
−n
β2

+ θα2
n∑
i=1

tαi [
eγxi − 1

γ
]2[
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iβγ =
∂2ln
∂β∂γ

=
(α− 2)

γ2

n∑
i=1

(eγxi(γxi − 1) + 1)

+αθ

n∑
i=1

ti
γ2

(eγxi(γxi − 1) + 1)[
C′′(θtαi )

C′(θtαi )

+
β2

γ
(eγxi − 1)

C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi )))2
]



1603

Iβθ =
∂2ln
∂β∂θ

=

n∑
i=1

t2αi [
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iγγ =
∂2ln
∂γ2

=
2β

γ3

n∑
i=1

[eγxi(γxi − 1) + 1]

+(α− 1)β

n∑
i=1

[
−2

γ3
(eγxi(γxi − 1) + 1) +

x2i e
γxi

γ3
]

+αβθ

n∑
i=1

[
−2

γ3
(eγxi(γxi − 1) + 1)tαi

C′′(θtαi )

C′(θtαi )
+
tαi x

2
i e
γxi

γ

C′′(θtαi )

C′(θtαi )

+
αβtαi
γ4

(eγxi(γxi − 1) + 1)2
C′′(θtαi )

C′(θtαi )

+
αβt2αi
γ4

(eγxi(γxi − 1) + 1)2
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi )))2
],

Iθγ =
∂2ln
∂θ∂γ

= αβ

n∑
i=1

tαi
γ2

[eγxi(γxi − 1) + 1][
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iθθ =
∂2ln
∂θ2

=
−n
θ2

+

n∑
i=1

t2αi [
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
]

−n[
C′′(θ)C′(θ)− (C′(θ))2

(C′(θ))2
],
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