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Abstract

In this paper the author considers a prime ring R with characteristic
different from two and extends some well known results concerning
derivations of prime rings to the generalized derivation f : R → R

associated with a derivation d of R and a nonzero left ideal U of R

which is semiprime as a ring.
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1. Introduction

Throughout this paper, R will be a prime ring with characteristic different from two
and I a nonzero left ideal of R which is semiprime as a ring, Z the multiplicative center of
R, Qr(R) the right Martindale ring of quotients, C the extended centroid and RC = RC

the central closure. For any x, y ∈ R, the symbol [x, y] will represent the commutator
xy− yx. An additive mapping f : R → R is called a generalized derivation if there exists
a derivation d : R → R such that

f(xy) = f(x)y + xd(y)

for all x, y ∈ R The concept of generalized derivation includes the concept of derivation.
Moreover, a generalized derivation with d = 0 includes the concept of left multiplier, that
is an additive map satisfying f(xy) = f(x)y, for all x, y ∈ R.

The study of the commutativity of prime rings with derivations was initiated by E.C.
Posner [10]. Over the last two decades, a lot of work has been done on this subject. Re-
cently, M. Bresar defined a generalized derivation in [5]. Many authors have investigated
the properties of prime or semiprime rings with generalized derivations. In the present
paper our objective is to generalize some results obtained in [2], [3], [4], [7] and [9] for
generalized derivations and a left ideal of a prime ring R which is semiprime as a ring.
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2. Results

We begin by recalling the following two results.

2.1. Lemma. [6, Lemma 1] Let R be a prime ring and U a nonzero left ideal of R which

is semiprime as a ring. If Ua = 0 (aU = 0) for a ∈ R, then a = 0.

2.2. Lemma. [8, Lemma 2] Let f : R → RC be an additive map satisfying f(xy) = f(x)y,

for all x, y ∈ R. Then there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.

Now we have:

2.3. Lemma. Let R be a prime ring and U a nonzero left ideal of R which is semiprime

as a ring. If d is a derivation of R such that d(U) = 0, then d = 0.

Proof. For all x ∈ U, r ∈ R, we get

0 = d(rx) = d(r)x,

and so,

d(R)U = 0.

By Lemma 2.1, we obtain that d = 0. ¤

The following two theorems are generalization of [3, Theorem 3] and [4, Theorem 1],
respectively.

2.4. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime

as a ring and f a generalized derivation of R. If U is noncommutative and f([x, y]) = 0,
for all x, y ∈ U, then there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.

Proof. Substitute yx for y in f([x, y]) = 0, giving

0 = f([x, yx]) = f([x, y]x) = f([x, y])x + [x, y]d(x),

and so,

[x, y]d(x) = 0, for all x, y ∈ U.

Hence 0 = [x, ry]d(x) = r[x, y]d(x) + [x, r]yd(x). Since the first summand is zero, it is
clear that

[x, r]yd(x) = 0, for all x, y ∈ U, r ∈ R.

Writing sy, s ∈ R, in place of y in this equation, we get

[x, r]syd(x) = 0, for all x, y ∈ U, r, s ∈ R.

Since R is a prime ring, we have

[x, r] = 0 or Ud(x) = 0, for all x ∈ U, r ∈ R.

By Lemma 2.1, we get either x ∈ Z or d(x) = 0 for all x ∈ U. Let A = {x ∈ U | x ∈ Z}
and B = {x ∈ U | d(x) = 0}. Then A and B are two additive subgroups of (U,+) such
that U = A∪B. However, a group cannot be the union of proper subgroups. Hence either
U = A or U = B. If U = A then U ⊂ Z, and so U is commutative, which contradicts
the hypothesis. So, we must have d(x) = 0, for all x ∈ U. By Lemma 2.3, we get d = 0.
Hence, there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R, by Lemma 2.2. ¤

2.5. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a

ring and f a generalized derivation of R. If U is noncommutative and f([x, y]) = ±[x, y],
for all x, y ∈ U, then there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.
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Proof. Assume that f([x, y]) = ±[x, y], for all x, y ∈ U . Replacing y by yx in this
equation, we have

[x, y]d(x) = 0, for all x, y ∈ U.

Using the same argument as in the proof of Theorem 2.4, we get d = 0 and so, there
exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R by Lemma 2.2. ¤

2.6. Corollary. Let R be a prime ring, U a nonzero left ideal of R which is semiprime

as a ring and f a generalized derivation of R. If U is noncommutative and f(xy) = ±xy,

for all x, y ∈ U, then there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.

2.7. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime

as a ring and f a generalized derivation of R. If f acts as a homomorphism or anti-

homomorphism on U, then there exists q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.

Proof. Assume that f acts as a homomorphism on U. Then

(2.1) f(xy) = f(x)f(y) = f(x)y + xd(y), for all x, y ∈ U.

Replacing x by zx, z ∈ U , in the second equality in (2.1), we have

f(xz)f(y) = f(xz)y + xzd(y) = f(x)f(z)y + xzd(y)

since f is a homomorphism. On the other hand, we have

f(xz)f(y) = f(x)f(z)f(y) = f(x)f(zy) = f(x)(f(z)y + zd(y))

= f(x)f(z)y + f(x)zd(y),

on replacing y by z in (2.1). Hence

f(x)f(z)y + f(x)zd(y) = f(x)f(z)y + xzd(y),

so

(f(x)− x)zd(y) = 0, for all x, y, z ∈ U.

Replacing z by rz, r ∈ R, in the above equation, we arrive at

(f(x)− x)rzd(y) = 0, for all x, y, z ∈ U, r ∈ R.

Since R is a prime ring, we have either f is the identity map on U , or Ud(U) = 0.

Suppose that f(x) = x, for all x ∈ U. Then

xy = f(xy)

= f(x)y + xd(y)

= xy + xd(y)

and so,

xd(y) = 0, for all x, y ∈ U.

Hence, we conclude that d = 0 by Lemma 2.1. Thus, there exists q ∈ Qr(RC) such that
f(x) = qx, for all x ∈ R by Lemma 2.2.

Now assume that f acts as an anti-homomorphism on U. Then

(2.2) f(xy) = f(y)f(x) = f(x)y + xd(y), for all x, y ∈ U.

Replacing x by xy in (2.2), we get

f(y)f(xy) = f(xy)y + xyd(y), hence

f(y)f(x)y + f(y)xd(y) = f(y)f(x)y + xyd(y),
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and so,

(2.3) f(y)xd(y) = xyd(y), for all x, y ∈ U.

Replacing x by rx, r ∈ R, in (2.3), to get

f(y)rxd(y) = rxyd(y) = rf(y)xd(y).

That is,

(2.4) [f(y), r]xd(y) = 0, for all x, y ∈ U, r ∈ R.

Again writing x as sx, s ∈ R, we have either [f(y), r] = 0 or Ud(y) = 0, for all y ∈
U, r ∈ R. According to Brauer’s Trick and Lemma 2.1, we conclude that f(U) ⊂ Z or
d(U) = 0. In the second case, the proof is complete. The first case gives that f acts
as a homomorphism on U. Thus, there exists q ∈ Qr(RC) such that f(x) = qx, for all
x ∈ R. ¤

2.8. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero

left ideal of R which is semiprime as a ring, and f a generalized derivation of R. If U is

noncommutative and [x, f(x)] = 0, for all x ∈ U, then there exists q ∈ Qr(RC) such that

f(x) = qx, for all x ∈ R.

Proof. A linearization of [x, f(x)] = 0 gives

(2.5) [x, y]d(x) + y[x, d(x)] = 0, for all x, y ∈ U.

Writing yz instead of y in (2.5), and using this equation, we obtain that

(2.6) [x, y]zd(x) = 0, for all x, y, z ∈ U.

Replacing z by rz, r ∈ R, in (2.6), we get

[x, y] = 0 or Ud(x) = 0, for all x, y ∈ U.

By Lemma 2.1, we have either [x, y] = 0 or d(x) = 0, for all x ∈ U. By a standard
argument one of these must be held for all x ∈ U. The first result cannot hold since U is
noncommutative, so the second possibility gives d(U) = 0, and hence d = 0. Therefore,
the proof may be completed by using Lemma 2.2. ¤

2.9. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero

left ideal of R which is semiprime as a ring, and f a generalized derivation of R. If U

is noncommutative, d(Z) 6= 0 and [f(x), f(y)] = [x, y], for all x, y ∈ U, then there exists

q ∈ Qr(RC) such that f(x) = qx, for all x ∈ R.

Proof. Taking yx instead of y in the hypothesis, we get

[x, yx] = [f(x), f(yx)], whence

[x, y]x = [f(x), f(y)x + yd(x)]

= [f(x), f(y)]x + f(y)[f(x), x] + [f(x), y]d(x) + y[f(x), d(x)],

and so,

(2.7) f(y)[f(x), x] + [f(x), y]d(x) + y[f(x), d(x)] = 0, for all x, y ∈ U.

Replacing y by cy = yc, where c ∈ Z, and using (2.7), we arrive at

yd(c)[f(x), x] = 0, for all x, y ∈ U.

Since 0 6= d(c) ∈ Z and U is a nonzero left ideal of R, we have

[f(x), x] = 0, for all x ∈ U.

The proof is now completed using Theorem 2.8. ¤
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2.10. Theorem. Let R be a prime ring with characteristic different from two, U a

nonzero left ideal of R which is semiprime as a ring, and f a generalized derivation of R.

If U is noncommutative and f(U) ⊆ Z, then there exists q ∈ Qr(RC) such that f(x) = qx,

for all x ∈ R.

Proof. For all r ∈ R, we get

0 = [f(xy), y] = [f(x)y + xd(y), y]

= [x, y]d(y) + x[d(y), y].

Expanding this equation we conclude that

(2.8) yxd(y) = xd(y)y, for all x, y ∈ U.

Writing xz instead of x in (2.8), and using this equality, we get

yxzd(y) = xzd(y)y = xyzd(y).

That is

[x, y]zd(y) = 0, for all x, y, z ∈ U.

Taking rz, r ∈ R in place of z in the above equation, and using the fact that R is prime,
we conclude that [x, y] = 0 or d(y) = 0, for all x, y ∈ U. By the standard argument, we
have either that U is commutative or d = 0. Since U is noncommutative, the proof is
complete. ¤

2.11. Theorem. Let R be a prime ring with characteristic different from two, U a

nonzero left ideal of R which is semiprime as a ring, f a generalized derivation of R and

a ∈ R. If U is noncommutative, d(Z) 6= 0 and [a, f(x)] ∈ Z for all x ∈ U, then a ∈ Z.

Proof. Since d(Z) 6= 0, there exists c ∈ Z such that d(c) 6= 0. Furthermore, since d is a
derivation, it is clear that d(c) ∈ Z. Replacing x by xc = cx in the hypothesis, we have

Z 3 [a, f(xc)] = [a, f(x)c + xd(c)]

= [a, f(x)]c + [a, x]d(c).

Since the first term lies in Z, we get

[a, x]d(c) ∈ Z, for all x ∈ U.

Thus, we obtain that [a, x] ∈ Z, for all x ∈ U, and so

(2.9) [[a, x], r] = 0, for all x ∈ U, r ∈ R.

Taking x2 instead of x and using (2.9), we have

0 = [[a, x]x + x[a, x], r] = 2[[a, x]x, r], for all x ∈ U, r ∈ R.

Since charR 6= 2 and [a, x] ∈ Z, we arrive at

[a, x][x, r] = 0, for all x ∈ U, r ∈ R,

and so,

[a, x] = 0 or [x, r] = 0, for all x ∈ U, r ∈ R.

Let A = {x ∈ U | [a, x] = 0} and B = {x ∈ U | x ∈ Z}. Then A and B are two additive
subgroups of (U,+) such that U = A ∪ B. By Brauer’s Trick, either U = A or U = B.

Since U is noncommutative, we have U = A. Hence [a, U ] = 0, and so a ∈ Z. ¤

2.12. Corollary. Let R be a prime ring with characteristic different from two, U a

nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R.

If U is noncommutative, d(Z) 6= 0 and [f(U), f(U)] ⊆ Z, then there exists q ∈ Qr(RC)
such that f(x) = qx, for all x ∈ R.
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