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Abstract

The series space |1Vg | (u) has recently been introduced and studied by Gékge and Sarigol [1]. The main purpose of this

paper is to determine the @« —, § — and y —duals of the space |va9 |(,u) and to show that it is linearly isomorphic to

the Maddox’s space L (1t).
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1. INTRODUCTION

Let w denote the set of all (real or) complex valued
sequences. Any vector subspace of w is called as a
sequence space. Let X,Y be any sequence spaces and
A = (a,,) be an infinite matrix of complex numbers.
By A(x) = (An(x)), we denote the A-transform of
the sequence x = (x,,) if the series

Ay (x) = z AnyXy
v=0

is convergent for any integer n. If A(x) € Y, whenever
x €X, then it is said that A defines a matrix
transformation from X into Y, and the class of all
infinite matrices A such that A : X = Y is denoted by
(X,Y). Besides, the matrix domain of an infinite matrix
A in a sequence space X is defined by

X, = {x €ew:A(x) € X}. €Y)
The set

SX,Y) = {faew:VxeX,ax = (apx;) €Y }

is called the multiplier space of X and Y. With this
notation, the @ —, f — and y — duals of the space X are
identified as

X*=5X,D,XP =S(X,c5), XY = S(X, by).

* Corresponding Author
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For ¢,le,¢s, bg and I, (1 <p < o), we write the
space of all convergent, bounded sequences and the
space of all convergent, bounded, p —absolutely
convergent series, respectively.

Also, the Maddox’s space defined by

1) = {x = Co) i Yl < oo}
n=0

has an important role in summability theory. Note that
I(u) is an FK space according to its paranorm given by

) 1\M
9t) = (Z|xk|ﬂk>
k=0

where M = max {1; supy t} ([2], [3], [4])-

Let ) a, be an infinite series with the sequence of
partial sum (s,,), 8 = (6,,) be any sequence of positive
real numbers and y = (u,,) be any bounded sequence
of positive real numbers. The series ), a,, is said to be
summable |4, 8,,|(1) if

> Ay (5) = Ay @I <0 (2)
n=1
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[1]. It should be noted that the concept of the
summability |4, 6, |(u) includes the some well known
summability methods for special cases of the sequences
U, 0 and the matrix A (see, for example, [5], [6], [7],
[8], [10], [11]). If we take the weighted mean matrix
instead of A, the summability |4, 6, |(u) is reduced to
the summability |N, p,,, 8,,| (1) and also the space of all
series summable by this method is defined as follows

([1D: .
Pn
PnPn—lzlpv_lav < Oo}

58100 = fa: Y ot
n=1
One can give the weighted mean matrix by
@ = {p,,/Pn,O <v<n
w0, v>n.
According to the notation of the domain given by (2),

this space can be redefined by | IVI? |(u) =
(l(u))T(e p)’ where the matrix T (0, i, p) is given by

1; n= O,V = 0
1/pup PnPy—
thy (0,1, p) = 0, PnP—n—i, 1<v<n
0, v >n, 3)

whose inverse S(6, u, p) is

1, n=v=20
—1/y* . Pp—
_Hn_]'{un_l n_z"v =n-—-— 1
SnV(G, u, p) =9 P Pn-1
9_1/14;1 n —
n P v=n (4)
Pn
\ 0, v<En—1,n

where 0 < infu, < H < ooand pj, is the conjugate
of up, ie. 1/up+ 1/pup =1, py >1,and 1/u;, =0
for u, = 1.

In this paper, we show that the space |IVZ‘,9 |(,u) is
isometrically isomorphic to the space (1) and compute
its @ —, f — and y —duals.

Firstly, we consider following conditions:
(a) There exists an integer M > 1 such that

Hy
sup 2 ZanvM‘1

v=0 Inen
(b) There exists an integer M > 1 such that
(00}

supZ|anvM‘1/”V| < oo,
v n=0

(¢) lima,, exists for each v.
n

o]

: N c N finite ; < oo,

(d) suplany,|* < oo.
nv

(e) There exists an integer M > 1 such that

Sakarya University Journal of Science 23(4), 515-518, 2019

(o]
suleanvM_ll"; < oo,
n v=0

Now, we express the lemmas which characterize some
well known classes of infinite matrices.

Lemma 1.1 Let u = (u,) be arbitrary bounded
sequences of strictly positive numbers. For all v € N,
() If w, > 1, then A € (I(w),1) if and only if (a)
holds.

(i) If u, <1, then A € (I(w), 1) if and only if (b)
holds.

(i) If u, < 1,then A € (I(w),c) if and only if (c) and
(d) hold.

(iv) Ifu, <1,then A € (I(w),ly) iff (d) holds.

W) Ifu, > 1,thenA € (I(w), c) if and only if (c) and
(e) hold.

(vi)Ifu, > 1,then A € (I(p), ly) iff (e) holds,
([12)).

Lemma 1.2 Let A = (a,,) be an infinite matrix with

complex numbers, (u,) be a bounded sequence of

positive numbers. If U, [A] < o or L, [A] < o, then
(2K)?U, [Al <L, [A] < U, [A],

where K = max{1, 271}, H = sup, u,,

Uy [4] = i (iam)w

Hy

:NcN finite},

Lemma 1.3 Let 8 = (0,,) be a sequence of positive
numbers and u = (4,) be bounded sequence of
positive numbers. Then, the set |IVI‘,9 |(,u) is a linear
space with the coordinate-wise addition and scalar
multiplication. Also, the space | IVI? | (u) is an FK-space
with AK under the paranorm

”x”|1\7§|(u)
o) n Hn /M
= |x0| + Z Q#n_l p—nz Py_1%y
n=1 Fabns v=1
where M = max {1, sup, i, }, ([1D.
516
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2. MAIN RESULTS

Theorem 2.1 Assume that u = (u4,) be a bounded
sequence of positive numbers and 6 = (6,)be a
sequence of positive numbers. Then, the space
|IVZ‘,9 |(u) is linear isomorphic to [(u); that is,

| N2 (W) = 1(w).

Proof We should show the existence of a linear
bijection map preserving the paranorm between the

spaces | Nf|(u) and I(u). Now, consider the map
T.(6,14,p): | N | () = 1(w) given by
To(8, 1 p)(x) = Xo,

P
T,(6,u,p)(x) = 9,1/” #z P,_1x,,n=>1.
ntn-1

Since the matrix corresponding to this map given by (3)
is a triangle, it is clear that T(6,u,p) is a linear
bijection map. If x € |[Nf|(u), then T(8,u,p)(x) €
[(1) and so we get

0 1/M
Il g1 = <2|Tn(e,u,p>|ﬂn)

n=0
=T, u, ) () l1w)-

So, T(6,u,p)(x) preserves the paranorm which
completes the proof.

In the following, we express and prove the theorems
determining « —,  — and y —duals of the space
|IV£ |(,u) Note that taking 6, = 1 does not disrupt the
generality. Hence, in the following proofs, we will
accept 6y = 1.

Theorem 2.2 Let 6 = (8,,) be a sequence of positive
numbers and p = (u,) be a bounded sequence of
positive numbers. If y,, > 1, for all v, then there exists
an integer M > 1 such that

_ . o Mp, -1/u3
IRglony” = e e Y P22

+ P,_qley DHY < OO}'

and if p, <1, for all v, then there exists an integer
M > 1 such that

9—1/1417M 1/uy
(el a0)” -{eew s e

v

+ Py_qlepsal) < oo}

Proof Let us define the matrix C = (c,,) as follows:
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« By
-1
|( 0, [t —&n, v=n
n
Chv = ~1/uyy Pn-2
nv —Gn_{#n_l —e, v=n-— 1
n-1
0, v+En—1,n.

It can be easily seen from the inverse of T'(6, u, p) that
EnXn = &To(0, 1) + &n (9'1/”" p" Tn(6, 1)

« P
—1/ul_y Fn—2
-0 /n 1n_Tn—1(91#l p))
n—-1
n

= Z vy o, u, p)

v=0

Therefore, we obtain that since T'(6, 1, p)(x) € L(u)
whenever x € |N?|(w), € € {|N] |(,u)}a if and only if
C € (I(n),). With applying the Lemma 1.1 and
Lemma 1.2 to the matrix C, we get the desired results.

Theorem 2.3 Suppose that 8 = (6,,) be a sequence of
positive numbers and 4 = (u,,) be a bounded sequence
of positive numbers. Define

P Uy

n_lM—l/#T; 2
D, = i€ € w: sup 2 —
n \4%= 6y, Ipy
M1/ un P, Un
— & < oo,
On  Ipn

1/ﬂn Pn
D, ={¢ € w: sup <p Ag, + sn+1)

n

n ETL
Pn
where Ag, = €, — €,,¢ forall v = 0. Then, for all v,
. . — B
(1) if u, > 1, then {|Npe|(,u)} =Dy,
(i)  ifp, <1, then {|NO|(w)})’ = D,.

Agv + &y

HUn

Proof Recall that £ € {|N? | (,u)}ﬁ ifand only if ex € ¢
whenever x € |IVZ‘,9 |(w). 1t can be written by (4) that

n

n -1
7 P
> e = To@upey + ) o (0 LT, p)
] Pk

k=0

1/uj_y Pr—2
—0,_ 1#k 1p Ty-1(6, MP))
1
= To(0,1 e +Z RO
n -1

Py_»
Zeﬂk 1pk T-1(6, 1, ) &g
k=1

= To (6, 1, p)eo 65 " ””ﬁTn(H.u, D)En
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+ Z -~ (e Py — €x41Pi—1 )Ti (6,11, D)
=
= 951/”"p—nTn(9.u,p)sn

1 n
n—-1 _—1/ux
6 /#k

+Z k
= Pk
n
= Z bnka (9, H, p)
k=0

where B = (bn,:) is given by

(Prley + €x4101) T (6, 1, 1)

9_1/”'1*1 &

n Ens k=n

n
- -1/up

buk =16
" k (PkAgk + €k+1pk),0 <k<n-1

L Pk
0,

Since T(6, 1, p) (x) € [(u) wheneverx € |NZ|(w), itis

clear that € € {|IVI‘,9 |(,u)}ﬁ ifand only if B € (I(u), c).
So, it follows from Lemma 1.1 that if i, > 1 for all v,
then € € Dy; otherwise € € D,.

k >n.

Theorem 2.4 Let 6 = (8,,) be a sequence of positive
numbers and u = (i,) be a bounded sequence of
positive numbers. Then, for all v,

. N7 14
6) {|NI‘,9 |(u)} = D; where u, > 1,
. = 14
(i1) {|Npe|(,u)} = D, where u,, < 1.
Since the proof is simple and similar, we omitted it.
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