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Parameter estimation by anfis where dependent
variable has outlier
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Abstract

Regression analysis is investigation the relation between dependent and
independent variables. And, the degree and functional shape of this re-
lation is determinate by regression analysis. In case that dependent
variable has outlier, the robust regression methods are proposed to
make smaller the effect of the outlier on the parameter estimates. In
this study, an algorithm has been suggested to define the unknown
parameters of regression model, which is based on ANFIS (Adaptive
Network based Fuzzy Inference System). The proposed algorithm, ex-
pressed the relation between the dependent and independent variables
by more than one model and the estimated values are obtained by
connected this model via ANFIS. In the solving process, the proposed
method is not to be affected the outliers which are to exist in dependent
variable. So, to test the activity of the proposed algorithm, estimated
values obtained from this algorithm and some robust methods are com-
pared.
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1. Introduction

In a regression analysis, it is assumed that the observations come from a sin-
gle class in a data cluster and the simple functional relationship between the
dependent and independent variables can be expressed using the general model;
Y = f(X)+¢e . However; a data set may consist of a combination of observations
that have different distributions that are derived from different clusters. When
faced with issues of estimating a regression model for fuzzy inputs that have been
derived from different distributions, this regression model has been termed the

p
'switching regression model’ and it is expressed with Y = fL(X)+el (L= []L).
i=1

Here [; indicates the class number of each independent variable and p is indicative
of the number of independent variables [18, 19, 21]. In case that, the class numbers
of the data and the number of the independent variables are more than two, si-
multaneously the numbers of sub-models are increased. At this stage, the method
attempts to utilize the neural networks, which are intended to solve complex prob-
lems and systems. When faced with issues in which the data belong to an indefinite
or fuzzy class, the neural network, termed the adaptive network, is used for es-
tablishing the regression model. In this study, adaptive networks have been used
to construct a model that has been formed by gathering obtained models. There
are methods that suggest the class numbers of independent variables heuristically.
Alternatively, in defining the optimal class number of independent variables, the
use of suggested validity criterion for fuzzy clustering has been aimed. There are
many studies on the use of the adaptive network for parameter estimation. In a
study by Chi-Bin, C. and Lee, E. S. a fuzzy adaptive network approach was estab-
lished for fuzzy regression analysis [4] and it was studied on both fuzzy adaptive
networks and the switching regression model [5]. Jang, J. R. studied the adaptive
networks based on a fuzzy inference system [16]. In a study of Takagi, T. and
Sugeno, M., the method for identifying a system using it’s input-output data was
presented [23]. James, P. D. and Donalt, W., were studied fuzzy regression using
neural networks [15]. In a study by Cichocki, A. and Unbehauen, R., the different
neural networks for optimization were explained [2]. There are different studies
about fuzzy clustering and the validity criterion. In the study of Mu-Song, C. and
Wang, S.W. the analysis of fuzzy clustering was done for determining fuzzy mem-
berships and in this study a method was suggested for indicating the optimal class
numbers that belong to the variables [20]. Bezdek, J.C. has conducted important
studies on the fuzzy clustering topic [1]. One such study is by Hathaway R.J. and
Bezdek J.C. were studied on switching regression and fuzzy clustering [7]. In 1991,
Xie, X.L. and Beni, G. suggested a validity criterion for fuzzy clustering [24]. In
this study we used the Xie-Beni validity criterion for determining optimal class
numbers. Over the years, the least squares method(LSM) has commonly been
used for the estimation of regression parameters. If a data set conforms to LSM
assumptions, LSM estimates are known to be the best. However, if outliers exist in
the data set, the LSM can yield bad results. In the conventional approach, outliers
are removed from the data set, after which the classical method can be applied.
However, in some research, these observations are not removed from the data set.
In such cases, robust methods are preferred to the LSM [17]. The remainder of
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the paper is organized as follows. Section 2 explores the fuzzy if-then rules and
the use of these rules will be introduced using adaptive networks for analysis. In
Section 3 an algorithm for parameter estimation based ANFIS is given.In Section
4, we provide definitions of M methods of Huber, Hampel, Andrews and Tukey,
which are commonly used in the literature. In Section 5, a numerical application
examining the work and validity of the suggested algorithm as well as a compar-
ison of the algorithm with these robust methods and LSM is provided.In the last
part, a discussion and conclusion are provided.

2. ANFIS: Adaptive Network based Fuzzy Inference System

The most popular application of fuzzy methodology is known as fuzzy inference
systems. This system forms a useful computing framework based on the concepts of
fuzzy set theory, fuzzy reasoning and fuzzy if-then rules. Fuzzy inference systems
usually perform on input-output relation, as in control applications where the
inputs correspond to system state variables, and the outputs are control signals
[3,5,16]. The fuzzy inference system is a powerful function approximater. The
basic structure of a fuzzy inference system consist of five conceptual components;a
rule base which contains a selection of fuzzy rules, a database which defines the
membership functions of the fuzzy sets used in the fuzzy rules, a decision-making
unit which performs inference operations on the rules, a fuzzification interface
which transforms the crisp inputs into degrees of match with linguistic values, and
a defuzzification interface which transform the fuzzy results of the inference into
a crisp output [3,15,16]. The adaptive network used to estimate the unknown
parameters of regression model is based on fuzzy if-then rules and fuzzy inference
system. When issues of estimating a regression model to fuzzy inputs from different
distributions arose, the Sugeno Fuzzy Inference System is appropriate and the
proposed fuzzy rule in this case is indicated as

RL:If;(xlelLandzngQLand xp:FpL).

Then; Y =YE =cb +cfay + ... + chp.

Here, F¥ stands for fuzzy cluster and YZ stands for system output according
to the R rule [16, 23].

The weighted mean of the models obtained according to fuzzy rules is the output
of Sugeno Fuzzy Inference System and a common regression model for data from
different classes is indicated with this weighted mean as follows,

m
S wkyt
o L=1
> wh
L=1
Here; w” weight is indicated as,

p
wL = HMFiL(rz)'
=1
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2 (z;) is a membership function defined on the fuzzy set F', and m is fuzzy
rule number [13, 14].

Neural networks that enable the use of fuzzy inference systems for fuzzy re-
gression analysis is known as adaptive network and called ANFIS. An adaptive
network is a multilayer feed forward network in which each node performs a par-
ticular function on incoming signals as well as a set of parameters pertaining to this
node. The formulas for the node functions may wary from node to node and the
choice of each node function depends on the overall input-output function of the
network. Neural networks are used to obtain a good approach to regression func-
tions and were formed via neural and adaptive network connections consistingof
five layers [4,12 — 14, 15].

Fuzzy rule number of the system depends on numbers of independent variables
and fuzzy class number forming independent variables. When independent variable
number is indicated with p and if the fuzzy class number associated with each
variable is indicated by I; (i = 1, ..., p), the fuzzy rule number indicated by

L= Hzi.
i=1
To illustrate how a fuzzy inference system can be represented by ANFIS, let
us consider the following example. Suppose a data set has two-dimensional input
X = (x1,22). For input z1, there are two fuzzy sets "tall” and ”short” and for
input o, three fuzzy set ”thin”, "normal” and ”fat”. In this case a fuzzy inference
system contains the following six rules:

RY : If(zyis tall and x4 is thin),then; (Y = ¢} + clay + cyaa),

R? . If(xy is tall and x5 is normal), then; (Y? = ¢ + cixy + cixz),
R® : If(xyistall and x4 is fat),then; (Y = ¢ + cdwy + cixs),

R* . If(xy is short and x4 is thin),then; (Y = ¢§ + clz1 + caxs),
R® . If(xy is short and x5 is normal),then; (Y° = ¢ + cixy + cyx),
RS . If(xy is short and xo is fat),then; (Y6 = c§ 4+ Say + cSas).

This fuzzy system is represented by the ANFIS as shown in Figure 1. The
functions of each node in Figure 1 defined as follows.

Layer 1: The output of node h in this layer is defined by the membership
function on Fj,

fi,h = pr, (x1) for h=1,2

fin=pp, (x2) for h=3,4,5
where fuzzy cluster related to fuzzy rules are indicated with Fy, F5, ..., F}, and
pr, is the membership function relates to F},. Different membership functions are
can be define for Fj,. In this example, the Gaussian membership function will be
used whose parameters can be represented by {vy,, o }.
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FIGURE 1. The ANFIS architecture

2
i, (21) = exp l (“”h> ] for h=1,2

Oh

T2 — Up

Oh

pp, (22) = exp l— <

The parameter set {vy, 0, } in this layer is referred to as the premise parameters.

Layer 2: Each nerve in the second layer has input signals coming from the first
layer and they are defined as multiplication of these input signals. This multiplied
output forms the firing strength w' for rule I:

2
) ] for h=3,4,5.

foo = w’ = pp, (21) X ppy (22).
Layer 3: The output of this layer is a normalization of the outputs of the
second layer and nerve function is defined as

L _
fap=w"=—
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Layer 4: The output signals of the fourth layer are also connected to a function
and this function is indicated with

far =w YE

where, Y~ stands for conclusion part of fuzzy if-then rule and it is indicated with

L_ L L L
Y® =cy + i1 + 5 xa,

where cF are fuzzy numbers and stands for posteriori parameters.

Layer 5: There is only one node which computes the overall output as the
summation of all the incoming signals

6
fo1=Y = ZELYL.
L=1

3. An Algorithm for Parameter Estimation Based ANFIS

The estimation of parameters with an adaptive network is based on the principle
of the minimizing of error criterion. There are two significant steps in the process
of estimation. First, we must determine the a priori parameter set characterizing
the class from which the data comes and then update these parameters within the
process. The second step is to determine a posteriori parameters belonging to the
regression models to be formed. The process of determining parameters for the
switching regression model begins with determining class numbers of independent
variables and a priori parameters [6]. The algorithm related to the proposed
method for determining the switching regression model in the case of independent
variables coming from a normal distribution is defined as follows.

Step 1: Optimal class numbers related to the data set associated with the
independent variables are determined. Optimal value of class number I;, (I; = 2,
l;= 3. .. l;= max) can be obtained by minimizing the fuzzy clustering validity
function S;. This function is expressed by

1 ;i n m 9
w2 Cuig)™ [lvi — x|
i=1j=1

min o — v,
i#j

S; =

As it can be seen in this statement, cluster centers, which are well-separated
produce a high value of separation such that a smaller S; value is obtained. When
the lowest S; value is observed, class number (/;) with the lowest value is defined
as an optimal class number.

Step 2: A priori parameters are determined. Spreading is determined intu-
itively according to the space in which input variables gain value and to the fuzzy
class numbers of the variables. Center parameters are based on the space in which
variables gain value and fuzzy class numbers and it is defined by
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max (X;) — min (X;)
l; —1

Step 3: wW" weights are counted which are used to form matrix B to be used
in counting the a posteriori parameter set. L is the fuzzy rule number. The w"
weights are outputs of the nerves in the third layer of the adaptive network, and
they are counted based on a membership function related to the distribution family
to which independent variable belongs. Nerve functions in the first layer of the
adaptive network are defined by

v; = (min X;) + (i—-1), i=12,..,p.

p
fl,h:th(xi) h = 17277Zl2
=1

wr, (x;) is called the membership function. Here, when the normal distribu-
tion function which has the parameter set of {vp, o5} is considered, membership
functions are defined as

r, (@) = exp [— (”” ;h“h)Q] |

From the defined membership functions, membership degrees related to each class
forming independent variables are determined. The w” weights are indicated as

wh = pp, (@), ().
They are obtained via mutual multiplication of membership degrees at an amount
depending on the number of independent variables and the fuzzy class numbers
of these variables. W’ weight is a normalization of the weight defined as w" and
they are counted with

L
w
EL

=— .
> wh
L=1
Step 4: On the condition that the independent variables are fuzzy and the
dependent variables are crisp, a posteriori parameter set c- = (aF, bl) is obtained

17

as crisp numbers in the shape of, ¢/ = al (i = 1,...,p). In that condition,

Z = (BTB)f1 BTY equation is used to determine the a posteriori parameter
set. Here B is the data matrix which is weighted by membership degree and its
dimension is [(p+ 1) x m x n], Y dependent variable vector and Z is posterior
parameter vector which is defined by

o 1 m 1 m 1 m T
Z = [ao,...,ao y O]y eeey O] ,...,ap,...,ap]

Step 5: By using a posteriori parameter set ciL = af obtained in Step 4, the
regression model indicated by

L_ L, L L L
Y"=cy+ceyzr +egme+ .+ cjap
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are constituted. Setting out from the models and weights specified in Step 1, the
estimation values are obtained using

Yy =N wlyEk.

1

Step 6: The error related to model is counted as

n
= (g =G
k=1

If ¢ < ¢, then the a posteriori parameters have been obtained as parameters of
regression models to be formed, and the process is determinate. If ¢ < ¢, then,
Step 6 begins. Here ¢, is a law stable value determinated by the decision maker.
Step 7: Central a priori parameters specified in Step 2 are updated with

v; =v; £t
in a way that it increases from the lowest value to the highest and it decreases

from the highest value to the lowest. Here, t is the size of the step;

max (z;;) — min (z;)

t= i=12..n =12 ..p

a
and a is a stable value, which is determinant by the size of the step, and is therefore
an iteration number.

Step 8: Estimations for each a priori parameter obtained by change and the
error criteria related to these estimations are counted. The lowest of the error
criterion is defined. A priori parameters giving the lowest error specified, and the
estimation obtained via the models related to these parameters is taken as output.

In the proposed algorithm, the estimated values which are obtained from the
fuzzy adaptive network are not to be affected by the outliers that may exist in
the dependent variable. This is because in this algorithm, all of the independent
variables are weighted. Consequently, the proposed method has a robust method’s
properties, and, it is comparable to robust methods that are commonly used in
literature.

4. M methods

The classical LSM is widely used in regression analysis because computing its
estimate is easy and traditional. However, least square estimators are very sensitive
to outliers and to deviations from basic assumptions of normal theory [11, 25]. The
importance of eachobservation should therefore be recognized, and the data should
be tested in detail whenit is analyzed. This is important because sometimes even
a single observation can changethe value of the parameter estimates, and omitting
this observation from the data maylead to totally different estimates. If there
exist outliers in the data set, robust methods are preferred to estimate parameter
values [22]. Now, we discuss the widely used methods of the Huber, Hampel,
Andrews and Tukey M estimators. The M estimator utilizes minimizing of residual
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functions much more thanminimizing the sum of the squared residuals. Regression
coefficients are obtained by theminimizing sum:

n

P
@) > pl|vi—D 28| /d
i=1 j=1
By taking the first partial derivative of the sum in Equation (4.1) with respect
to each B; and setting it to zero, it may be found regression coefficient that p
equations:

n P
inj‘l’ Yi — Zﬂcijﬁj Jdl =0 7=1,2,...,p
i=1 j=1

where U(z) = p'(z). When the data contains outliers, standard deviations are not
good measures of variability, and other robust measures of variability are therefore
required. One robust measure of variability is d. In the case where r; is the
residual of i*" observation, d = median |r; — median (r;)| /0.6745, i = 1,2, ...,n.
Therefore, the standardized residuals may be defined as z = r; /d. Inaddition

p ~
Ti=Yi — 2. TijBi
i=1

Huber’s ¥ function is defined as:

—k z < —k
U(z) = z lz| <k
k z>k

with k=1.5.
The Hampel ¥ function is defined as:

] 0<|z|<a
asgn(z) a<l|z|<b +1 >0
W(e) = a (—C;_lzl) sgn(z) b<l|z|<e sgn(z) = _01 i ; 8
0 c < |z|

Reasonably good values of the constants are a = 1.7, b = 3.4 and ¢ = 8.5.
Andrews (sine estimate) ¥ function is defined as

[ sin(z/k) |z| <krm
¥ (z) = { 0 2| > kr

with k =1.5 or £ = 2.1.
The Tukey (biweight estimate) ¥ function is defined as:

2
() = (z (1 - (z/k)Q) > 2] < k
0 |z| >k
with k = 5.0 or 6.0 [8 — 11].
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5. Numerical Example

The values related to the data set having three independent variables and one
dependent variable is shown in Table 1. The values in the data set have been
generated from normal distribution such that X; ~ (u = 20;0 = 3), Xa ~ (u =
50;0 = 12), X3 ~ (u = 32;0 = 13), and dependent variable Y is depend on
independent variables value. 5! observation of the dependent variable is changed
with (y15 + 50) to work up this observation into outlier. The regression models
and estimations for this model are obtained via the proposed algorithm for this
data set. Moreover, estimations have been obtained using the robust regression
methods are used for comparison. The proposed algorithm was executed with a
program written in MATLAB. From the initial step of the proposed algorithm,
fuzzy class numbers for each variable are defined as two. Number of fuzzy inference
rules to be formed depending on these class numbers is obtained as

p=3

L:Hli:ll><l2><l3:8.

=1

TABLE 1. Data set having three independent variables and one
dependent variable

[ No [ X1 Xo X3 Y [ No [ X1 Xo X3 Y
1 21.8101  50.5397  49.8319 125.4057 16 25.2815  50.2143  54.2714  128.9194
2 19.8248 78.9993  35.1925 137.4526 17 20.2663  30.6749  40.9755 60.9541
3 16.6740 46.2813  33.5450 97.0719 18 27.7867  64.8650 33.4679  130.0444
4 26.4327  52.2510 37.0010 116.3851 19 17.9736  58.2030 17.8756 87.9184
5 15.9415 61.3724  31.0880 107.0015 20 28.3604  40.6314  11.7420 78.4568
6 21.3711  43.6916  24.4820 92.0244 21 19.9495 56.3718  40.2863 116.6304
7 21.1735 36.6127  38.1010 100.6000 22 20.8150 75.6140 26.7405 118.1328
8 26.2190 30.8922  48.8959 90.8950 23 17.2577  54.2523  26.7568  103.9698
9 19.0300 64.0981 53.2524 136.5460 24 14.1459  52.7804 33.0930 101.7193

10 | 24.4044 55.8217 22.8635 104.7410 25 19.0477  65.4558  26.3405 113.7832
11 18.4928  69.7458  42.4943 133.6250 26 21.7650 49.8381  24.6859 93.9008
12 | 20.6288  44.5492 18.6431 83.1755 27 22.4870  33.9999  43.4148 101.4928
13 | 22.2644 62.1052  48.8284 134.8870 28 14.9754  43.3239  21.4096 85.7995
14 | 17.1554 74.5928 32.1941 126.0083 29 14.2331  59.0672  28.6413 105.1197
15 | 21.8395 57.2242  34.8432 166.4707 30 18.6900 39.0578  38.4129 99.5382

Models obtained via eight fuzzy inference rules are;

71 = 1308 + 346x1 — 84wy — 314x;
U2 10896 — 145x1 + 175x2 — 230x3
ys = 9022 — 211xy — 12625 + 263x3
Ys = — 27061 — 24z, + 20225 + 207x3
Us — 20670 4 7012y — 5lxs + 43623
Yo = — 6201 — 405z1 — 155x2 + 341x3
yr = 18219 — 610z + 1929 — 31623
(5.1)  us 25742 + 283z, — 204z — 2833

Regression model estimates, which are obtained from robust regression methods
and the LSM, are located in Table 2.
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TABLE 2. The estimation of regression parameters

Constant ‘ b1 ‘ B2 B3
LMS —10.4360 1.0404 1.2420 0.9412
Huber 3.0366 0.8125 1.0329 1.0085
Hampel 5.50338 0.7794 0.9778 1.0412
Tukey 5.3224 0.8127 0.9625 1.0563
Andrews 5.2896 0.7775 0.9809 1.0430

The weights related to the observations that are used in estimation methods
for regression models, are located in Table 3. The weights for robust methods
are expression of that observation’s effect on one model for each of the outlier
observations of the robust method. On the other hand, weight obtained from
the network is an expression of that observation’s effect on more than one model,
which are expressed in Equation (5.1). For this reason, eight different weights,
which are called membership degrees of observation, are located in Table 3.

TABLE 3. The weight related to observation for all methods

& © > 2
o § _8 a 3 % The membership degrees of the observation to belong to the models
z 3 3 5 Bl 3 in Equation (5.1)
T o I3 &
< w1 wo w3 wy ws we wy wg

1 1 1 1 0.9892 0.4710 | 0.2558 0.8399 0.1927  0.6327 0.2563  0.8714 0.1931 0.6341
2 1 1 1 0.9274 0.4632 0.1331 0.1553 0.6541 0.7634 0.1323  0.1544 0.6504  0.7590
3 1 1 1 0.9704 0.4713 | 0.4513 0.4688 0.2568  0.2667  0.4431 0.4603 0.2521 0.2619
4 1 1 1 0.9996 0.4752 0.2955 0.3919 0.2492  0.3305 0.3017  0.4001 0.2544  0.3374
5 1 1 1 0.9068 0.4545 0.2619 0.2287  0.4029 0.3518 0.2564  0.2239 0.3944  0.3444
6 1 1 1 0.9812 0.4702 0.9279 0.5080  0.4451 0.2437 0.9283  0.5082 0.4453  0.2438
7 1 | 0.9901 1 0.9383 | 0.4559 | 0.6285 0.9008 0.1891 0.2710 0.6283 0.9005 0.1890  0.2709
8 1 | 0.2780 | 0.1984 0 0.1023 | 0.1777 0.5464 0.0367 0.1128 0.1813 0.5573 0.0374 0.1150
9 1 1 1 0.9555 0.4685 0.1053 0.4404 0.1939 0.8109 0.1044  0.4365 0.1922 0.8037
10 1 1 1 0.9729 0.4692 0.5702 0.2784 0.6084 0.2971 0.5774  0.2820 0.6161 0.3009
11 1 1 1 0.9853 0.4732 0.1575 0.3079 0.4207  0.8225 0.1557  0.3045 0.4160 0.8134
12 1 1 1 0.9794 0.4728 0.9492 0.3440 0.4818 0.1746 0.9468 0.3431 0.4806 0.1742
13 1 1 1 0.9999 0.4758 | 0.1794 0.5488 0.2896  0.8859 0.1801 0.5510 0.2908 0.8895
14 1 1 1 0.9917 | 0.4754 | 0.1503 0.1419 0.5525 0.5216 0.1478  0.1396 0.5435 0.5132
15 1 0.0793 0 0 0 0.4992 0.5684 0.5843  0.6652 0.5004  0.5697 0.5856  0.6668
16 1 1 1 0.9371 0.4691 0.1247  0.5603 0.0919  0.4131 0.1267  0.5694 0.0934  0.4198
17 1 0.1292 0 0 0 0.5070 0.8905 0.1032  0.1812 0.5050  0.8869 0.1027  0.1804
18 1 1 1 0.8298 0.4345 0.1445 0.1493 0.2798  0.2891 0.1483  0.1532 0.2872 0.2967
19 1 0.5182 0.7229 | 0.6013 0.3816 | 0.5293 0.1817 0.6608  0.2268 0.5224  0.1793 0.6521 0.2238
20 1 1 1 0.9810 0.4742 0.3005 0.0669 0.1178  0.0262 0.3091 0.0688 0.1212 0.0270
21 1 1 1 0.9724 | 0.4718 | 0.3892 0.6510 0.4306  0.7203 0.3872  0.6476 0.4284  0.7165
22 | 1 | 0.5921 | 0.9567 | 0.7679 | 0.4197 | 0.2313 0.1485 0.9096 0.5841 0.2309 0.1483 0.9080 0.5831
23 1 1 1 0.8455 0.4425 0.5032 0.3235 0.4841 0.3113 0.4952 0.3184 0.4764 0.3063
24 1 1 1 0.9931 0.4747 | 0.2068 0.2081 0.1806  0.1817 0.2010 0.2022 0.1755 0.1766
25 1 1 1 0.9569 0.4682 0.4008 0.2502 0.8070  0.5038 0.3973  0.2480 0.7999  0.4994
26 1 1 1 0.9086 0.4589 | 0.8261 0.4589 0.5943  0.3301 0.8278  0.4598 0.5955 0.3307
27 1 1 1 0.9955 0.4762 0.4479 0.9437 0.1135 0.2367 0.4501 0.9393 0.1140 0.2379
28 1 0.9584 1 0.8559 0.4441 0.4073 0.1794  0.1907 0.0840 0.3971 0.1750 0.1860 0.0819
29 1 1 1 0.9882 0.4744 | 0.1948 0.1431 0.2575  0.1891 0.1894  0.1392 0.2504 0.1839
30 1 1 1 0.9931 0.4726 | 0.5378 0.7880  0.1901 0.2785 0.5323  0.7799 0.1882 0.2757

The residuals, which belong to estimates fromregression models in Equation
(5.1) and belong to estimates for models from robust regression methods, are
located in Table 4. The proposed algorithm was executed with a program written
in MATLAB. In the stage of step operating, data sets have one dependent variables
and this variable has an outlier observation.
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TABLE 4. The residuals belong to observations for all methods

No LMS Huber Hampel Tukey | Andrews | ANFIS
Residual | Residual | Residual | Residual | Residual | Residual
1 3.4767 2.1904 1.5721 1.0752 1.6086 | -17.6759
2 -3.9789 1.2178 2.5822 2.8061 2.5519 -7.8254
3 1.1051 -1.1466 | -1.6369 | -1.7818 | -1.5673 | -1.5879
4 -0.4020 0.5861 0.6348 0.2043 0.6978 | -11.5606
5 -4.6338 -3.7318 -3.3337 -3.1872 -3.3084 | -2.26604
6 2.9175 1.8044 1.6230 1.4196 1.7260 1.1031
7 7.6721 4.1178 3.0940 2.5835 3.1943 -7.6847
8 -10.3378 | -14.6644 | -16.1899 | -17.1185 | -16.0816 | -28.9371
9 -2.5497 | -1.8646 | -1.9390 | -2.1887 | -1.9565 2.7615
10 -1.0641 1.1593 1.8002 1.7052 1.8737 -6.1937
11 -1.8004 0.6667 1.2379 1.2547 1.2210 -1.0513
12 -0.7286 -1.4388 -1.4064 -1.4838 -1.2970 1.2672
13 -0.9346 0.3685 0.4359 0.1152 0.4387 | -13.3710
14 -4.3509 | -0.4822 0.6489 0.9398 0.6329 -4.3802
15 50.3167 51.4430 51.6845 51.5151 51.7272 | -10.2161
16 -0.3957 | -1.2575 | -1.9241 -2.6085 | -1.8880 | -29.6824
17 -26.3607 | -31.5567 | -33.0319 | -33.6463 | -32.9199 | -9.3339
18 -0.4926 3.6793 4.5840 4.3540 4.6162 -11.3668
19 -9.4589 | -7.8677 | -7.1450 | -6.9146 | -7.0821 -5.1477
20 -2.1298 -1.4330 -1.1352 -1.4250 -0.9864 10.9992
21 -1.6218 -1.4706 -1.5166 -1.7185 -1.4846 -7.6727
22 -12.1691 | -6.8861 -5.3992 -5.1320 -5.4017 | -11.5501
23 3.8849 3.8895 4.0801 4.1399 4.1380 -3.2610
24 0.7363 -0.7023 -0.9030 -0.8580 -0.8578 0.0676
25 -1.6870 1.0962 1.9775 2.1547 2.0043 -7.9256
26 -3.4418 -3.1937 -3.0297 -3.1557 -2.9457 -2.9142
27 5.4420 1.2833 -0.0150 -0.6893 0.0864 -16.3709
28 6.6952 4.2542 3.9416 3.9915 4.0392 0.8268
29 0.4278 0.6231 0.9175 1.1227 0.9512 -1.3372
30 5.8638 2.2337 1.2525 0.8570 1.3398 -5.0809
Sum of Square
Residual 3867.3 4087.8 4228.2 4278.2 4222.3 3580.9
Mean 128.9112 | 136.2609 | 140.9394 | 142.6050 | 140.7425 | 119.3650

The defined methods M (Huber, Hampel, Tukey, Andrews) were executed with
programs written in MATLAB.The residuals of from the robust methods and LSM
are large, but the residuals from the proposed algorithm based network are small.
This is because, this method depend on fuzzy clustering.

As it can be seen in a numerical example, error related to estimations obtained
via the network according to error criterion is lower than errors obtained via all
the other methods.

6. Conclusion

In the study, we have proposed a method for obtaining optimal estimation values
and compared various methods. Estimation values, which are obtained from the
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FIGURE 2. Graphs for errors related to data set in Table 1

proposed algorithm, have the lowest error values. Recently, in our field as well
as others, adaptive networks that fall under the heading of neural networks and
yield efficient estimations related to data are being used more frequently. In the
proposed algorithms, the fuzzy class number of the independent variable is defined
intuitively at first, and within the on going process, these class numbers are taken
as the basis. In this study, it has been thought to use validity criterion based on
fuzzy clustering at the stage of defining level numbers of independent variables.
Moreover, as it can be observed in the algorithm in Section 3, an algorithm different
from other proposed algorithms has been used for updating central parameters.
The difference between the obtained estimation values and the observed values,
that is, the network that decreases the errors to the minimum level, is formed
based on the adaptive network architecture that includes a fuzzy inference system
based on the fuzzy rules. The process followed in the proposed method can be
accepted as an ascendant from other methods since it does not allow intuitional
estimations and it brings us to the smallest error. At the same time, this method
is robust, since it is not affected by the contradictory observations that can occur
at dependent variables. Finally, the estimation values obtained from the networks
that are formed through the proposed algorithm are compared with the estimation
values obtained from the robust regression methods. According to the indicated
error criterion, the errors related to the estimations that are obtained from the
network are lower than the errors that are obtained from the robust regression
methods and LSM.The figures of errors obtained from the six methods are given in
Figure 2. Figure 2(a) shows the errors related to the estimations that are obtained
from the LSM, (b,c,d,e) are show the errors related to the estimations that are
obtained from M Methods, and (f) shows the errors related to the estimations that
are obtained from the proposed algorithm based ANFIS.
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