IFP IDEALS IN NEAR-RINGS

Akın Osman Atagün*

Received 06:01:2009 : Accepted 21:10:2009

Abstract

A near-ring N is called an IFP near-ring provided that for all $a, b, n \in N$, ab = 0 implies anb = 0. In this study, the IFP condition in a near-ring is extended to the ideals in near-rings. If N/P is an IFP near-ring, where P is an ideal of a near-ring N, then we call P as the IFP-ideal of N. The relations between prime ideals and IFP-ideals are investigated. It is proved that a right permutable or left permutable equiprime near-ring has no non-zero nilpotent elements and then it is established that if N is a right permutable or left permutable finite near-ring, then N is a near-field if and only if N is an equiprime near-ring. Also, attention is drawn to the fact that the concept of IFP-ideal occurs naturally in some near-rings, such as p-near-rings, Boolean near-rings, weakly (right and left) permutable near-rings and left (w-) weakly regular near-rings.

Keywords: Near-ring, Prime ideal, IFP, Nilpotent element, Equiprime near-ring. 2000 AMS Classification: 16 Y 30.

1. Introduction

IFP near-rings have been studied by several authors since they were introduced in [2, 3, 12] and [14]. In this study, the IFP property in near-rings is broadened to the ideals of near-rings and these ideals, named IFP-ideals, of some certain classes of near-rings are considered. It is pointed out that a right permutable or left permutable equiprime near-ring has no non-zero nilpotent elements (Proposition 3.2). In [16], it was showed that if N is a finite near-ring, then N is a near-field if and only if N is an equiprime near-ring, and has no non-zero nilpotent elements. Using this result, we have that if N is a right permutable or left permutable finite near-ring, then N is a near-field if and only if N is an equiprime near-ring (Corollary 3.3). Besides, it is proved that every completely (semi) prime ideal of a zero-symmetric near-ring is an IFP-ideal and using this result some conclusions are obtained concerning under what conditions 0-prime and 3-(semi)

^{*}Department of Mathematics, Bozok University, 66100 Yozgat, Turkey. E-mail: aosman.atagun@bozok.edu.tr

prime ideals are IFP-ideals. Finally, some certain near-ring classes that bear the property of IFP-ideal on itself naturally are given.

2. Preliminary definitions and results

Throughout N will denote a right near-ring. It is assumed that the reader is familiar with the basic definitions of right near-ring, zero-symmetric near-ring, and ideal. (cf. [14]).

2.1. Definition. N is said to fulfil the *insertion-of-factors property* (IFP) provided that for all $a, b, n \in N$: ab = 0 implies anb = 0. Such near-rings are called IFP near-rings. If $P \triangleleft N$ and N/P is an IFP near-ring, then the ideal P is called an *IFP-ideal* of N.

The ideal P of N is called a 0-prime ideal if for every $A, B \triangleleft N, AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. $P \triangleleft N$ is called a 3-prime (3-semiprime) ideal if for $a, b \in N$, $aNb \subseteq P$ $(aNa \subseteq P)$ implies $a \in P$ or $b \in P$ or $b \in P$ ($a \in P$) [10]. If for $a, b \in N$, $ab \in P$ ($a^2 \in P$) implies $a \in P$ or $b \in P$ ($a \in P$), then $P \triangleleft N$ is called a completely prime (completely semi prime) ideal [11]. $P \triangleleft N$ is called an equiprime ideal if $a \in N - P$ and $x, y \in N$ such that $anx - any \in P$ for all $n \in N$, then $x - y \in P$ [8, Proposition 2.2]. If the zero ideal of N is v-prime (v = 0, 3, completely prime near-ring has no non-zero nilpotent elements.

If for all $a, b, c, d \in N$, abc = acb (resp. abc = bac, abcd = acbd), then N is called a right permutable (resp. left permutable, medial) near-ring [4]. If abc = abac (resp. abc = acbc), then N is called a left self distributive (resp. right self distributive) near-ring [5].

For definitions of strongly regular near-ring, reduced near-ring, Boolean near-ring and p-near-ring the reader is referred to [14]. For left (w-) weakly regular near-ring we refer to [1] and [9]. For left (right) strongly regular near-rings we refer to [13].

3. Prime ideals and IFP ideals

3.1. Lemma. [16, Corollary 4.5] Let N be a zero-symmetric finite near-ring. Then N is a near-field if and only if N is equiprime and has no non-zero nilpotent elements.

3.2. Proposition. (cf. [5]) If N is a right (or left) permutable 3-prime near-ring, then N has no non-zero nilpotent elements.

Proof. Let ab = 0 for $a, b \in N$. If N is right permutable (resp. left permutable), then abN = aNb = 0 (resp. Nab = aNb = 0). Since N is 3-prime, then a = 0 or b = 0, i.e. N is a completely prime near-ring. Hence N has no non-zero nilpotent elements.

Since equiprimeness implies 3-primeness in near-rings, we have;

3.3. Corollary. Let N be a finite near-ring.

- a) If N is a zero symmetric right permutable near-ring, then N is a near-field if and only if N is an equiprime near-ring.
- b) If N is a left permutable near-ring, then N is a near-field if and only if N is an equiprime near-ring.

Proof. If N is left permutable, then for all $n \in N$ n0 = n00 = 0, i.e. N is zero-symmetric. Hence the result follows from Lemma 3.1 and Proposition 3.2.

3.4. Proposition. If P is an IFP-ideal and a 3-(semi) prime ideal of N, then P is a completely (semi) prime ideal.

Proof. Let $ab \in P$ for $a, b \in N$. Since P is an IFP-ideal, then $aNb \subseteq P$. Hence $a \in P$ or $b \in P$, since P is a 3-prime ideal. Therefore P is a completely prime ideal. To prove the semiprime case, it is enough to take a = b.

From now on, all near-rings will be zero-symmetric in this section.

3.5. Proposition. Let P be a completely semiprime ideal of N. Then P is an IFP-ideal.

Proof. Assume P is a completely semiprime ideal of N and $ab \in P$ for $a, b \in N$. It is easily seen that $NP \subseteq P$, since N is zero-symmetric. Then $(ba)^2 = baba \in NPN \subseteq P$ and then $ba \in P$ since P is completely semiprime. Hence $(anb)^2 = anbanb \in NPN \subseteq P$ for all $n \in N$, whence $anb \in P$ since P is completely semiprime. Therefore P is an IFP-ideal.

3.6. Corollary. Let P be a completely prime ideal of N. Then P is an IFP-ideal.

Proof. If P is a completely prime ideal of N, then it is completely semiprime. Hence the result follows Proposition 3.5.

3.7. Remark. The relation between completely (semi) prime ideals and IFP-ideals that is seen to hold naturally without the imposition of additional conditions, does not hold between 3-prime ideals and IFP-ideals because there are examples of near-rings which are IFP but not 3-prime [6, Example 1.3].

But we have the following:

3.8. Proposition. Let N be a medial near-ring and P a 3-prime ideal of N. Then P is an IFP-ideal.

Proof. If N is a medial near-ring and P is a 3-prime ideal of N, then P is completely prime by [4, Proposition 2.7]. Hence the result follows from Corollary 3.6. \Box

Since in near-rings 3-primeness implies 0-primeness, we see from Remark 3.7 that there is no relation between 0-prime ideals and IFP-ideals without imposing extra conditions. We have the following:

3.9. Proposition. Let N be a reduced near-ring and let $P \triangleleft N$. Then

- a) If P is a minimal 0-prime ideal, then P is an IFP-ideal.
- b) If $N \in N_{pm} = \{N : every prime ideal of N is maximal\}$ and P is a 0-prime ideal, then P is an IFP-ideal.

Proof. The proof of a) is seen by [7, Corollary 2.2] and Corollary 3.6. The proof of b) follows from [7, Corollary 2.6] and Corollary 3.6. \Box

3.10. Proposition. Let N be a strongly regular near-ring and $P \triangleleft N$. If P is a 0-prime ideal, then P is an IFP-ideal.

Proof. The result follows from [1, Lemma 4.8] and Proposition 3.5.

4. IFP ideals occurring naturally in some near-rings

The class consisting of zero-symmetric near-rings (resp., consisting of the near-rings with identity) will be denoted by $R_o(\text{resp.}, R_1)$.

4.1. Proposition. Let $N \in R_o$ be a Boolean near-ring and $P \triangleleft N$. Then P is an *IFP*-ideal.

Proof. Assume $ab \in P$ for $a, b \in N$. Since $ba = (ba)^2 = baba \in NPN \subseteq P$, then $anb = (anb)^2 = anbanb \in NPN \subseteq P$ for all $n \in N$. Therefore P is an IFP-ideal of N.

4.2. Proposition. Let $N \in R_o$ be a p-near-ring and $P \triangleleft N$. Then P is an IFP-ideal.

Proof. If p = 2, the result follows Proposition 4.1. Assume p > 2 and that $ab \in P$ for $a, b \in N$. Since $ba = (ba)^p \in NPN \subseteq P$, then $anb = (anb)^p \in NPN \subseteq P$ for all $n \in N$. Therefore P is an IFP-ideal of N.

4.3. Remark. A near-ring N has the strong IFP if every homomorphic image of N has the IFP [14, p.288]. Plasser [15] obtained that N has the strong IFP iff for all $I \triangleleft N$ and for all $a, b, n \in N$, $ab \in I$ implies $anb \in I$. Then, every ideal of an IFP near-ring is an IFP-ideal iff N has the strong IFP.

We have the following:

4.4. Proposition. Let N be an IFP near-ring. Then for all $x \in N$, (0 : x) is an IFP-ideal of N.

Proof. By [14, Proposition 9.3], $(0:x) \triangleleft N$ for all $x \in N$ when N is an IFP near-ring. Let $ab \in (0:x)$ for $a, b \in N$. Then abx = 0. Since N is an IFP near-ring, then an(bx) = 0 for all $n \in N$. Hence $anb \in (0:x)$ for all $n \in N$, i.e. (0:x) is an IFP-ideal of N.

4.5. Proposition. If P is an IFP-ideal of a near-ring N, then (P : P) is an ideal of N. Furthermore (P : P) is also an IFP-ideal.

Proof. To prove $(P : P) \triangleleft N$, it is enough to show that $(P : P)N \subseteq (P : P)$. Let $y \in (P : P)N$. Then there exist an $a \in (P : P)$ and an $n \in N$ such that y = an. Since $a \in (P : P)$, then $ap \in P$ for all $p \in P$. Since P is an IFP-ideal, then $anp \in P$ for all $n \in N$. Then $yp \in P$ for all $p \in P$. Hence $y \in (P : P)$. Now, we show that (P : P) is an IFP-ideal. Assume $xy \in (P : P)$ for $x, y \in N$. Then $xyp \in P$ for all $p \in P$. Since P is an IFP-ideal, $xnyp \in P$ for all $n \in N$ and for all $p \in P$. Therefore, $xny \in (P : P)$, which completes the proof.

4.6. Proposition. Let $N \in R_o \cap R_1$ be a reduced left (w-) weakly regular near-ring and let $P \triangleleft N$. Then P is an IFP-ideal of N.

Proof. The result follows [9, Lemma 3 and Corollary 1] and Proposition 3.5. \Box

4.7. Proposition. Let $P \triangleleft N$. Then,

- a) If N is right permutable, then P is an IFP-ideal.
- b) If N is left permutable, then P is an IFP-ideal.
- c) If N is right self distributive, then P is an IFP-ideal.
- d) If $N \in R_o$ is left self distributive, then P is an IFP-ideal.

Proof. For $a, b \in N$, assume $ab \in P$. Then for all $n \in N$;

- a) $anb = abn \in PN \subseteq P$.
- **b**) $anb = nab \in NP \subseteq P$, since $N \in R_o$ by the proof of Corollary 3.3.
- c) $anb = abnb \in PN \subseteq P$.
- **d**) $anb = anab \in NP \subseteq P$, since $N \in R_o$.

4.8. Proposition. Let N be a medial near-ring and $P \triangleleft N$. Then,

- a) If N is regular, then P is an IFP-ideal.
- b) If N is right strongly regular, then P is an IFP-ideal.
- c) If $N \in R_o$ is left strongly regular, then P is an IFP-ideal.

Proof. For $x, y \in N$, assume $xy \in P$.

a) Since N is regular, then there exist $a, b \in N$ such that x = xax and y = yby. Then for all $n \in N$, xny = xaxnyby = x(axn)y(by). Since N is medial, then $xny = xy(axn)by \in PN \subseteq P$.

b) Since N is right strongly regular, then there exist $a, b \in N$ such that $x = x^2 a$ and $y = y^2 b$. Then for all $n \in N$, xny = xxanyyb = x(xan)y(yb). Since N is medial, then $xny = xy(xan)(yb) \in PN \subseteq P$.

c) Since $N \in R_o$ is left strongly regular, then there exist $a, b \in N$ such that $x = ax^2$ and $y = by^2$. Then for all $n \in N$, xny = axxnbyy = (ax)(xnb)y(y). Since N is medial, then $xny = (ax)y(xnb)y = a(xy)xnby \in NPN \subseteq P$.

References

- Argac, N. and Groenewald, N. J. Weakly and strongly regular near-rings, Alg. Coll. 12, 121–130, 2005.
- Bell, H.E. Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2, 363–368, 1970.
- [3] Bell, H. E. Certain near-rings are rings, J. London Math. Soc. II 4, 264–270, 1971.
- [4] Birkenmeier, G. and Heatherly, H. Medial near-rings, Mh. Math. 107, 89–110, 1989.
- [5] Birkenmeier, G. and Heatherly, H. Left self distributive near-rings, J. Austral. Math. Soc.(Series A) 49, 273–296, 1990.
- [6] Birkenmeier, G., Heatherly, H. and Lee, E. Prime ideals in near-rings, Results Math. 24, 27–48, 1993.
- [7] Birkenmeier, G. and Groenewald, N.J. Near-rings in which each prime factor is simple, Math. Pannon. 10, 257–269, 1999.
- [8] Booth, G., Groenewald, N. J. and Veldsman, S. A Kurosh-Amitsur prime radical for nearrings, Comm. Algebra 18, 3111–3122, 1990.
- [9] Dheena, P. and Rejeswari, C. Weakly regular near-rings, Indian J. Pure and Appl. Math. 28, 1207–1213, 1997.
- [10] Groenewald, N. J. Different prime ideals in near-rings, Comm. Algebra 10, 2667–2675, 1991.
- [11] Groenewald, N.J. The completely prime radical in near-rings, Acta Math. Hungar. 51, 301-305, 1988.
- [12] Ligh, S. On the commutativity of near-rings III, Bull. Austral. Math. Soc. 6, 459–464, 1972.
- [13] Mason, G. Strongly regular near-rings, Proc. Edinburgh Math. Soc. 23, 27–35, 1980.
- [14] Pilz, G. Near-rings (North-Holland, 1983).
- [15] Plasser, K. Subdirekte darstellung von ringen und fastringen mit boolschen eigenzchaften (Diplomarbeit, Univ. Linz, Austria, 1974).
- [16] Veldsman, S. On equiprime near-rings, Comm. Algebra 20, 2569–2587, 1992.