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Notes on near-ring ideals with (σ, τ)-derivation
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Abstract
In the present paper, we extend some well known results concerning
derivations of prime near-rings in [4], [5] and [13] to (σ, τ)−derivations
and semigroup ideals of prime near-rings.
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1. Introduction
An additively written group (N,+) equipped with a binary operation . : N × N →

N, (x, y) → xy, such that x(yz) = (xy)z and x(y + z) = xy + xz for all x, y, z ∈ N is
called a left near-ring. A near-ring N is called zero symmetric if 0x = 0 for all x ∈ N
(recall that left distributive yields x0 = 0). An element x of N is said to be distributive if
(y + z)x = yx+ zx for all x, y, z ∈ N . In what follows all near-rings are zero symmetric
left near-rings. A near-ring N is said to be 3−prime if xNy = {0} implies x = 0 or y = 0.
For any x, y ∈ N, as usual [x, y] = xy−yx and xoy = xy+yx will denote the well-known
Lie and Jordan products respectively, while the symbol (x, y) will denote the additive
commutator x+ y− x− y. Given an element a of N, we put C(a) = {x ∈ N | ax = xa}.
The set Z = {x ∈ N | yx = xy for all y ∈ N} is called multiplicative center of N.
A nonempty subset U of N will be said a semigroup right ideal (resp. a semigroup
left ideal) if UN ⊆ U (resp. NU ⊆ U) and U is both a semigroup right ideal and a
semigroup left ideal, it will be called a semigroup ideal. An additive mapping d : N → N
is said to be a derivation if d(xy) = xd(y) + d(x)y for all x, y ∈ N or equivalently,
as noted in [13, Proposition 1], if d(xy) = d(x)y + xd(y) for all x, y ∈ N. An element
x ∈ N for which d(x) = 0 is called constant. Following [8], an additive mapping d
of N is called (σ, τ)−derivation if there exist automorphisms σ, τ : N → N such that
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d (xy) = τ (x) d (y) + d (x)σ (y) for all x, y ∈ N or equivalently, as noted in [8, Lemma
1], if d(xy) = d(x)σ(y) + τ(x)d(y) for all x, y ∈ N. Of course a (1, 1)−derivation where 1
is the identity map on N is a derivation.

As well known that derivations or (σ, τ)−derivations are important both in algebra
and ring theory. These topics have many implications such as generalizations of Lie
algebra, differantial and homological algebra. Some researchers have studied on these
topics.(see [6], [7], [10] and [12] ). Since E. C. Posner published his paper [11] in 1957,
many authors have investigated properties of derivations of prime and semiprime rings.
In view of these results it is natural to look for comparable results on near-rings. The
study of derivations of near-rings was initiated by H. E. Bell and G. Mason in 1987
[3], but thus far only few papers on this subject in near-rings have been published (see
refererences for a partial bibliography).

In the present paper, we shall attempt to generalize some known results for deriva-
tions to (σ, τ)−derivations and semigroup ideals of a left prime near-ring N. In Theorem
3.3, we extend [13, Theorem 1]. Theorem 3.7 is a generalization of [4, Lemma 3.2] to
(σ, τ)−derivation and semigroup ideals of N. Finally, it is shown that under appropria-
tiate additional hypothesis near-ring N must be a commutative ring.

2. Preliminaries
We begin with the following known results.

2.1. Lemma. [3, Lemma 3]Let N be a prime near-ring.
(i) If z ∈ Z\ {0}, then z is not a zero divisor.
(ii) If Z contains a nonzero element z for which z + z ∈ Z, then (N,+) is abelian.
(iii) Let d be a nonzero derivation on N. Then xd (N) = (0) implies x = 0, and

d (N)x = (0) implies x = 0.
(iv) If N is 2−torsion free and d is a derivation on N such that d2 = 0, then d = 0.

2.2. Lemma. [4, Lemma 1.3]Let N be a 3−prime near-ring and d be a nonzero derivation
on N.

(i) If U is a nonzero semigroup right ideal (resp. semigroup left ideal) and x ∈ N such
that Ux = (0) (resp. xU = (0)), then x = 0.

(ii) If U is a nonzero semigroup right ideal or semigroup left ideal, then d(U) 6= (0).
(iii) If U is a nonzero semigroup right ideal and x ∈ N which centralizes U, then

x ∈ Z.

2.3. Lemma. [4, Lemma 1.4]Let N be a 3−prime near-ring and U be a nonzero semi-
group ideal of N. Let d be a nonzero derivation on N .

(i) If x, y ∈ N and xUy = (0), then x = 0 or y = 0.
(ii) If x ∈ N and d(U)x = (0), then x = 0.
(iii) If x ∈ N and xd(U) = (0), then x = 0.

2.4. Lemma. [4, Theorem 2.1]Let N be a 3−prime near-ring and U be a nonzero semi-
group right ideal or a nonzero semigroup left ideal of N. If N admits a nonzero derivation
d for which d(U) ⊂ Z, then N is a commutative ring.

2.5. Lemma. [4, Lemma 3.2]Let N be a 3−prime near-ring and U a nonzero semigroup
ideal of N. Let d be a nonzero derivation on N such that d2(U) 6= (0). If a ∈ N and
[a, d(U)] = (0), then a ∈ Z.

2.6. Lemma. [5, Lemma 1.8]Let N be a 3−prime near-ring with 2N 6= (0), and U a
nonzero semigroup ideal. If d is a derivation on N such that d2(U) = (0), then d = 0.



2.7. Lemma. [5, Lemma 2.4]Let N be an arbitrary near-ring. Let S and T be nonempty
subsets of N such that st = −ts for all s ∈ S and t ∈ T . If a, b ∈ S and c is an element
of T for which −c ∈ T , then (ab) c = c (ab).

2.8. Lemma. [8, Lemma 1]Let N be a 3−prime near-ring and d be a (σ, τ)-derivation
on N. Then d (xy) = d (x)σ (y) + τ (x) d (y), for all x, y ∈ N .

2.9. Lemma. [9, Lemma 4]Let N be a 3−prime near-ring, d a (σ, τ)-derivation of N
and U a nonzero semigroup right ideal (resp. semigroup left ideal). If d (U) = (0), then
d = 0.

2.10. Lemma. [9, Theorem 1]Let N be a 3-prime near-ring, d a nonzero (σ, τ)-derivation
of N and U a nonzero semigroup right ideal of N. If d (U) ⊂ Z, then N is a commutative
ring.

2.11. Lemma. [9, Theorem 3]Let N be a 3-prime near-ring, d a nonzero (σ, τ)-derivation
of N such that σd = dσ, τd = dτ and U a nonzero semigroup ideal of N. If d2 (U) = (0),
then d = 0.

2.12. Lemma. [1, Lemma 2.2]Let d be a (σ, τ)-derivation on the near-ring N. Then N
satisfies the following partial distributive laws:

(i) (τ (x) d (y) + d (x)σ (y)) z = τ (x) d (y) z + d (x)σ (y) z, for all x, y, z ∈ N .
(ii) (d (x)σ (y) + τ (x) d (y)) z = d (x)σ (y) z + τ (x) d (y) z for all x, y, z ∈ N .

3. The Main Results
3.1. Theorem. Let N be a 3−prime near-ring and U a nonzero semigroup ideal of
N. If d1 is a nonzero (σ, τ)-derivation and d2 a nonzero derivation of N such that
d1 (x)σ (d2 (y)) = −τ (d2 (x)) d1 (y) for all x, y ∈ U, then (N,+) is abelian.

Proof. Writing yr, y ∈ U, r ∈ N instead of y, we have

d1 (x)σ (d2 (y) r + yd2 (r)) = −τ (d2 (x)) (τ (y) d1 (r) + d1 (y)σ (r))

and so

d1 (x)σ (d2 (y))σ(r) + d1 (x)σ(y)σ(d2 (r)) = −τ (d2 (x)) d1 (y)σ (r)−τ (d2 (x)) τ (y) d1 (r)
Using the hypothesis, we get

(3.1) d1 (x)σ (y)σ (d2 (r)) = −τ (d2 (x)) τ (y) d1 (r) , for all x, y ∈ U, r ∈ N.
Replacing r by r + t, t ∈ N in (3.1), we get

d1 (x)σ (y)σ (d2 (r)) + d1 (x)σ (y)σ (d2 (t))

= −τ (d2 (x)) τ (y) (d1 (r) + d1 (t)).

Using −(a+ b) = (−b) + (−a), for all a, b ∈ N, we have

d1 (x)σ (y)σ (d2 (r)) + d1 (x)σ (y)σ (d2 (t))

= −τ (d2 (x)) τ (y) d1 (t)− τ (d2 (x)) τ (y) d1 (r)
and so

d1 (x)σ (y)σ (d2 (r))+d1 (x)σ (y)σ (d2 (t))+τ (d2 (x)) τ (y) d1 (r)+τ (d2 (x)) τ (y) d1 (t) = 0.

Using the (3.1) and (r, t) = r + t− r − t in the last equation, we arrive at

d1 (x)σ (y)σ (d2 (r, t)) = 0, for all x, y ∈ U, r, t ∈ N.
That is

(3.2) σ−1(d1 (x))Ud2 (r, t) = (0), for all x ∈ U, r, t ∈ N.



By Lemma 2.3 (i), we get d1 (U) = (0) or d2 (r, t) = 0, for all r, t ∈ N. If d1 (U) = (0),
then d1 = 0 by Lemma 2.9. This is a contradiction. So that d2 (r, t) = 0 for all r, t ∈ N .
For any w ∈ N, we have d2 (wr,wt) = 0. Hence we obtain that d2 (w) (r, t) = 0, for all
w, r, t ∈ N. From Lemma 2.1 (iii) and d2 6= 0, we get (r, t) = 0, for all r, t ∈ N. Thus the
proof is completed. �

3.2. Theorem. Let N be a 2−torsion free 3−prime near-ring and U a nonzero semigroup
ideal of N. If d1 is a (σ, τ)-derivation and d2 a derivation of N such that d1 (x)σ (d2 (y)) =
−τ (d2 (x)) d1 (y) for all x, y ∈ U, then d1 = 0 or d2 = 0.

Proof. Assume that d2 6= 0. Using the same method as in the proof of Theorem 3.1, we
have

(3.3) d1 (x)σ (y)σ (d2 (r)) = −τ (d2 (x)) τ (y) d1 (r) , for all x, y, r ∈ U.

Replacing y by yd2 (z) in (3.3), we have

(3.4)
d1 (x)σ (y)σ (d2 (z))σ (d2 (r)) = −τ (d2 (x)) τ (y) τ(d2 (z))d1 (r) , for all x, y, r, z ∈ U.

Using (3.3) in (3.4), we arrive at

−τ (d2 (x)) τ (y) d1 (z)σ (d2 (r)) = −τ (d2 (x)) τ (y) τ(d2 (z))d1 (r)

and so

τ (d2 (x)) τ (y) (d1 (z)σ(d2 (r))− τ(d2 (z))d1 (r)) = 0, for all x, y, r, z ∈ U.

Since τ is an automorphism of N, we get

(3.5) d2(x)Uτ
−1 (d1 (z)σ(d2(r))− τ(d2 (z))d1 (r)) = (0), for all x, r, z ∈ U.

By Lemma 2.3 (i), we get d2 (x) = 0 or d1 (z)σ(d2(r)) = τ(d2 (z))d1 (r) , for all
x, r, z ∈ U. The first case contradicts U 6= (0) by Lemma 2.2 (ii). So we must have
d1 (z)σ(d2(r)) = τ(d2 (z))d1 (r) , for all r, z ∈ U. Hence we obtain that 2d1 (z)σ (d2 (r)) =
0 by the hypothesis. Since N is 2−torsion free, we have σ−1(d1(z))d2 (r) = 0, for all
r, z ∈ U. Hence d1 (U) = (0) by Lemma 2.3 (iii) . This gives us d1 = 0 by Lemma 2.9.
This completes the proof. �

3.3. Theorem. Let N be a 2−torsion free 3−prime near-ring and U a nonzero semigroup
ideal of N. If d1 is a (σ, τ)-derivation and d2 a derivation of N such that d1d2 acts as a
(σ, τ)-derivation on U, then d1 = 0 or d2 = 0.

Proof. By calculating d1d2(xy) in two different ways, we see that

d1d2(xy) = d1d2(x)σ(y) + τ(x)d1d2(y)

and

d1d2(xy) = d1d2(x)σ(y) + τ (d2 (x)) d1 (y) + d1 (x)σ (d2 (y)) + τ(x)d1d2(y).

Equating these two expressions for d1d2(xy), we obtain that

d1 (x)σ (d2 (y)) = −τ (d2 (x)) d1 (y) for all x, y ∈ U.

Then d1 = 0 or d2 = 0 by Theorem 3.2. �

3.4. Theorem. Let N be a 3−prime near-ring and U a nonzero semigroup ideal of N. If
d is a (σ, τ)-derivation of N such that d(x)σ(y) = τ(x)d(y) for all x, y ∈ U, then d = 0.



Proof. Assume that

(3.6) d(x)σ(y) = τ(x)d(y), for all x, y ∈ U.

Replacing y by yz, z ∈ U in (3.6), we have

d(x)σ(y)σ(z) = τ(x)(d(y)σ(z) + τ(y)d(z))

and so

d(x)σ(y)σ(z) = τ(x)d(y)σ(z) + τ(x)τ(y)d(z), for all x, y, z ∈ U.

Applying (3.6) in this equation, we get τ(x)τ(y)d(z) = 0, for all x, y, z ∈ U. Hence

xUτ−1(d(z)) = (0), for all x, z ∈ U.

By Lemma 2.3 (i) and U 6= (0), we get d (z) = 0, for all z ∈ U, and so d = 0 by Lemma
2.9. �

In [4], Bell and Argaç studied commutativity in 3−prime near-rings with a nonzero
derivation d for which d(xy) = d(yx) for all x, y in some nonzero one sided ideal. Ashraf
and Ali showed this result for (σ, σ)-derivation on N in [2]. Now, we continue this study
for a (σ, τ)-derivation d and a semigroup ideal U of near-rings without any restriction on
U.

3.5. Theorem. Let N be a 3−prime near-ring and U a nonzero semigroup ideal of N.
If d is a (σ, τ)-derivation of N such that d([x, y]) = 0 for all x, y ∈ U, then N is a
commutative ring.

Proof. In the view of our hypothesis, we have

(3.7) d([x, y]) = 0, for all x, y ∈ U.

Replacing y by xy in (3.7), we get

0 = d([x, xy]) = d(x[x, y])

= d(x)σ([x, y]) + τ(x)d([x, y]),

Using (3.7) in this equation, we have

d(x)σ([x, y]) = 0, for all x, y ∈ U.

That is

(3.8) d(x)σ(x)σ(y) = d(x)σ(y)σ(x), for all x, y ∈ U.

Writing yr, r ∈ N instead of y in (3.8), we get

d(x)σ(x)σ(y)σ(r) = d(x)σ(y)σ(r)σ(x), for all x, y ∈ U.

Using (3.8) in this equation, we arrive at

d(x)σ(y)σ(x)σ(r) = d(x)σ(y)σ(r)σ(x)

and so

d(x)σ(y)σ([x, r]) = 0.

That is

σ−1(d(x))U [x, r] = (0), for all x ∈ U, r ∈ N.

This yields that for each fixed x ∈ U either d(x) = 0 or x ∈ Z by Lemma 2.3 (i). But
x ∈ Z also implies that d(x) ∈ Z. Therefore, for any cases we find that d(x) ∈ Z, for any
x ∈ U. By Lemma 2.10, we obtain that N is a commutative ring. This completes proof
of our theorem. �



3.6. Theorem. Let N be a 3−prime near-ring and U a nonzero semigroup ideal of
N. If d is a (σ, τ)-derivation of N such that d(xoy) = 0 for all x, y ∈ U, then N is a
commutative ring.

Proof. Replacing x by yx in the hypothesis, we get

0 = d(yxoy) = d(y(xoy)

= d(y)σ(xoy) + τ(y)d(xoy).

Using the hypothesis, we find that

d(y)σ(xoy) = 0.

That is

(3.9) d(y)σ(x)σ(y) = −d(y)σ(y)σ(x), for all x, y ∈ U.

Taking xr, r ∈ N instead of x in (3.9) and using (3.9), we obtain

σ−1(d(y))U [r, y] = (0), for all y ∈ U, r ∈ N.

Now using the same arguments in the last paragraph of the proof of Theorem 3.5, we
get the required result. �

3.7. Theorem. Let N be a 3−prime near-ring and U be a nonzero semigroup ideal of
N. If a ∈ N, d is a nonzero (σ, τ)-derivation on N such that σd = dσ, τd = dτ and
[a, d (U)] = (0) , then a ∈ Z.

Proof. Note that d (U) ⊆ C (a) by the hypothesis. Assume that τ (y) ∈ C (a) . Then it is
obvious that τ (y) d (x) , d (x) ∈ C (a) . Also, we get ad(yx) = d(yx)a by the hypothesis.
That is

a (τ (y) d (x) + d (y)σ (x)) = (τ (y) d (x) + d (y)σ (x)) a, for all x ∈ U.

We can apply Lemma 2.12 (i) to get

aτ (y) d (x) + ad (y)σ (x) = τ (y) d (x) a+ d (y)σ (x) a, for all x ∈ U.

Since τ (y) d (x) ∈ C (a) , we get

(3.10) ad (y)σ (x) = d (y)σ (x) a, for all x ∈ U.

Thus we obtain d (y)σ (x) ∈ C(a), for all x ∈ U. That is

(3.11) d (y)σ (U) ⊆ C (a) , for all τ (y) ∈ C (a) .

On the other hand, if d2(U) = (0), then d = 0 by Lemma 2.11. Since d 6= 0, we can
choose any z ∈ U such that d2 (z) 6= 0. Let τ (y) = d (z). Since d (y)σ (x) ∈ C (a) , for all
x ∈ U, τ (y) ∈ C (a) , we have d(y)σ(xr) = d (y)σ (x)σ(r) ∈ C (a) for all x ∈ U, r ∈ N.
Thus

ad (y)σ (x)σ (r) = d (y)σ (x)σ (r) a, for all x ∈ U, r ∈ N.

Using the equation (3.10), we have

d (y)σ (x) aσ (r) = d (y)σ (x)σ (r) a,

and so

d (y)σ (x) [a, σ(r)] = 0, for all x ∈ U, r ∈ N.

That is

σ−1(d(y))U [σ−1(a), r]) = (0), for all r ∈ N.



This yields d(y) = 0 or a ∈ Z by Lemma 2.3 (i). If d(y) = 0, then d(τ−1(d(z)) = 0.
Using τd = dτ, we have d2 (z) = 0. But this contradicts d2 (z) 6= 0. Thus we must have
a ∈ Z. This completes the proof. �

As immediate corollaries of Theorem 3.7 and Lemma 2.10 we give the following theo-
rem.

3.8. Theorem. Let N be a 3−prime near-ring and U be a nonzero semigroup ideal of
N. If a ∈ N, d is a nonzero (σ, τ)-derivation on N such that σd = dσ, τd = dτ and
[d(U), d (U)] = (0) , then N is a commutative ring.

3.9. Theorem. Let N be a 2−torsion free 3−prime near-ring and U be a nonzero semi-
group ideal of N. If d1 is a derivation and d2 is a (σ, τ)-derivation on N such that
d2τ = τd2, d2σ = σd2 and d1 (x) d2 (y) = −d2 (y) d1 (x) , for all x, y ∈ U, then d1 = 0 or
d2 = 0.

Proof. Assume that d1 6= 0 and d2 6= 0. By the hypothesis, we have

(3.12) d1 (x) d2 (y) = −d2 (y) d1 (x) , for all x, y ∈ U.

We may assume d21 (U) 6= (0) 6= d22
(
U2

)
by Lemma 2.6 and Lemma 2.11. Let w ∈

d2
(
U2

)
. It is easy to see w,−w ∈ d2 (U) . If we take T = d2 (U) , S = d1 (U) , then [uv,

d2
(
U2

)
] = (0), for all u, v ∈ d1 (U) by Lemma 2.7. Thus uv ∈ Z for all u, v ∈ d1 (U) by

Theorem 3.7. Also we have d1 (x) d1 (y) ∈ Z, for all x, y ∈ U . It follows that

d1 (x) d1 (x) d1 (y) = d1 (x) d1 (y) d1 (x) .

Multipliying this equation by d1 (y) from right hand, we have

d1 (x) d1 (x) d1 (y) d1 (y) = d1 (x) d1 (y) d1 (x) d1 (y) .

Using d1 (x) d1 (y) , d1 (y) d1 (x) ∈ Z respectively in the last equation, we find that

d1 (x) d1 (y) d1 (x) d1 (y) = d1 (y) d1 (x) d1 (x) d1 (y) .

Again using d1 (y) d1 (x) , d1 (x) d1 (y) ∈ Z respectively, we arrive at

d1 (y) d1 (x) d1 (x) d1 (y) = d1 (y) d1 (x) d1 (y) d1 (x)

and so

d1 (y) d1 (x) (d1 (x) d1 (y)− d1 (y) d1 (x)) = 0.

Since d1 (y) d1 (x) is central, Lemma 2.1 (i) shows that for any x, y ∈ U, either d1 (x) d1 (y)−
d1 (y) d1 (x) = 0 or d1 (y) d1 (x) = 0. Hence we get d1 (x) d1 (y) = d1 (y) d1 (x) = 0, for all
x, y ∈ U. That is [d1 (U) , d1 (U)] = (0). By Lemma 2.5, we get d21 (U) = 0 or d1 (U) ⊂ Z.
In the first case, we find that d1 = 0 by Lemma 2.6. In the second case, we have N is
a commutative ring by Lemma 2.4. But this fact that together with (3.12) shows that
2d2 (y) d1 (x) = 0 for all x, y ∈ U , i.e. d2 (U) d1 (U) = (0) . Therefore we get d1 = 0 or
d2 = 0 from Lemma 2.1 (iii) and Lemma 2.9. Thus we must have d1 = 0 or d2 = 0. �

3.10. Theorem. Let N be a 2−torsion free 3−prime near-ring and U be a nonzero
semigroup ideal of N. If d1 is a nonzero derivation and d2 is a nonzero (σ, τ)-derivation
on N such that d2τ = τd2, d2σ = σd2.

(i) If d1 (x) d2 (y) + d2 (y) d1 (x) ∈ Z, for all x, y ∈ U and at least one of d1 (U) ∩ Z
and d2 (U) ∩ Z is nonzero, then N is a commutative ring.

(ii) If xd2 (y)+d2 (y)x ∈ Z, for all x, y ∈ U, and U∩Z 6= (0) , then N is a commutative
ring.



Proof. (i) Let d1 (U) ∩ Z 6= (0). Let x ∈ U such that d1 (x) ∈ Z\ {0} and y ∈ U. Then
d1 (x) d2 (y) + d2 (y) d1 (x) = 2d1 (x) d2 (y) ∈ Z. Since N is a 2−torsion free 3−prime
near-ring and d1 (x) ∈ Z\ {0} , we have d2 (U) ⊆ Z. Hence N is a commutative ring by
Lemma 2.10.

(ii) Let x ∈ U∩Z and y ∈ U. Then, xd2 (y)+d2 (y)x = 2xd2 (y) ∈ Z. Thus, d2 (U) ⊆ Z.
As in the proof of (i), we get N is a commutative ring. �

3.11. Theorem. Let N be a 2−torsion free 3−prime near-ring, U be a nonzero semi-
group ideal of N which is closed under addition. Suppose that N has nonzero derivation
d1 and nonzero (σ, τ)-derivation d2 such that d1 (x) d2 (y) + d2 (y) d1 (x) ∈ Z for all
x, y ∈ U and d1 (U) ∩ Z 6= (0) or d2 (U) ∩ Z 6= (0). Then N is a commutative ring.

Proof. By Theorem 3.9, we cannot have d1 (x) d2 (y) + d2 (y) d1 (x) = 0 for all x, y ∈ U2.
Since d1

(
U2

)
⊆ U, there exist x0, y0 ∈ U2 such that u0 = d1 (x0) d2 (y0) + d2 (y0) d1 (x0)

is a nonzero central element in U. If either of d1 (u0) and d2 (u0) is nonzero, our con-
clusion follows from Theorem 3.10. On the other hand, if d1 (u0) = d2 (u0) = 0, then
d1 (u0x) d2 (u0y)+d2 (u0y) d1 (u0x) = u0d1 (x) τ (u0) d2 (y)+τ (u0) d2 (y)u0d1 (x) . Using
u0 ∈ Z, τ (u0) ∈ Z in the last equation, we get

u0τ (u0) (d1 (x) d2 (y) + d2 (y) d1 (x)) ∈ Z.
Since 0 6= u0τ (u0) ∈ Z, we obtain that d1 (x) d2 (y) + d2 (y) d1 (x) ∈ Z. Hence N is a
commutative ring by Theorem 3.10. �
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