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Modified systematic sampling in the presence of
linear trend
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Abstract
A new systematic sampling design called “Modified Systematic Sam-
pling (MSS)”, proposed by [2] is more general than Linear System-
atic Sampling (LSS) and Circular Systematic Sampling (CSS). In the
present paper, this scheme is further extended for populations having
a linear trend. Expressions for mean and variance of sample mean are
obtained for the population having perfect linear trend among popu-
lation values. Expression for the average variance is also obtained for
super population model. Further, efficiency of MSS with respect to
CSS is obtained for different sample size.

2000 AMS Classification: 62DO5.

Keywords: LSS, CSS, MSS, linear trend, super population.

Received 05 /11 /2013 : Accepted 07 /05 /2014 Doi : 10.15672/HJMS.2014167467

1. Introduction
In survey sampling, Linear Systematic Sampling (LSS) is a commonly used design.

Generally, it is useful when population size N is a multiple of sample size n, i.e. N = nk
(where k is the sampling interval). Thus, we have k samples each of size n. However,
LSS is not beneficial when population size N is not a multiple of the sample size n,
i.e. N 6= nk. Because in this case, LSS cannot provide a constant sample size n, thus,
estimate of population mean (total) is biased. Therefore, Circular Systematic Sampling
(CSS) was introduced by Lahiri in 1952 (cited in [1, p.139]). Contrary to LSS, CSS is
not advantageous when population size N is a multiple of the sample size n, i.e. N = nk
as in this case, CSS produces n replicates of k samples. Further, in CSS, the number of
samples also rapidly increase to N as compared to k samples of LSS.
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To improve the efficiency of systematic sampling, researchers proposed several modifica-
tions in the selection procedure. The considerable work is done by [4], [6] and [7]. In the
recent years, [8] proposed Diagonal Systematic Sampling (DSS) under the condition that
n ≤ k as a competitor of LSS. Later, the condition n ≤ k for DSS have relaxed by [9].
The generalization of DSS is suggested by [10]. Some modification in LSS are proposed
by [11], in which odd and even sample sizes are dealt separately. Further modification on
LSS is also proposed by [12]. Diagonal Circular Systematic Sampling (DCSS) proposed
by [5] is an extension of DSS to the circular version of systematic sampling. A note on
DCSS has been proposed by [3]. However, some of these schemes are applicable when
N = nk while other can be used only when N 6= nk.

A new systematic sampling design called “Modified Systematic Sampling (MSS)” pro-
posed by [2], which is applicable in both situations, whether N = nk or N 6= nk.
According to this design, first compute least common multiple of N and n, i.e. L, then
find k1, m, s and k, where k1 = L

n
, m = L

N
, s = N

k1
and k = [k1/m] or k = [N/n] is

rounded off to integer. Consequently, ms = n, which means that there are m sets and
each set contains s units in a sample. Thus, in MSS the jth unit of the ith set of a sample
of n units can be written as:

(1.1) y
(r)
ij = r+ (i− 1)k+ (j − 1)k1 − hN if hN < r+ (i− 1)k+ (j − 1)k1 ≤ (h+ 1)N

for h = 0, 1, 2; i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., s.
This sampling scheme reduces to LSS if L = N or N = nk and CSS if L = N × n, the
detail is given below.
If N = nk then L = N , k1 = k, m = 1 and s = n. Thus, Equation (1.1) reduces to

(1.2) y
(r)
j = r + (j − 1)k, j = 1, 2, 3, ..., n

which is LSS.
Similarly, if L = N × n, then k1 = N , m = n and s = 1. So, Equation (1.1) can be
written as

(1.3) y
(r)
i = r + (i− 1)k − hN if hN < r + (i− 1)k ≤ (h+ 1)N

for h = 0, 1, 2; i = 1, 2, 3, ..., n.
Which is CSS.
To study the characteristics of MSS, we use an alternative method by partitioning the
total number of samples into different sets of similar samples. To develop an alternative
method, let us assume that k1 can be written as k1 = qk + rm, where q and rm are
quotient and remainder respectively. Further, we assume that w = 1 if (m − q) ≤ 1
and, w = (m− q) if (m− q) > 1. In both cases, there are two types of partitioning, i.e.
between samples and within samples(see detail in Subsections 1.1 and 1.2).

1.1. When w = 1. In this case partitioning between samples and within samples are
given in the Subsections 1.1.1 and 1.1.2.

1.1.1. Partitioning between samples. In this case, k1 possible samples are mainly parti-
tioned into two groups. The first group consists of initial {k1 − (m− 1)k} samples and
second group contains last (m − 1)k samples. However, in the second group, there are
(m − 1) subgroups, each attains k samples. If a random number r is selected from the
first k1 units of a population, there is a possibility that it is selected from the first group,
i.e. {k1 − (m− 1)k} or it is selected from the (m−1) subgroups of the second group, i.e.
{k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k} such that u = 1, 2, ..., (m− 1), where integer
u is selected corresponding to a random number r.



1.1.2. Partitioning within samples. Furthermore, in the first group, all s units of all
m sets in each sample are labeled as r + (i − 1)k + (j − 1)k1, such that i = 1, 2, ...,m
and j = 1, 2, ..., s; while in the second group, all s units of the first (m − u) sets are
labeled as r+ (i− 1)k+ (j − 1)k1 such that i = 1, 2, ..., (m− u) and j = 1, 2, ..., s and in
each of the last u sets, first (s− 1) units are labeled as r+ (i− 1)k+ (j − 1)k1 such that
i = (m−u+1), ...,m; j = 1, 2, ..., (s−1) and last unit is labeled as r+(i−1)k+(j−1)k1−N
such that i = (m− u+ 1), ...,m and j = s.

1.2. When w = (n − q) > 1. In this case partitioning between samples and within
samples are given in the Subsections 1.2.1 and 1.2.2.

1.2.1. Partitioning between samples. In this case k1 samples are mainly partitioned into
two groups, the first group consists of the number of samples in which r ≤ {k1 − (w − 1)k + rm}.
The econd group contains the number of samples in which r > {k1 − (w − 1)k + rm}.
The first group is further partitioned into {(m− w)− (w − 1) + 2} subgroups in which,
there are rm number of samples in each of the first and the last subgroups, and k sam-
ples in each of the middle {(m− w)− (w − 1)} subgroups. In each subgroup of the
first group, corresponding to a random number r, an integer u is picked in such a way
that u = (w − 1) if 1 ≤ r ≤ {k1 − (m− u− 1)k}, u = w,w + 1, w + 2, ..., (m − w) if
{k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k} and u = (m− w + 1) if {k1 − (m− u)k} <
r ≤ {k1 − (m− u)k + rm}.
The second group consists of last {(w − 1)k − rm} = {(k − rm) + (w − 2)k} samples,
which is the combination of the first (k − rm) samples and the last (w − 2) sets of k
samples. These (w− 2) sets of k samples further partitioned in such a way that the first
rm of every k samples forms the first subgroup and the last (k − rm) samples of every k
samples together with the first (k−rm) samples of this group forms the second subgroup.
However, when w = 2, then we have only (k − rm) samples in the second group.

1.2.2. Partitioning within samples. In each sample of the first group, all s units of the
first (m − u) sets are labeled as r + (i − 1)k + (j − 1)k1 such that i = 1, 2, ..., (m − u)
and j = 1, 2, ..., s, and in each of the last u sets, the first (s − 1) units are labeled as
r + (i− 1)k + (j − 1)k1 such that i = (m− u+ 1), ...,m, j = 1, 2, ..., (s− 1) and the last
unit is labeled as r+ (i− 1)k+ (j− 1)k1 −N such that i = (m− u+ 1), ...,m and j = s.

In each sample of the first subgroup of the second group, all s units of the first (w−x)
sets are labeled as r+ (i− 1)k+ (j− 1)k1 such that i = 1, 2, ..., (w−x) and j = 1, 2, ..., s;
the units of middle (m−w+ 1) sets are labeled in such a way that, the first (s− 1) units
of each set are labeled as r + (i− 1)k + (j − 1)k1 such that i ∈ (w−x+1), ..., (m−x+1),
j = 1, 2, ..., (s− 1) and the last unit of each set is labeled as r + (i− 1)k + (j − 1)k1 −N
such that i ∈ (w− x+ 1), ..., (m− x+ 1) and j = s; the units of the last (x− 1) sets are
labeled in such a way that, the first (s−2) units are labeled as r+(i−1)k+(j−1)k1 such
that i ∈ (m−x+ 2), ...,m, j = 1, 2, ..., (s−2) and the last two units in each set is labeled
as r+(i−1)k+(j−1)k1−N such that i ∈ (m−x+2), ...,m and j = (s−1), s. However,
when s = 1, the units in these (x− 1) sets are labeled as r + (i− 1)k + (j − 1)k1 − 2N .
The possible values of x are 2, 3, ..., (w − 1).
Note: If w = 2, then this set of samples does not exist.
In the second subgroup of the second group, all s units of the the first (w − x) sets are
labeled as r + (i − 1)k + (j − 1)k1 such that i = 1, 2, ..., (w − x) and j = 1, 2, ..., s; The
units of middle (m − w) sets are labeled in such a way that the first (s − 1) units of
each set are labeled as r + (i− 1)k + (j − 1)k1 such that i ∈ (w− x+ 1), ..., (m− x) and
j = 1, 2, ..., (s−1), the last unit of each set is labeled as r + (i− 1)k + (j − 1)k1 −N such
that i ∈ (w − x+ 1), ..., (m− x) and j = s, the units of the last (x− 1) sets are labeled



in such a way that, the first (s− 2) units are labeled as r+ (i− 1)k+ (j− 1)k1 such that
i ∈ (m− x+ 2), ...,m, j = 1, 2, ..., (s− 2) and the last two units in each set is labeled as
r+ (i− 1)k+ (j − 1)k1 −N such that i ∈ (m− x+ 2), ...,m and j = (s− 1), s. However,
when s = 1, the units in these (x− 1) sets are labeled as r + (i− 1)k + (j − 1)k1 − 2N ,
the possible values of x are 1, 2..., (w − 1).

2. Mean and variance of MSS for population having linear trend
The following linear model of hypothetical population is to be considered as

(2.1) Yt = α+ β t, t = 1, 2, 3, ..., N

where α and β are the intercept and slope of the model respectively.

2.1. Mean of MSS. The sample mean for both cases, i.e. w = 1 and w > 1 are given
below (see detial in Appendix A.1).

Case (i) when w = 1

(2.2) ȳMSS = α+ β



[
r + 1

2
{(s− 1)k1 + (m− 1)k}

]
,

if r ≤ {k1 − (m− 1)k}[
r + 1

2
{(s− 1)k1 + (m− 1)k} − u k1

m

]
,

where

∣∣∣∣∣ u = 1, 2, ..., (m− 1) if

{k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k}.

Case (ii) when w > 2

(2.3) ȳMSS = α+ β



[
r + 1

2
{(s− 1)k1 + (m− 1)k} − uN

n

]
,

where

∣∣∣∣∣∣∣∣∣∣∣

u = (w − 1) if r ≤ {k1 − (m− u− 1)k

u = w,w + 1, ..., (m− w) if

{N − (m− u)k} < r ≤ {k1 − (m− u− 1)k},
u = (m− w + 1) if

{k1 − (m−m)k} < r ≤ {k1 − (m− u)k + rm}[
r + 1

2
{(s− 1)k1 + (m− 1)k} − (m− w − 1 + 2x)N

n

]
,

where

∣∣∣∣∣ x = 2, ..., (w − 1) if

{k1 − (w − x)k} < r ≤ {k1 − (w − x)k + rm}[
r + 1

2
{(s− 1)k1 + (m− 1)k} − (m− w + 2x)N

n

]
,

where

∣∣∣∣∣ x = 1, 2, 3, ..., (w − 1) if

{k1 − (w − x)k}+ rm < r ≤ {k1 − (w − x)k + k}

If w = 2, the Equation (2.3) will reduce to

(2.4) ȳMSS = α+ β



[
r + 1

2
{(s− 1)k1 + (m− 1)k} − uN

n

]

where

∣∣∣∣∣∣∣∣∣∣∣

u = (w − 1) if r ≤ {k1 − (m− u− 1)k,

u = w,w + 1, ..., (m− w) if

{N − (m− u)k} < r ≤ {k1 − (m− u− 1)k},
u = (m− w + 1) if

{k1 − (m−m)k} < r ≤ {k1 − (m− u)k + rm}[
r + 1

2
{(s− 1)k1 + (m− 1)k} − (m− w + 2x)N

n

]
,

where

∣∣∣∣∣ x = 1, 2, 3, ..., (w − 1) if

{k1 − (w − x)k}+ rm < r ≤ {k1 − (w − x)k + k}



2.1.1. Unbiasedness of ȳMSS. (see detial in Appendix A.1.1).
The sample mean (ȳMSS) is an unbiased estimator of population mean (Ȳ )

(2.5) E(ȳMSS) = α+ β

{
N + 1

2

}
= Ȳ .

2.1.2. Variance of ȳMSS. (see detial in Appendix A.2)

(i) when w = 1

(2.6) V (ȳMSS) =
1

12m2
b2
[
m2(k21 − 1) +m(m2 − 1)k(mk − 2k1)

]
.

Note: In this case, if N = nk then L = N , so m = 1, thus,

V (ȳMSS) =
1

12
b2(k2 − 1).

This is a variance of linear systematic sampling.

(ii) when w > 1

(2.7) (ȳMSS) = 1
12m2 b

2
[
m2(k21 − 1) +m(m2 − 1)k(mk − 2k1)

+4w(w − 1)k1 {3k1 − (3m− 2w + 1)k}] .

3. Yates corrected estimator
Yates corrected estimator of population mean for MSS is derived below.

3.1. Yates corrected estimator for MSS. The corrected estimator ȳcMSS of popula-
tion mean using MSS is given by

(3.1) ȳcMSS = 1
n

[
λ1lYr1 +

∑n−1
l=2 Yrl + λ2lYrn

]
,

where λ1l and λ2l are selected so that sample mean coincides with the population mean
in the presence of linear trend for all choices of r ∈ 1, 2, ..., k1.
Alternatively Equation (3.1) can be written as

(3.2) ȳcMSS = ȳMSS + al(r) (Yr1 − Yrn) ,

where al(r) = λ1l−1
n

= 1−λ2l
n

.
Under the model given in (2.1), the population mean is

(3.3) Ȳ = α+ β
N + 1

2
.

As mentioned earlier, that there are two cases, i.e. (i) w = 1 and (ii) w > 1.
First, we consider the Case (i).

3.1.1. Case (i): when w = 1. In this situation, a random start r is selected from k1
units such that r ≤ {k1 − (m− 1)k} or r > {k1 − (m− 1)k}.
If r ≤ {k1 − (m− 1)k}, then l = 1 and the last value of each sample is labeled {r+ (m−
1)k + (s− 1)k1}. Thus, (3.2) becomes

(3.4) ȳcMSS = ȳMSS + a1(r)
(
Yr − Yr+(m−1)k+(s−1)k1

)
.

Under the linear model given in (2.1), we have ȳMSS = α+β
[
r + 1

2
{(s− 1)k1 + (m− 1)k}

]
,

Yr = α+ β r and Yr+(m−1)k+(s−1)k1 = α+ β {r + (m− 1)k + (s− 1)k1}.



Putting these values in (3.4), we have

(3.5) ȳcMSS = α+ β

[
r +

1

2
{(m− 1)k + (s− 1)k1} − a1(r) {(m− 1)k + (s− 1)k1}

]
.

Comparing the coefficients of α and β in (3.3) and (3.5) and solving for a1(r), we have

a1(r) =

{
2r − 1 + (m− 1)k − k1

2 {(m− 1)k + (s− 1)k1}

}
.

Putting a1(r) in (3.4), we have

(3.6) ȳcMSS = ȳMSS +
2r − 1 + (m− 1)k − k1

2 {(m− 1)k + (s− 1)k1}
(
Yr − Yr+(m−1)k+(s−1)k1

)
.

If r > {k1 − (m− 1)k}, then l = 2 and the last value of each sample is labeled {r+ (m−
1)k + (s− 1)k1 −N}. Thus, (3.2) becomes

(3.7) ȳcMSS = ȳMSS + a2(r)
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
.

Under the linear model (2.1), we have ȳMSS = α+β
[
r + 1

2
{(s− 1)k1 + (m− 1)k} − u k1

m

]
,

where u = 1, 2, ..., (m − 1) if{k1 − (m − u)k} < r ≤ {k1 − (m − u − 1)k}, Yr = α + β r
and Yr+(s−1)k1+(m−1)k−N = α+β {r + (s− 1)k1 + (m− 1)k −N}. Putting these values
in (3.7), we have

(3.8) ȳcMSS = α+ β

[
r +

1

2
{(s− 1)k1 + (m− 1)k} − uk1

m
− a2(r){(m− 1)k − k1}

]
.

Comparing the coefficients of α and β in (3.3) and (3.8) and solving for a2(r), we have

(3.9) a2(r) =

{
2r − (k1 + 1) + (m− 1)k − 2uk1/m

2 {(m− 1)k − k1}

}
,

where u = 1, 2, ..., (m − 1), which are picked corresponding to a random number r such
that {k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k}.
Putting a2(r) in (3.7), we have

(3.10)
ȳcMSS = ȳMSS +

{
2r − (k1 + 1) + (m− 1)k − 2uk1/m

2 {(m− 1)k − k1}

}
×(

Yr − Yr+(m−1)k+(s−1)k1−N
)
.

3.1.2. Case (ii): when w > 1. As mentioned earlier in Section 1 , when s = 1, MSS
becomes CSS (see [2]). Therefore, we focus the MSS for s > 1. It is also mentioned in
Subsection 1.2, all k1 samples are partitioned into two groups. The first group contains
the samples where r ≤ k1 − (w − 1)k + rm and the second group consist of the samples
in which r > k1 − (w − 1)k + rm.
The corrected sample mean for each sample in the first group is similar to the corrected
sample mean found in Subsection 3.1.1, where r > k1− (m− 1)k, because the pattern of
samples in both situations is similar. Further, the weights assigned to the first and the
last units of each sample in this group will be similar to the weights given in (3.9), i.e.

ȳcMSS = ȳMSS + a2(r)
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
,

a2(r) =

{
2r − (k1 + 1) + (m− 1)k − 2uk1/n

2 {(m− 1)k − k1}

}
,

where u = (w − 1) corresponding to a random number r such that 1 ≤ r ≤ {k1 − (m −
u − 1)k}, u = w,w + 1, ..., (m − w) if {k1 − (m − u)k} < r ≤ {k1 − (m − u − 1)k} and



u = (m− w + 1) if {k1 − (m− u)k} < r ≤ {k1 − (m− u)k + rm}. Thus,

(3.11) ycMSS = ȳMSS +
{

2r−(k1+1)+(m−1)k−2uk1/n
2{(m−1)k−k1}

}
×
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
.

The second group having samples in which r > k1−(w−1)k+rm, and the first subgroup
consists of the number of samples in which {k1 − (w− x)k} < r ≤ {k1 − (w− x)k+ rm}
such that x = 2, ..., (w − 1). The Yates corrected estimator with l = 3 in (3.2), for the
samples of the first subgroup can be written as

(3.12) ȳcMSS = ȳMSS + a3(r)
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
.

Under a linear model (2.1) ȳMSS = α+β[r+ 1
2
{(s−1)k1+(m−1)k} −(m−w−1+2x) k1

m
],

where x = 2, ..., (w− 1) if {k1− (w−x)k} < r ≤ {k1− (w−x)k+ rm}, Yr = α+ β r and
Yr+(s−1)k1+(m−1)k−N = α + β{r + (s − 1)k1 + (m − 1)k − N}. Putting these values in
(3.12), we have

(3.13)
ȳcMSS = α+ β

[
r + 1

2
{(s− 1)k1 + (m− 1)k} − (m− w − 1 + 2x) k1

m

+a3(r){(m− 1)k − k1}
]
.

Comparing the coefficients of α and β given in (3.3) and (3.13) and solving for a3(r), we
have

(3.14) a3(r) =

{
2r − (k1 + 1) + (m− 1)k − 2k1(m− w + 2x− 1)/m

2 {(m− 1)k − k1}

}
.

Putting a3(r) in the corrected estimator given in (3.12), we have

(3.15) ȳcMSS = ȳMSS +
{

2r−(k1+1)+(m−1)k−2k1(m−w+2x−1)/m
2{(m−1)k−k1}

}
×
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
,

where x = 2, ..., (w − 1), which are picked corresponding to a random number r
such that {k1 − (w − x)k} < r ≤ {k1 − (w − x)k + rm}. Similarly, the second
subgroup consists of the number of samples in which {k1 − (w− x)k + rm} < r ≤
{k1− (w− x)k+ k} such that x = 1, 2, ..., (w− 1). The Yates corrected estimator
with l = 4 in (3.2), for samples of this subgroup, can be written as

(3.16) ȳcMSS = ȳMSS + a4(r)
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
.

Under the linear model (2.1), ȳMSS = α+β[r+ 1
2{(s−1)k1+(m−1)k}−(m−w+

2x)k1m ], where x = 1, 2, ..., (w− 1) if {k1 − (w− x)k} < r ≤ {k1 − (w− x)k+ rm},
Yr = α + βr and Yr+(s−1)k1+(m−1)k−N = α + β {r + (s− 1)k1 + (m− 1)k −N}.
Putting these values in (3.16), we have

(3.17)
ȳcMSS = α+ β

[
r + 1

2{(s− 1)k1 + (m− 1)k} − (m− w + 2x)k1m

+a4(r){(m− 1)k − k1}
]
.

Comparing the coefficients of α and β given in (3.3) and (3.17) and solving for
a4(r), we have

(3.18) a4(r) =

{
2r − (k1 + 1) + (m− 1)k − 2k1(m− w + 2x)/m

2 {(m− 1)k − k1}

}
.



Putting a4(r) in the corrected estimator given in (3.16), we have

(3.19) ycMSS = ȳMSS +
{

2r−(k1+1)+(m−1)k−2k1(m−w+2x)/m
2{(m−1)k−k1}

}
×
(
Yr − Yr+(m−1)k+(s−1)k1−N

)
,

where x = 1, 2, ..., (w− 1), which are picked corresponding to a random number r
such that {k1 − (w − x)k} < r ≤ {k1 − (w − x)k + rm}.

4. Average variance

In real life application, we hardly found such population exhibiting perfect linear
trend. Therefore, it is necessary to study the average variance of the corrected
estimator under MSS using following super population model.

(4.1) Yt = α+ β t+ et,

where E(et) = 0, V (et) = E(e2t ) = σ2tg, Cov(et, ev) = 0, t 6= v = 1, 2, 3, ..., N and
g is the predetermined constant.
The average variance of ȳ(r)MSS under modified systematic sampling for population
modeled by Yt = α+ β t+ et is given by

Case (i) when w = 1 (see detial in Appendix B)

(4.2)

E
{
V (ȳ

(r)
MSS)

}
= σ2

k1

{∑k1−(m−1)k
r=1 χ1 (u, r)

+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+k1
∑N
t=1 t

g
/
N2
}
,

where
χ1 (u, r) = δ+1 (r)rg + θ

∑m
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+δ−1 (r){r + (m− 1)k + (s− 1)k1}g,
χ2 (u, r) = δ+2 (r)rg + θ 1

n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g
+
(
r + (i− 1)k

+(s− 1)k1 −N
)g)}

+ δ−2 (r) (r + (m− 1)k + (s− 1)k1 −N)
g
,

δ+l (r) = al(r){al(r) + 2
(
1
n −

1
N

)
}, δ−l (r) = al(r){al(r)− 2

(
1
n −

1
N

)
} and

θ = 1
n

(
1
n −

2
N

)
, such that l = 1, 2.

Case (ii) When w > 1 (see detial in Appendix B)

(4.3)

E
{
V
(
ȳ
(r)
MSS

)}
= σ2

k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1 χ2 (u, r)

+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+
∑m−w+1
u=m−w+1

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+
∑w−1
x=2

∑k1−(w−x)k+rm
r=k1−(w−x)k+1 χ3 (x, r)

+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1 χ4 (x, r)

+ k1
∑N
t=1 t

g
/
N2
]
,



where
χ2 (u, r) = δ+2 (r)rg + θ 1

n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+(r + (i− 1)k + (s− 1)k1 −N)
g
)}

+ δ−2 (r) (r + (m− 1)k + (s− 1)k1 −N)
g
,

χ3 (x, r) = δ+3 (r)rg + θ
{∑w−x

i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+
∑m−x+1
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+2

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+δ−3 (r){r + (m− 1)k + (s− 1)k1 −N}g,

χ4 (x, r) = δ+4 (r)rg + θ
{∑w−x

i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+
∑m−x
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+1

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+δ−4 (r){r + (m− 1)k + (s− 1)k1 −N}g,

δ+l (r) = al(r){al(r) + 2
(
1
n −

1
N

)
}, δ−l (r) = al(r){al(r)− 2

(
1
n −

1
N

)
} and

θ = 1
n

(
1
n −

2
N

)
, for l = 2, 3, 4

5. Empirical study

Due to the complex nature of the derived expressions, the average variances of MSS
and CSS cannot be theoretically compared. Therefore, in this paper, a computer
based efficiency comparison of MSS and CSS is made numerically under super
population model (4.1). The numerical comparison has been made for N = 21,
N = 30, N = 50 and N = 78. As mentioned earliar, if L = N then MSS re-
duces to LSS and if L = (N × n) then MSS becomes CSS. Therefore, the choice
of a sample size considered in this paper is based on the fact that N < L < (N×n).

The relative efficiency of MSS over CSS is presented in Table 1 under g = 0, 1, 2, 3.
This table includes 40 different combinations of N and n each at g = 0, 1, 2 and 3
which are to be considered for efficiency comparison, and it is observed that CSS
is not applicable for 4 combinations. Thus, we have 36 × 4 = 144 results of
efficiency comparison and found that MSS is more efficient than CSS in 135 cases.
Further, it is to be noted, whenever N

n =
(
n
2 + 1

2

)
, the efficiency of MSS over CSS

is dramatically increased.

5.1. Natural Population. We use the following natural population for efficiency
comparison. The results are given in Table 2. Population 1: [Source: [1, page.228].
Table 2 reflacts that MSS is more efficient than CSS.



Table 1. Rercent Relative Efficiency (PRE) of MSS over CSS under linear trend

N n g = 0 g = 1 g = 2 g = 3 N n g = 0 g = 1 g = 2 g = 3

21 6 1235.016 1933.767 2709.724 3246.609 78 4 117.427 136.092 146.405 147.684
9 117.385 151.130 174.582 186.989 8 129.769 182.162 229.578 259.786
12 240.000 591.045 1375.565 2521.240 9 192.866 316.722 411.684 454.488

30 4 135.923 162.510 180.204 185.741 10 139.707 208.739 281.749 337.633
8 246.131 376.018 544.687 700.611 12 6766.915 13989.818 19161.993 21879.417
9 103.060 138.491 160.844 170.657 14 - - - -
12 - - - - 15 90.595 152.753 201.481 223.241
14 103.355 144.513 188.675 222.580 16 191.878 323.211 512.333 718.994

50 4 122.565 143.552 155.795 158.042 18 105.243 205.796 258.754 278.058
6 101.443 123.039 137.125 142.782 20 257.844 455.482 780.262 1198.619
8 97.891 125.605 146.267 156.789 21 236.637 633.532 1610.276 3245.550
12 93.959 130.154 163.181 184.581 22 7.521 14.757 28.913 56.125
14 43.631 84.386 161.900 305.136 24 114.967 260.473 359.195 399.452
15 113.396 192.752 237.112 255.203 27 - - - -
16 93.665 136.682 182.496 217.408 28 129.784 203.929 293.560 381.668
18 176.253 339.329 667.273 1275.240 30 - - - -
20 83.942 360.224 621.068 698.071 32 127.980 210.134 322.967 448.077
22 128.892 193.530 275.040 353.302 33 153.748 309.110 503.525 655.560
24 101.712 159.836 238.027 313.959 34 129.642 215.246 339.183 482.954

36 151.165 418.855 673.244 790.552
38 100.656 170.712 280.950 410.473

The symbol (-) indicates that CSS is not possible

Table 2. Percent Relative Efficiency (PRE) of MSS over CSS for Population 1

N = 80 Variance Eff =
V (CSS)
V (MSS)

× 100

n MSS CSS
6 148053.500 148326.200 100.184
12 37312.340 46858.630 125.585
14 33277.620 37824.400 113.663
15 28206.520 39716.150 140.805
18 29362.610 50787.490 172.967
24 9108.401 37832.020 415.353
25 7983.309 19399.580 243.002
26 7471.210 8915.224 119.328
28 6836.277 12549.070 183.566

Here, V (MSS) = Variance of modified systematic sampling and V (CSS) = Variance of circular
systematic sampling.

6. Conclusion

Modified Systematic Sampling (MSS) is a more general scheme than LSS and CSS.
Because, when least common multiple of N and n is equal to lower extreme, i.e.
L = N , MSS coincides with LSS. If it is equal to upper extreme, i.e. L = (N ×n),
then MSS coincides with CSS. However, when L lies between these two extreme
values, i.e. N < L < (N × n), MSS is advantageous over CSS. In this case, the
number of samples is considerably reduced in MSS as compared to CSS, i.e. min-
imum reduction is half of the samples.



Contrary to the CSS, the explicit expressions for mean and variance of mean are
derived for population having perfect linear trend among the population values.
Further, numerical comparison is carried out in this paper clearly favors the use
of MSS over CSS for population modeled by a super population model with linear
trend as well as for natural population.

Acknowledgement: We would like to thank the two anonymous Referees whose
comments helped to improve the presentation of this paper.



References
[1] Murthy, M.N. Sampling Theory and Method, Statistical Publishing Society, Calcutta, 1967.
[2] Khan, Z. Shabbir, J. and Gupta, S. A new sampling design for systematic sampling, Com-

munications in Statistics - Theory and Methods,42, 2659-2670, 2013.
[3] Khan, Z. Gupta, S and Shabbir, J. A Note on Diagonal Circular Systematic Sampling,

Journal of Statistical Theory and Practice, 8, 439-443, 2014.
[4] Madow, W.G. On the theory of systematic sampling III, Annals of Mathematics and Sta-

tistics, 24, 101-106, 1953.
[5] Sampath, S and Varalakshmi, V. Diagonal circular systematic sampling, Model Assisted

Statistics and Applications, 3 (4), 345-352, 2008.
[6] Sethi, V. K. On optimum pairing of units, Sankhya B, 27, 315-320, 1965.
[7] Singh, D. Jindal, K.K. and Grag, J.N.On modified systematic sampling, Biometrika, 55,

41-546, 1968.
[8] Subramani, J. Diagonal systematic sampling scheme for finite populations, Journal of the

Indian Society of Agriculture Statistics, 53 (2), 187-195, 2000.
[9] Subramani, J. Further results on diagonal systematic sampling scheme for finite populations,

Journal of the Indian Society of Agricultural Statistics, 63 (3), 277-282, 2009.
[10] Subramani, J.Generalization of diagonal systematic sampling scheme for finite populations,

Model Assisted Statistics and Applications, 5, 117-128, 2010.
[11] Subramani, J. A Modification on linear systematic sampling, Model Assisted Statistics and

Applications, 8 (3), 215-227, 2013a.
[12] Subramani, J. A further modification on linear systematic sampling for finite populations,

Journal of Statistical Theory and Practice, 7, 471-479, 2013b.



Appendix A. Mean and variance of MSS for population having
linear trend

The following linear model of hypothetical population is to be considered

(A.1) Yt = α+ β t, t = 1, 2, 3, ..., N,

where α and β are the intercept and slope of the model respectively.

A.1. Mean of MSS. The sample mean for both cases, i.e. w = 1 and w > 1
are separately discussed below:

Case (i) when w = 1
If r ≤ (k1 − (m− 1)k, the mean, ȳMSS can be written as

ȳMSS = α+ β
1

ms

m−w+1∑
i=1

s∑
j=1

{r + (i− 1)k + (j − 1)k1}

After simplification, we have

ȳMSS = α+ β

[
r +

1

2
{(s− 1)k1 + (m− 1)k}

]
.

If {k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k} for u = 1, 2, ...,m− 1, then

ȳMSS = α+ β 1
ms

[∑m−u
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m
i=m−u+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
}]
.

After simplification, we have

ȳMSS = α+ β

[
r +

1

2
{(s− 1)k1 + (m− 1)k} − uk1

m

]
.

Thus ȳMSS is a piecewise function of r, i.e.

(A.2) ȳMSS = α+ β



[
r + 1

2
{(s− 1)k1 + (m− 1)k}

]
if r ≤ {k1 − (m− 1)k}[

r + 1
2
{(s− 1)k1 + (m− 1)k} − u k1

m

]
where

∣∣∣∣∣ u = 1, 2, ..., (m− 1) if

{k1 − (m− u)k} < r ≤ {k1 − (m− u− 1)k}.

Case (ii) when w > 1
If r ≤ {k1 − (w − 1)k + rm}, then r must belongs to any one of the three
subgroups which have been discussed in Section 1. Therefore, corresponding
to a random number r, an integer u is picked in such a way that u = (w − 1)
if 1 ≤ r ≤ {k1 − (m− u− 1)k}; u = w,w+ 1, w+ 2, ..., (m−w) if {k1 − (m−
u)k} < r ≤ {k1 − (m − u − 1)k} and u = (m − w + 1) if {k1 − (m − u)k} <
r ≤ {k1 − (m− u)k + rm}.



For each subgroup, ȳMSS can be written as

ȳMSS = α+ β 1
ms

[∑m−u
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m
i=m−u+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
]
.

After few steps, we have

ȳMSS = α+ β

[
r +

1

2
{(s− 1)k1 + (m− 1)k} − uk1

m

]
.

If w > 2, then it is also possible that {k1−(w−x)k} < r ≤ {k1−(w−x)k+r1},
such that x = 2, 3, ..., w − 1. So,

(A.3)

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
+
∑m
i=m−x+2

{∑s−2
j=1 {r + (i− 1)k + (j − 1)k1}

+
∑s
j=s−1 {r + (i− 1)k + (j − 1)k1 −N} .

When s = 2, then Equation (A.3) can be expressed as

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
}

+
∑m
i=m−x+2

{∑s
j=s−1 {r + (i− 1)k + (j − 1)k1 −N}

}]
.

Also, when s = 1, then Equation (A.3) can be expressed as

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x+1
i=w−x+1 {r + (i− 1)k + (s− 1)k1 −N}

+
∑m
i=m−x+2 {r + (i− 1)k + (s− 1)k1 − 2N}

]
.

After simplifying of Equation (A.3) for each case, i.e. s = 1, s = 2 and s > 2,
we have

ȳMSS = α+ β

[
r +

1

2
{(s− 1)k1 + (m− 1)k} − (m− w − 1 + 2x)

k1
m

]
.

If {k1 − (w − x)k + r1} < r ≤ {k1 − (w − x)k + k}, then

(A.4)

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x
i=w−x+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
}

+
∑m
i=m−x+1

{∑s−2
j=1 {r + (i− 1)k + (j − 1)k1}

+
∑s
j=s−1 {r + (i− 1)k + (j − 1)k1 −N}

}]
.



When s = 2, then Equation (A.4) can be expressed as

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x
i=w−x+1

{∑s−1
j=1 {r + (i− 1)k + (j − 1)k1}

+ {r + (i− 1)k + (s− 1)k1 −N}
}

+
∑m
i=m−x+1

∑s
j=s−1 {r + (i− 1)k + (j − 1)k1 −N}

]
.

When s = 1, then Equation (A.4) can be expressed as,

ȳMSS = α+ β 1
ms

[∑w−x
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}

+
∑m−x
i=w−x+1 {r + (i− 1)k + (s− 1)k1 −N}

+
∑m
i=m−x+1 {r + (i− 1)k + (s− 1)k1 − 2N}

]
.

After simplification of Equation (A.4) for each case, i.e. s = 1, s = 2 and
s > 2, we have

ȳMSS = α+ β
[
r +

1

2
{(s− 1)k1 + (m− 1)k} − (m− w + 2x)

k1
m

]
.

Thus, mean of MSS for above model of hypothetical population with random
start r is given by:

(A.5) ȳMSS = α+ β



[
r + 1

2
{(s− 1)k1 + (m− 1)k} − uN

n

]
where

∣∣∣∣∣∣∣∣∣∣
u = (w − 1) if r ≤ {k1 − (m− u− 1)k,
u = w,w + 1, ..., (m− w) if
{N − (m− u)k} < r ≤ {k1 − (m− u− 1)k},
u = (m− w + 1) if
{k1 − (m− u)k} < r ≤ {k1 − (m− u)k + rm}[

r + 1
2
{(s− 1)k1 + (m− 1)k} − (m− w − 1 + 2x)N

n

]
,

where

∣∣∣∣ x = 2, ..., (w − 1) if
{k1 − (w − x)k} < r ≤ {k1 − (w − x)k + rm}[

r + 1
2
{(s− 1)k1 + (m− 1)k} − (m− w + 2x)N

n

]
,

where

∣∣∣∣ x = 1, 2, 3, ..., (w − 1) if
{k1 − (w − x)k}+ rm < r ≤ {k1 − (w − x)k + k}

If w = 2, then Equation (A.5) reduces to

ȳMSS = α+β



[
r + 1

2{(s− 1)k1 + (m− 1)k} − uNn
]

where

∣∣∣∣∣∣∣∣∣∣
u = (w − 1) if r ≤ {k1 − (m− u− 1)k,
u = w,w + 1, ..., (m− w) if
{N − (m− u)k} < r ≤ {k1 − (m− u− 1)k},
u = (m− w + 1) if
{k1 − (m− u)k} < r ≤ {k1 − (m− u)k + rm}[

r + 1
2{(s− 1)k1 + (m− 1)k} − (m− w + 2x)Nn

]
,

where

∣∣∣∣ x = 1, 2, 3, ..., (w − 1) if
{k1 − (w − x)k}+ rm < r ≤ {k1 − (w − x)k + k}

A.1.1. Unbiasedness of sample mean ȳMSS. We have two cases:



Case (i) when w = 1: Taking the expected value of (A.2), we have

E(ȳMSS) = 1
k1

[∑(k1−(m−1)k)
r=1

[
r + 1

2{(s− 1)k1 + (m− 1)k}
]

+
∑m−1
u=1

∑k1−(m−u−1)k)
r=(k1−(m−u)k)+1

[
r + 1

2{(s− 1)k1 + (m− 1)k} − uk1m
]]
.

As sk1 = N , then
E(ȳMSS) = 1

k1

[∑(k1−(m−1)k)
r=1

[
α+ β

{
r + 1

2 (N − k1 + (m− 1)k)
}]

+
∑m−1
u=1

∑k1−(m−u−1)k)
r=(k1−(m−u)k)+1

[
α+ β

{
r + 1

2 (N − k1 + (m− 1)k)

−uk1m
}]]

.

After a little algebra, we have

E(ȳMSS) = α+ β

{
N + 1

2

}
= Ȳ ,

which shows that ȳMSS is an unbiased estimator of Ȳ .

Case (ii) when w > 1:
If w > 2, we take the expected value of (A.5), we have

E(ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑w−1
x=2

∑k1−(w−x)k+rm
r=k1−(w−x)k+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − (m−w−1+2x)k1
m

}]
+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − (m−w+2x)k1
m

}]]
.

But if w = 2, we take the expected value of (A.5), given by

E(ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − uk1m
}]

+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1

[
α+ β

{
r + 1

2 ((s− 1)k1

+(m− 1)k − (m−w+2x)k1
m

}]]
.



After few steps, we have

E(ȳMSS) = 1
2m

[
2αm+ β

{
2k1 − 2r1 − 2km+ 2wk + 2wr1

+2kwm− 2k1w − 2kw2 +Nm+m
}]

E(ȳMSS) =
[
α+ β 1

2m

{
m (N + 1)− 2k1(w − 1)

+2r1(w − 1)− 2wk(w − 1) + 2km(w − 1)
}]

(A.6) E(ȳMSS) =

[
α+ β

{
N + 1

2
+

(w − 1)

m
(r1 − k1 − wk + km)

}]
.

When w = (m− q) in (A.6), we have

E(ȳMSS) =

[
α+ β

{
N + 1

2
+

(m− q − 1)

m
(r1 − k1 − (m− q)k + km)

}]
,

E(ȳMSS) =

[
α+ β

{
N + 1

2
+

(m− q − 1)

m
(qk + r1 − k1 −mk + km)

}]
,

E(ȳMSS) = α+ β

{
N + 1

2
+

(m− q − 1)

m
(qk + r1 − k1)

}
,

E(ȳMSS) = α+ β

{
N + 1

2

}
= Ȳ

.
the above equation shows that ȳMSS is unbiased estimator of Ȳ as k1 = qk+r1.
Note: Putting w = 1 in (A.6), we also have

E(ȳMSS) = α+ β

{
N + 1

2

}
= Ȳ .

A.2. The variance of ȳMSS.

V (ȳMSS) = E(ȳMSS − Ȳ )2 = 1
k1

∑k1
r=1(ȳr(MSS) − Ȳ )2.

(i) when w = 1

V (ȳMSS) = 1
k1

[∑k1−(m−1)k
r=1

{
ȳr(MSS) − Ȳ

}2
+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1

{
ȳr(MSS) − Ȳ

}2]
.

V (ȳMSS) = 1
k1

[∑k1−(m−1)k
r=1

[
α+ β

{
r + 1

2 ((s− 1)k1 + (m− 1)k)
}

−
{
α+ βN+1

2

}]2
+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
α+ β{r + 1

2 ((s− 1)k1 + (m− 1)k)

−uk1m
}
−
{
α+ βN+1

2

}]2]
.

V (ȳMSS) = 1
k1

[∑k1−(m−1)k
r=1

[
β
{
r + 1

2 ((m− 1)k − k1)
}
− β

2

]2
+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2]
.



After simplification, we have

(A.7) V (ȳMSS) =
1

12m2
b2
[
m2(k21 − 1) +m(m2 − 1)k(mk − 2k1)

]
,

Note: If N = nk, then L = N , so m = 1, thus

V (ȳMSS) =
1

12
b2(k2 − 1).

This is a variance of linear systematic sampling.

(ii) when w > 1
If w > 2, then V (ȳMSS) will be expressed as:

V (ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

{
ȳr(MSS) − Ȳ

}2
+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

{
ȳr(MSS) − Ȳ

}2
+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

{
ȳr(MSS) − Ȳ

}2
+
∑w−1
x=2

∑k1−(w−x)k+rm)
r=(k1−(w−x)k)+1

{
ȳr(MSS) − Ȳ

}2
+
∑w−1
x=1

∑k1−(w−x)k+k)
r=(k1−(w−x)k)+rm+1

{
ȳr(MSS) − Ȳ

}2]
.

If w = 2, then the term
∑w−1
x=2

∑k1−(w−x)k+rm)
r=(k1−(w−x)k)+1

{
ȳr(MSS) − Ȳ

}2will be omit-
ted from V (ȳMSS).

V (ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

[
α+ β

{
r + 1

2

(
(s− 1)k1

+(m− 1)k
)
− uk1m

}
−
{
α+ βN+1

2

}]2
+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2

(
(s− 1)k1

+(m− 1)k
)
− uk1m

}
−
{
α+ βN+1

2

}]2
+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

[
α+ β

{
r + 1

2

(
(s− 1)k1

+(m− 1)k
)
− uk1m

}
−
{
α+ βN+1

2

}]2
+
∑w−1
x=2

∑k1−(w−x)k+r1)
r=(k1−(w−x)k)+1

[
α+ β

{
r + 1

2

{
(s− 1)k1

+(m− 1)k
}
− (m− w − 1 + 2x)k1m

}
−
{
α+ βN+1

2

}]2
+
∑w−1
x=1

∑k1−(w−x)k+k)
r=(k1−(w−x)k)+r1+1

[
α+ β

{
r + 1

2

{
(s− 1)k1

+(m− 1)k
}
− (m− w + 2x)k1m

}
−
{
α+ βN+1

2

}]2]
,



(A.8)

V (ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2
+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

2

+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2
+
∑w−1
x=2

∑k1−(w−x)k+rm
r=k1−(w−x)k+1

[
α+ β

{
r + 1

2 ((m− 1)k − k1)

−(m− w − 1 + 2x)k1m

}
− β

2

]2
+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1

[
α+ β

{
r + 1

2 ((m− 1)k − k1)

−(m− w + 2x)k1m

}
− β

2

]2
.

If w = 2, then Equation (A.8) reduces to

V (ȳMSS) = 1
k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2
+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2
+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1

[
β
{
r + 1

2 ((m− 1)k − k1)

−uk1m
}
− β

2

]2
+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1

[
α+ β

{
r + 1

2 ((m− 1)k − k1)

−(m− w + 2x)k1m

}
− β

2

]2]
.

After simplification, we have

V (ȳMSS) = 1
12m2 b

2
[
m2(k21 − 1) +m(m2 − 1)k(mk − 2k1)

+4(w − 1)
{

3k(m− q − w) {m(k1 − qk) + (k1 −mk)}

+k1w {3k1 − (3m− 2w + 1)k}
}]
.

The term (w − 1) [3k(m− q − w) {m(k1 − qk) + (k1 −mk)}] will be vanished
in both situations, when w = 1 or w = (m− q). So, we are left with

(A.9) V (ȳMSS) = 1
12m2 b

2
[
m2(k21 − 1) +m(m2 − 1)k(mk − 2k1)

+4w(w − 1)k1 {3k1 − (3m− 2w + 1)k}] .



Appendix B. Average variance

In real life application, we hardly found such population exhibiting perfect
linear trend, therefore, it is necessary to study the average variance of the
corrected estimator under MSS using following super population model.

(B.1) Yt = α+ βt+ et,

where E(et) = 0, V (et) = E(e2t ) = σ2tg, Cov(et, ev) = 0, t 6= v =
1, 2, 3, ..., Nand g is a predetermine constant.
Under the above super population model (B.1), the average variance expres-
sion of MSS is given below:

Case (i) when w = 1
Consider that l th sum of squares (SSl) are given by

(B.2) SSl =
[
ȳ
(r)
MSS − Ȳ

]2
=
[
{ȳMSS + al(r) (Yr1 − Yrn)} − Ȳ

]2
,

where l = 1 if r ≤ k1 − (m− 1)k and l = 2 if r > k1 − (m− 1)k.
When r ≤ k1 − (m − 1)k, the expressions of ȳMSS , Ȳ , Yr1and Yrn under the
model Yt = α+ β t+ et, can be expressed as:
ȳMSS = α+ β

[
r + 1

2 {(s− 1)k1 + (m− 1)k}
]

+ 1
ms

∑m
i=1

∑s
j=1 er+(i−1)k+(j−1)k1 ,

Ȳ = α + βN+1
2 + 1

N

∑N
t=1 et, Yr1 = α + βr + er and Yrn =

α+ β {r + (m− 1)k + (s− 1)k1}+ er+(m−1)k+(s−1)k1 .
Substituting these expressions in (B.2), we have

SS1 =
[
ȳ
(r)
MSS − Ȳ

]2
=
[
1
n

{∑m
i=1

∑s
j=1 er+(i−1)k+(j−1)k1

+na1(r)
(
er − er+(m−1)k+(s−1)k1

)}
− 1

N

∑N
t=1 et

]2
.

Similarly, if r > k1− (m− 1)k the expressions of ȳMSS , Ȳ , Yr1 and Yrn under
the super population model Yt = α+ β t+ et, can be written as
ȳMSS = α+ β

[
r + 1

2 {(s− 1)k1 + (m− 1)k} − uk1m
]

+ 1
ms

[∑m−u
i=1

∑s
j=1 er+(i−1)k+(j−1)k1

+
∑m
i=m−u+1

{∑s−1
j=1 er+(i−1)k+(j−1)k1 + er+(i−1)k+(s−1)k1−N

}]
,

Ȳ = α + βN+1
2 + 1

N

∑N
t=1 et, Yr1 = α + βr + er and Yrn =

α+ β {r + (m− 1)k + (s− 1)k1 −N}+ er+(m−1)k+(s−1)k1−N .
Thus,

SS2 =
[
ȳ
(r)
MSS − Ȳ

]2
=
[
1
n

{∑m−u
i=1

∑s
j=1 er+(i−1)k+(j−1)k1

+
∑m
i=m−u+1

(∑s−1
j=1 er+(i−1)k+(j−1)k1 + er+(i−1)k+(s−1)k1−N

)
+ na2(r)(er − er+(m−1)k+(s−1)k1−N )

}
− 1

N

∑N
t=1 et

]2
.

The average variance of the corrected sample mean can be written as:

(B.3)
E
{
V (ȳ

(r)
MSS)

}
= 1

k1

{∑k1−(m−1)k
r=1 E (SS1)

+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1E (SS2)

}



under the assumptions of super population model.

E (SS1) =
[

1
n2

{∑m
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1) + n2a21(r)

{
E(e2r)

+E(e2r+(m−1)k+(s−1)k1)
}

+ 2na1(r)
{
E(e2r)

−E(e2r+(m−1)k+(s−1)k1)
}}

+ 1
N2

∑N
t=1E(e2t )− 2

nN

{∑m
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+na1(r)
{
E(e2r)− E(e2r+(m−1)k+(s−1)k1)

}}]
,

E (SS1) = σ2
[

1
n2

{∑m
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+n2a21(r) {rg + (r + (m− 1)k + (s− 1)k1)
g}

+2na1(r) {rg − (r + (m− 1)k + (s− 1)k1)
g}
}

− 2
nN

{∑m
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+na1(r) {rg − (r + (m− 1)k + (s− 1)k1)
g}
}

+ 1
N2

∑N
t=1 t

g
]
.

(B.4)

E (SS1) = σ2
{
a1(r)

(
a1(r) + 2

(
1
n −

1
N

))
rg

+ 1
n

(
1
n −

2
N

)∑m
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+a1(r)
(
a1(r)− 2

(
1
n −

1
N

))
{r + (m− 1)k + (s− 1)k1}g

+ 1
N2

∑N
t=1 t

g
}
.

Similarly,

E (SS2) =
[

1
n2

{∑m−u
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+
∑m
i=m−u+1

(∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+E(e2r+(i−1)k+(s−1)k1−N )
)

+ n2a22(r)
{
E(e2r)

+E(e2r+(m−1)k+(s−1)k1−N )
}

+ 2na2(r)
{

(E(e2r)

−E(e2r+(m−1)k+(s−1)k1−N )
}}

− 2
nN

{∑m−u
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+
∑m
i=m−u+1

(∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+E(e2r+(i−1)k+(s−1)k1−N )
)

+ na2(r)
{

(E(e2r)− E(e2r+(m−1)k+(s−1)k1−N )
}}

+ 1
N2

∑N
t=1E(e2t )

]
,



E (SS2) =
[

1
n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (s− 1)k1 −N)
g
)

+ n2a22(r)
{
rg

+ (r + (m− 1)k + (s− 1)k1 −N)
g
}

+2na2(r) {rg − (r + (m− 1)k + (s− 1)k1 −N)
g}
}

− 2
nN

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g
.

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (s− 1)k1 −N)
g
)

+ na2(r) {rg − (r + (m− 1)k + (s− 1)k1 −N)
g}
}

+ 1
N2

∑N
t=1 t

g
]
,

(B.5)

E (SS2) =
[
a2(r)

(
a2(r) + 2

(
1
n −

1
N

))
rg

+ 1
n

(
1
n −

2
N

)
1
n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (s− 1)k1 −N)
g
)}

+a2(r)
(
a2(r)− 2

(
1
n −

1
N

)) (
r + (m− 1)k + (s− 1)k1

−N
)g

+ 1
N2

∑N
t=1 t

g
]
.

Equations (B.4) and (B.5) can be written as:

E (SS1) = σ2
{
δ+1 (r)rg + θ

∑m
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+δ−1 (r){r + (m− 1)k + (s− 1)k1}g + 1
N2

∑N
t=1 t

g
}

and

E (SS2) = σ2
[
δ+2 (r)rg + θ 1

n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g
.

+ (r + (i− 1)k + (s− 1)k1 −N)
g
}

+δ−2 (r) (r + (m− 1)k + (s− 1)k1 −N)
g

+ 1
N2

∑N
t=1 t

g
]
,

where δ+l (r) = al(r){al(r) + 2
(
1
n −

1
N

)
}, δ−l (r) = al(r){al(r) − 2

(
1
n −

1
N

)
}

and θ = 1
n

(
1
n −

2
N

)
, such that l = 1, 2. Also

(B.6) E (SS1) = σ2
{
χ1 (u, r) + 1

N2

∑N
t=1 t

g
}

and

(B.7) E (SS2) = σ2
{
χ2 (u, r) + 1

N2

∑N
t=1 t

g
}
,



where

χ1 (u, r) = δ+1 (r)rg + θ
∑m
i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+δ−1 (r){r + (m− 1)k + (s− 1)k1}g

,
and

χ2 (u, r) = δ+2 (r)rg + θ 1
n2

{∑m−u
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m
i=m−u+1

(∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (s− 1)k1 −N)
g
)}

+δ−2 (r) (r + (m− 1)k + (s− 1)k1 −N)
g
.

Substituting the values of E (SS1) and E (SS2) in (B.3), we have

(B.8)

E
{
V (ȳ

(r)
MSS)

}
= σ2

k1

{∑k1−(m−1)k
r=1 χ1 (u, r)

+
∑m−1
u=1

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+k1
∑N
t=1 t

g
/
N2
}
.

Case (ii) when w > 1
We can write

(B.9) SSl =
[
ȳ
(r)
MSS − Ȳ

]2
=
[
{ȳMSS + al(r) (Yr1 − Yrn)} − Ȳ

]2
,

where l = 2 if r ≤ k1 − (w − 1)k + rm, l = 3 if k1 − (w − x)k < r ≤
k1 − (w − x)k + rm such that x = 2, ..., (m− 1)
and l = 4 if k1−(w−x)k+rm < r ≤ k1−(w−x)k+k such that x = 1, 2, ...,m−1.
Furthermore, when r ≤ k1 − (w − 1)k + rm, we realize whether 1 ≤ r ≤
k1− (m−u− 1)k such that u = w− 1, k1− (m−u)k < r ≤ k1− (m−u− 1)k
such that u = w,w+ 1, ..., (m−w) or k1− (m−u)k < r ≤ k1− (m−u)k+ rm
such that u = (m − w + 1). However, for each of these subgroups E (SS2)
will be used. Thus, the average variance of the corrected sample mean can be
expressed as

(B.10)

E
[
V
(
ȳ
(r)
MSS

)]
= 1

N

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1 E [SS2]

+
∑n−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1E [SS2]

+
∑m−w+1
u=m−w+1

∑k1−(m−u)k+rm
r=k1−(m−u)k+1E [SS2]

+
∑w−1
x=2

∑k1−(w−x)k+rm
r=k1−(w−x)k+1E [SS3]

+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1E [SS4]

]
.

The E (SS2) is already obtained in case of w = 1, i.e.

(B.11) E (SS2) = χ2 (u, r) + 1
N2

∑N
t=1 t

g.

Now consider

(B.12) E (SS3) = E
[
{ȳMSS + a3(r) (Yr1 − Yrn)} − Y

]2
.



Under the super population model, we have

ȳMSS = α+ β
{
r + 1

2{(s− 1)k1 + (m− 1)k} − (m− w − 1 + 2x)k1m

}
+ 1
n

[∑w−x
i=1

∑s
j=1 er+(i−1)k+(j−1)k1

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 er+(i−1)k+(j−1)k1 + er+(i−1)k+(s−1)k1−N

}
+
∑m
i=m−x+2

{∑s−2
j=1 er+(i−1)k+(j−1)k1

+
∑s
j=s−1 er+(i−1)k+(s−1)k1−N

}]
,

Ȳ = α + βN+1
2 + 1

N

∑N
t=1 et, Yr1 = α + βr + er and Yrn = α +

β {r + (m− 1)k + (s− 1)k1}+ er+(m−1)k+(s−1)k1 .
Substituting these expressions in (B.11), we have

E (SS3) = E
[
1
n

{∑w−x
i=1

∑s
j=1 er+(i−1)k+(j−1)k1

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 er+(i−1)k+(j−1)k1 + er+(i−1)k+(s−1)k1−N

}
+
∑m
i=m−x+2

{∑s−2
j=1 er+(i−1)k+(j−1)k1 +

∑s
j=s−1 er+(i−1)k+(j−1)k1−N

}
+ na2(r)(er − er+(m−1)k+(s−1)k1−N )

}
− 1

N

∑N
t=1 et

]2
.

Applying the assumption of super population model, we have

E (SS3) =
[

1
n2

{∑w−x
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 E(e2r+(i−1)k+(j−1)k1)

+E(e2r+(i−1)k+(s−1)k1−N )
}

+
∑m
i=m−x+2

{∑s−2
j=1 E(e2r+(i−1)k+(j−1)k1)

+
∑s
j=s−1E(e2r+(i−1)k+(j−1)k1−N )

}
+n2a22(r)

{
E(e2r) + E(e2r+(m−1)k+(s−1)k1−N )

}
+2na2(r)

{
E(e2r)− E(e2r+(m−1)k+(s−1)k1−N )

}}
−2 1

nN

{∑w−x
i=1

∑s
j=1E(e2r+(i−1)k+(j−1)k1)

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 E(e2r+(i−1)k+(j−1)k1)

+E(e2r+(i−1)k+(s−1)k1−N )

+
∑m
i=m−x+2

{∑s−2
j=1 E(e2r+(i−1)k+(j−1)k1)

+
∑s
j=s−1E(e2r+(i−1)k+(j−1)k1−N )

}
+na2(r)

{
E(e2r)− E(e2r+(m−1)k+(s−1)k1−N )

}}
+ 1
N2

∑N
t=1E(e2t )

]
.



E (SS3) =
[

1
n2

{∑w−x
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (j − 1)k1 −N)
g
}

+
∑m
i=m−x+2

{∑s−2
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑s
j=s−1 (r + (i− 1)k + (j − 1)k1 −N)

g
}

+n2a22(r) {rg + (r + (i− 1)k + (j − 1)k1 −N)
g}

+2na2(r) {rg − (r + (i− 1)k + (j − 1)k1 −N)
g}
}

−2 1
nN

{∑w−x
i=1

∑s
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑m−x+1
i=w−x+1

{∑s−1
j=1 (r + (i− 1)k + (j − 1)k1)

g

+ (r + (i− 1)k + (j − 1)k1 −N)
g
}

+
∑m
i=m−x+2

{∑s−2
j=1 (r + (i− 1)k + (j − 1)k1)

g

+
∑s
j=s−1 (r + (i− 1)k + (j − 1)k1 −N)

g
}

+na2(r) {rg − (r + (i− 1)k + (j − 1)k1 −N)
g}
}

+ 1
N2

∑N
t=1 t

g
]
,

E (SS3) = a3(r)
(
a3(r) + 2

(
1
n −

1
N

))
rg

+
∑w−1
x=2

∑k1−(w−x)k+r1
r=k1−(w−x)k+1

{
1
n

(
1
n −

2
N

){∑w−x
i=1

∑s
j=1{r

+(i− 1)k + (j − 1)k1}g

+
∑m−x+1
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+2

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+a3(r)

(
a3(r)− 2

(
1
n −

1
N

))
{r + (m− 1)k + (s− 1)k1 −N}g

+ 1
N2

∑N
t=1 t

g,

E (SS3) = δ+3 (r)rg + θ
{∑w−x

i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+
∑m−x+1
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+2

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+δ−3 (r){r + (m− 1)k + (s− 1)k1 −N}g + 1

N2

∑N
t=1 t

g,

where

δ+3 (r) = a3(r){a3(r) + 2
(
1
n −

1
N

)
} and δ−3 (r) = a3(r){a3(r)− 2

(
1
n −

1
N

)
}.



Also

(B.13) E (SS3) = χ3 (x, r) + 1
N2

∑N
t=1 t

g,

where

χ3 (x, r) = δ+3 (r)rg + θ
{∑w−x

i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+
∑m−x+1
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+2

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+δ−3 (r){r + (m− 1)k + (s− 1)k1 −N}g.

Similarly,

(B.14) E (SS4) = χ4 (x, r) + 1
N2

∑N
t=1 t

g,

where

χ4 (x, r) = δ+4 (r)rg + θ
{∑w−x

i=1

∑s
j=1{r + (i− 1)k + (j − 1)k1}g

+
∑m−x
i=w−x+1

(∑s−1
j=1{r + (i− 1)k + (j − 1)k1}g

+{r + (i− 1)k + (s− 1)k1 −N}g
)

+
∑m
i=m−x+1

(∑s−2
j=1{r + (m− 1)k + (j − 1)k1}g

+
∑s
j=s−1{r + (i− 1)k + (j − 1)k1 −N}g

)}
+δ−4 (r){r + (m− 1)k + (s− 1)k1 −N}g.

Putting E (SSl) for l = 2, 3, 4 in (B.10), we have

E
{
V
(
ȳ
(r)
MSS

)}
= σ2

k1

[∑w−1
u=w−1

∑k1−(m−u−1)k
r=1 χ2 (u, r)

+
∑m−w
u=w

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+
∑m−w+1
u=m−w+1

∑k1−(m−u−1)k
r=k1−(m−u)k+1 χ2 (u, r)

+
∑w−1
x=2

∑k1−(w−x)k+rm
r=k1−(w−x)k+1 χ3 (x, r)

+
∑w−1
x=1

∑k1−(w−x)k+k
r=k1−(w−x)k+rm+1 χ4 (x, r)

+k1
∑N
t=1 t

g
/
N2
]
.


