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Abstract
We introduce the notions of soft hyperrings, idealistic soft hyperrings,
soft subhyperrings and soft hyperideals, and discuss some related prop-
erties. Moreover, we establish three (fuzzy) isomorphism theorems of
soft hyperrings.
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1. Introduction
Soft set theory has been considered as an effective mathematical tool for modeling

uncertainties [21]. Different from traditional mathematical tools for dealing with uncer-
tainties, such as probability theory, fuzzy set theory [34] and rough set theory [25], soft
set theory is free from the inadequacy of the parametrization tools of these theories [21].
Molodtsov demonstrated that soft set theory has potential applications in many direc-
tions, including function smoothness, Riemann integration, measurement theory, game
theory and operations research [21]. Also, soft set theory has been applied to forecasting
[32], decision making [6, 17, 39], association rules mining [13] and mobile cloud computing
[31].

In theoretical aspect of soft sets, after Molodtsov’s pioneer work [21], Maji et al. [20]
gave further a detailed theoretical study on soft sets. Based on the analysis of several
operations on soft sets introduced in [20], Ali et al. [3] proposed some new operations.
In [4], Çağman and Enginoǧlu defined the soft matrices, which are representative of soft
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sets, and Gong et al. [12] presented the bijective soft sets, which are special soft sets.
As an extended concept of bijective soft sets, the exclusive disjunctive soft sets [33] were
introduced. Furthermore, Jiang et al. [14] presented an extended soft set theory by
using the concepts of description logics to act as the parameters of soft sets. Recently,
many researchers studied the algebraic structures of soft sets. Aktaş and Çaǧman [2]
defined soft groups and showed that fuzzy groups can be considered a special case of soft
groups. Moreover, some basic properties of soft semirings [11] and soft rings [1] were
introduced. Also, Sun et al. [28] presented the soft modules, and Li [19] analyzed the
soft lattices. In addition, Jun et al. [15, 16, 26, 38] considered the applications of soft
sets in BCK/BCI-algebras, BCH-algebras, WS-algebras and BL-algebras, and considered
their related properties.

On the other hand, the theory of algebraic hyperstructures, introduced by Marty in
1934 [23], is a natural generalization of the theory of algebraic structures. It has been
applied to many areas [5], such as probabilities, geometry, fuzzy sets, automata, cryptog-
raphy, combinatorics, and artificial intelligence. Several books on hyperstructure theory
have been published [5, 7, 29]. The book [7] was devoted especially to the study of
hyperring theory and applications, in which several kinds of hyperrings were introduced
and investigated. Krasner hyperring [18], which is a well known type of hyperring, has
been studied by many authors. In what follows, by a hyperring we mean a Krasner
hyperring. In [8], Davvaz and Salasi defined the notions of normal hyperideal, prime
hyperideal, maximal hyperideal, and Jacobson radical of a hyperring and obtained some
related results. Furthermore, Davvaz [9] established three isomorphism theorems of hy-
perrings, and derived the Jordan-Holder theorem for hyperrings. Moreover, Vougiouklis
[30] considered the fundamental relation on a hyperring as the smallest equivalence re-
lation so that the quotient is the fundamental ring. In [35], Zhan et al. applied fuzzy
sets to hyperrings and introduced the concept of fuzzy hyperideals of a hyperring. By
using the normal fuzzy hyperideals of a hyperring, Ma and Zhan [22] derived three fuzzy
isomorphism theorems of hyperrings. Also, they considered isomorphism theorems and
fuzzy isomorphism theorems of hypermodules [36, 37].

In this paper, we apply the notion of soft sets to hyperrings. Some related notions,
such as soft hyperrings, idealistc soft hyperrings, soft subhyperrings, soft hyperideals,
are defined, and several basic properties are investigated. Furthermore, we consider the
isomorphism of soft hyperrings, and establish three (fuzzy) isomorphism theorems of soft
hyperrings.

2. Preliminaries
In this section, we review some notions and results about hyperrings and soft sets. A

hypergroupoid (H, ◦) is a non-empty set H together with a hyperoperation ◦ defined on
H, i.e., a mapping H ×H → P∗(H), where P∗(H) is the set of all non-empty subsets
of H. If x ∈ H and A,B are subsets of H, then A ◦ B =

⋃
a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x}

and x ◦ B = {x} ◦ B. (H, ◦) is called a hypergroup if for all x, y, z ∈ H, we have
x ◦ (y ◦ z) = (x ◦ y) ◦ z and x ◦H = H ◦ x = H [27].

2.1. Definition. [18] A hyperring is an algebraic structure (R,+, ·) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
(a) for every x, y, z ∈ R, (x+ y) + z = x+ (y + z);
(b) for every x, y ∈ R, x+ y = y + x;
(c) there exists 0 ∈ R such that 0 + x = x for all x ∈ R;
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(d) for every x ∈ R there exists a unique element x′ ∈ R such that 0 ∈ x+ x′

(we shall write −x for x′ and we call it the oposite of x);
(e) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

(2) Relating to the multiplication, (R, ·) is a semigroup having zero as a bilaterally
absorbing element, i.e., 0 · x = x · 0 = 0 for all x ∈ R.

(3) The multiplication is distributive with respect to the hyperoperation +.

The following elementary facts follow easily from the axioms: −(−x) = x and
−(x+ y) = −x− y for all x, y ∈ R.

2.2. Example. [18] Let (R,+, ·) be a ring and N a normal subgroup of its multiplica-
tive semigroup. Then the multiplicative classes x = x · N(x ∈ R) form a partition of
R, and let R = R/N be the set of these classes. Define the hyperaddition and the mul-
tiplication on R by x⊕y = {z|z ∈ x+y} and x�y = x · y. Then (R,⊕,�) is a hyperring.

A non-empty subset S of a hyperring (R,+, ·) is called a subhyperring of R if (S,+, ·)
itself is a hyperring. A subhyperring I of R is a left (right) hyperideal of R if r · a ∈
I(a · r ∈ I) for all r ∈ R and a ∈ I. A subhyperring I is called a hyperideal if I is both
left and right hyperideal [9].

2.3. Lemma. [9] A non-empty subset I of a hyperring R is a left (right) hyperideal if
and only if (1) a, b ∈ I implies a− b ⊆ I; (2) a ∈ I, r ∈ R imply r · a ∈ I(a · r ∈ I).

A subhyperring I of a hyperring R is normal if and only if x+ I−x ⊆ I for all x ∈ R.
Let I be a normal hyperideal of a hyperring R, then for all x, y ∈ R, (I + x) + (I + y) =
I + x+ y = I + z for all z ∈ x+ y and I + x = I + y for all y ∈ I + x. If K and N are
hyperideals of a hyperring R with N normal in R, then K ∩N is a normal hyperideal of
K, and N is a normal hyperideal of K +N [9].

If I is a normal hyperideal of a hyperring R, then the relation I∗ defined by x ≡
y(mod I) if and only if (x − y) ∩ I 6= ∅ is an equivalence relation [9]. Let I∗[x] be the
equivalence class of the element x ∈ R. Then I + x = I∗[x] for all x ∈ R. On the set
of all classes R/I = {I∗[x] | x ∈ R}, the hyperoperation ⊕ and the multiplication �
are defined by I∗[x] ⊕ I∗[y] = {I∗[z] | z ∈ I∗[x] + I∗[y]}, and I∗[x] � I∗[y] = I∗[x · y],
respectively. Then (R/I,⊕,�) is a hyperring. For all I + x, I + y ∈ R/I, we have
(I + x)⊕ (I + y) = {I + z | z ∈ x+ y}.

Let R1 and R2 be two hyperrings. A mapping ϕ from R1 into R2 is called a strong
homomorphism if ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(a · b) = ϕ(a) · ϕ(b), and ϕ(0) = 0, for
all a, b ∈ R1. A strong homomorphism ϕ is an isomorphism if ϕ is one to one and
onto. If ϕ is a strong homomorphism from R1 into R2, then the kernel of ϕ is the set
kerϕ = {x ∈ R1 | ϕ(x) = 0}. It is trivial that kerϕ is a hyperideal of R1, but in general
it is not normal in R1 [9].

Let U be an initial universe set and E be a set of parameters. P(U) denotes the
power set of U and A ⊆ E.

2.4. Definition. [21] A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A→P(U).

In fact, a soft set over U is a parameterized family of subsets of the universe U . For
e ∈ A, F (e) may be considered as the set of e-approximate elements of the soft set (F,A).
Please readers see the reference [20] for some examples.
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2.5. Definition. [20] For two soft sets (F,A) and (G,B) over U , we say that (F,A) is
a soft subset of (G,B), denoted by (F,A)⊆̃(G,B), if the following conditions hold: (1)
A ⊆ B; (2) for all e ∈ A, F (e) ⊆ G(e). Two soft sets (F,A) and (G,B) over U are called
soft equal if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A).

2.6. Definition. [3, 20] The extended intersection (or union) of two soft sets (F,A)
and (G,B) over U is the soft set (H,C) = (F,A) ∩E (G,B) (or (F,A)∪̃(G,B)), where
C = A ∪ B, and for all e ∈ C, if e ∈ A− B, H(e) = F (e); if e ∈ B − A, H(e) = G(e); if
e ∈ A ∩B, H(e) = F (e) ∩G(e) (or F (e) ∪G(e)).

2.7. Definition. [3] The restricted intersection (or restricted union) of two soft sets
(F,A) and (G,B) over U such that A∩B 6= ∅, is the soft set (H,C) = (F,A)∩R(G,B) (or
(F,A)∪R(G,B)), where C = A∩B and for all e ∈ C, H(e) = F (e)∩G(e) (or F (e)∪G(e)).

2.8. Definition. [20] If (F,A) and (G,B) are two soft sets over U , then “(F,A) AND
(G,B) (or (F,A) OR (G,B))”, denoted by (F,A)∧̃(G,B) (or (F,A)∨̃(G,B)), is defined
as (F,A)∧̃(G,B) (or (F,A)∨̃(G,B))=(H,A × B), where H(x, y) = F (x) ∩ G(y) (or
F (x) ∪G(y)) for all (x, y) ∈ A×B.

2.9. Definition. [11] Let (F,A) be a soft set. The set Supp(F,A) = {x ∈ A | F (x) 6= ∅}
is called the support of the soft set (F,A). A soft set (F,A) is non-null if Supp(F,A) 6= ∅.

3. (Idealistic) soft hyperrings
In what follows, R denotes a hyperring and A is a nonempty set. A set-valued function

F : A → P(R) can be defined as F (x) = {y ∈ R | (x, y) ∈ ρ} for all x ∈ A, where ρ
is an arbitrary binary relation between an element of A and an element of R, i.e., ρ is a
subset of A×R, then (F,A) is a soft set over R.

3.1. Definition. Let (F,A) be a non-null soft set over R. Then (F,A) is called an
(idealistic) soft hyperring over R if F (x) is a subhyperring (hyperideal) of R for all x ∈
Supp(F,A).

3.2. Example. Suppose that R = {0, 1, 2, 3} and define the operations + and · on R as
follows:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 0 0 0

Then (R,+, ·) is a hyperring [10]. Let (F,A) be a soft set over R, where A = R and
F : A→P(R) is a set-valued function defined by F (x) = {0} ∪ {y ∈ R | xρy ⇔ x+ y =
{2}} for all x ∈ A. Then F (0) = {0, 2}, F (1) = {0, 3}, F (2) = {0} and F (3) = {0, 1} are
subhyperrings of R. Hence (F,A) is a soft hyperring over R.

Let B = R and G : B → P(R) be a set-valued function defined by G(x) =
{0, 3} ∪ {y ∈ R | xρ′y ⇔ x + y ⊆ {0, 3}} for all x ∈ B. Then G(0) = G(3) = {0, 3}
and G(1) = G(2) = {0, 1, 2, 3} are hyperideals of R. Thus (G,B) is an idealistic soft
hyperring over R.
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Clearly, every idealistic soft hyperring over R is a soft hyperring over R, but the
converse is not true in general. In Example 3.2, the (F,A) is not an idealistic soft
hyperring over R since {0, 1} and {0, 2} are not hyperideals of R.

(F,A) is an (idealistic) soft hyperring over R and B ⊆ A. From the Definition 3.1,
we have that (F |B , B) is an (idealistic) soft hyperring over R when it is non-null. Next,
we give an example to show that (F,A) is not an (idealistic) soft hyperring over R, but
there exists a subset B of A such that (F |B , B) is an (idealistic) soft hyperring over R.

3.3. Example. Let R = {0, 1, 2, 3} be a set with the hyperoperation + and the multi-
plication · defined as follows:

+ 0 1 2 3

0 0 1 2 3
1 1 {0, 1} 3 {2, 3}
2 2 3 0 1
3 3 {2, 3} 1 {0, 1}

· 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

It follows that (R,+, ·) is a hyperring [24]. Let (F,A) be the soft set over R where
A = R and F : A → P(R) is a set-valued function defined by F (x) = {y ∈ R | xρy ⇔
x + y ⊆ {1, 3}} for all x ∈ A. Then F (1) = F (3) = {0, 2} is a hyperideal of R, but
F (0) = F (2) = {1, 3} is not a hyperideal of R, and also is not a subhyperring of R since
1 + 3 = {2, 3} * {1, 3}. Therefore, (F,A) is not an idealistic soft hyperring over R, and
also is not a soft hyperring over R. However, if we take B = {1, 3} ⊆ A, then (F |B , B)
is an idealistic soft hyperring over R. Also, it is a soft hyperring over R.

3.4. Theorem. Let (F,A) and (G,B) be two (idealistic) soft hyperrings over R, then

(1) (F,A) ∩E (G,B) is an (idealistic) soft hyperring over R if it is non-null;
(2) if A ∩ B 6= ∅, then (F,A) ∩R (G,B) is an (idealistic) soft hyperring over R

whenever it is non-null;
(3) if A ∩B = ∅, then (F,A)∪̃(G,B) is an (idealistic) soft hyperring over R;
(4) (F,A)∧̃(G,B) is an (idealistic) soft hyperring over R.

Proof. We only prove (1), and the proofs of (2)-(4) are similar. By Definition 2.6, we
have (H,C) = (F,A) ∩E (G,B). For all x ∈ Supp(H,C), if x ∈ A−B, because (F,A) is
an (idealistic) soft hyperring over R, we have H(x) = F (x) is a subhyperring (hyperideal)
of R; if x ∈ B −A, because (G,B) is an (idealistic) soft hyperring over R, H(x) = G(x)
is a subhyperring (hyperideal) of R; if x ∈ A∩B, H(x) = F (x)∩G(x) is a subhyperring
(hyperideal) of R, since the intersection of any two subhyperrings (hyperideals) of R is
also a subhyperring (hyperideal) of R. Therefore, (H,C) = (F,A) ∩E (G,B) is an (ide-
alistic) soft hyperring over R.

If A and B are not disjoint, Theorem 3.4(3) is not true in general.

3.5. Example. Consider the hyperring R defined in Example 3.3. Let A = R and
F : A → P(R) be a set-valued function defined by F (x) = {0, 1} ∪ {y ∈ R | xρy ⇔
x+ y ⊆ {2, 3}} for all x ∈ A. Then F (0) = F (1) = {0, 1, 2, 3} and F (2) = F (3) = {0, 1}
are hyperideals of R. Thus (F,A) is an idealistic soft hyperring over R.

Let B = {0, 2} and G : B → P(R) be the set-valued function defined by G(x) =
{y ∈ R | xρ′y ⇔ x + y ⊆ {0, 2}} for all x ∈ B. Then G(0) = G(2) = {0, 2} is
a hyperideal of R. Hence, (G,B) is an idealistic soft hyperring over R. However,
(H,C) = (F,A)∪̃(G,B) is not an idealistic soft hyperring over R and also is not a
soft hyperring, since H(2) = F (2) ∪ G(2) = {0, 1, 2} is not a subhyperring of R for
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1 + 2 = {3} * H(2).

3.6. Corollary. Let (Fi, Ai)i∈Λ be a non-empty family of (idealistic) soft hyperrings
over R, where Λ is an index set, then

(1) (∩E )i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R if it is non-null;
(2) if ∩i∈ΛAi 6= ∅, then (∩R)i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R

whenever it is non-null;
(3) if Ai ∩Aj = ∅ for all i, j ∈ Λ and i 6= j, then ∪̃i∈Λ(Fi, Ai) is an (idealistic) soft

hyperring over R;
(4) ∧̃i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R.

3.7. Definition. Let (F,A) be an idealistic soft hyperring over R, then (F,A) is called
an identity idealistic soft hyperring over R if F (x) = {0} for all x ∈ A; (F,A) is called
an absolute idealistic soft hyperring over R if F (x) = R for all x ∈ A.

3.8. Example. Consider the hyperring R defined in Example 3.3. Let A = R and
F : A→P(R) be the set-valued function defined by F (x) = {y ∈ R | xρy ⇔ x+y = {x}}
for all x ∈ A. Then F (0) = F (1) = F (2) = F (3) = {0} and so (F,A) is an identity
idealistic soft hyperring over R.

Let B = R and G : B → P(R) be the set-valued function defined by G(x) = {y ∈
R | xρ′y ⇔ x+ y ⊆ R} for all x ∈ B. Then G(x) = R for all x ∈ B and so (G,B) is an
absolute idealistic soft hyperring over R.

3.9. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring R2.
If (F,A) is a soft hyperring over R1, then (ϕ(F ), A) is a soft hyperring over R2; if ϕ is
onto and (F,A) is an idealistic soft hyperring over R1, then (ϕ(F ), A) is an idealistic soft
hyperring over R2, where ϕ(F )(x) = ϕ(F (x)) for all x ∈ A.

Proof. Clearly, Supp(ϕ(F ), A) = Supp(F,A). For all x ∈ Supp(ϕ(F ), A), ϕ(F )(x) =
ϕ(F (x)). Since (F,A) is a soft hyperring over R1, it follows that F (x) is a subhyperring
of R1, so ϕ(F (x)) is also a subhyperring of R2. Hence, (ϕ(F ), A) is a soft hyperring over
R2. Moreover, for every x ∈ Supp(ϕ(F ), A), because F (x) is a hyperideal of R1 and ϕ is
onto, we have that ϕ(F )(x) = ϕ(F (x)) is a hyperideal of R2. Therefore, (ϕ(F ), A) is an
idealistic soft hyperring over R2.

3.10. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring
R2, and (F,A) be an idealistic soft hyperring over R1. If F (x) = kerϕ for all x ∈ A,
then (ϕ(F ), A) is an identity idealistic soft hyperring over R2. If ϕ is onto and (F,A) is
an absolute idealistic soft hyperring over R1, then (ϕ(F ), A) is an absolute idealistic soft
hyperring over R2.

Proof. It is straightforward.

3.11. Definition. Let (F,A) and (G,B) be two soft hyperrings over R. Then (G,B) is
called a soft subhyperring (hyperideal) of (F,A) if B ⊆ A, and G(x) is a subhyperring
(hyperideal) of F (x) for all x ∈ Supp(G,B).

3.12. Example. Consider the hyperring R given in Example 3.2. Let A = R and
F : A → P(R) be the set-valued function defined by F (x) = {0, 2} ∪ {y ∈ R | xρy ⇔
x+ y ⊆ {1, 3}} for all x ∈ A. Then F (0) = F (2) = {0, 1, 2, 3}, and F (1) = F (3) = {0, 2}
are subhyperrings of R. Therefore, (F,A) is a soft hyperring over R.



1469

Let B = {1, 2, 3} ⊆ A and G : B → P(R) be the set-valued function defined by
G(x) = {0} ∪ {y ∈ R | xρ′y ⇔ x + y = {1}} for all x ∈ B. Then G(1) = {0},
G(2) = {0, 3} and G(3) = {0, 2} are hyperideals of F (1), F (2) and F (3), respectively, so
(G,B) is a soft hyperideal of (F,A).

3.13. Theorem. Let (F,A) and (G,B) be soft hyperrings over R. For all x ∈
Supp(G,B), if B ⊆ A and G(x) ⊆ F (x), then (G,B) is a soft subhyperring of (F,A). Fur-
thermore, if (G,B) is an idealistic soft hyperring over R, then (G,B) is a soft hyperideal
of (F,A).

Proof. Straightforward.

3.14. Theorem. Let (F,A) be a soft hyperring over R, and (Gi, Bi)i∈Λ be a non-empty
family of soft subhyperrings (hyperideals) of (F,A), where Λ is an index set, then

(1) (∩E )i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of (F,A) if it is non-null;
(2) if ∩i∈ΛBi 6= ∅, then (∩R)i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of

(F,A) whenever it is non-null;
(3) if Bi∩Bj = ∅ for all i, j ∈ Λ and i 6= j, then ∪̃i∈Λ(Gi, Bi) is a soft subhyperring

(hyperideal)of (F,A);
(4) ∧̃i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of the soft hyperring ∧̃i∈Λ(F,A)

if it is non-null.

Proof. We only prove (1), and the proofs of (2)-(4) are similar. By Definition 2.6,
we have (H,C) = (∩E )i∈Λ(Gi, Bi), where C =

⋃
i∈Λ Bi, H(x) =

⋂
i∈Λ(x) Gi(x) and

Λ(x) = {i ∈ Λ|x ∈ Bi}, for all x ∈ C. Since (Gi, Bi)i∈Λ be a non-empty family
of soft subhyperrings (hyperideals) of (F,A), we have that C =

⋃
i∈Λ Bi ⊆ A, and

H(x) =
⋂
i∈Λ(x) Gi(x) is a subhyperring (hyperideal) of F (x), for all x ∈ Supp(H,C).

Therefore, (H,C) = (∩E )i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of (F,A).

3.15. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring R2.
If (F,A) is a soft hyperring over R1, and (G,B) is a soft subhyperring (hyperideal) of
(F,A), then (ϕ(G), B) is a soft subhyperring (hyperideal) of (ϕ(F ), A).

Proof. From Theorem 3.9, we have that (ϕ(F ), A) and (ϕ(G), B) are soft hyperrings
over R2. Clearly, Supp(ϕ(G), B) = Supp(G,B). It follows that B ⊆ A and G(x) is a
subhyperring of F (x) for all x ∈ Supp(G,B), because (G,B) is a soft subhyperring of
(F,A). So ϕ(G)(x) ⊆ ϕ(F )(x) for all x ∈ Supp(ϕ(G), B). According to Theorem 3.13,
(ϕ(G), B) is a soft subhyperring of (ϕ(F ), A).

Now, for all x ∈ Supp(ϕ(G), B), r′ ∈ ϕ(F )(x), a′ ∈ ϕ(G)(x), there exists r ∈ F (x),
a ∈ G(x) such that ϕ(r) = r′, ϕ(a) = a′. Because G(x) is a hyperideal of F (x), we have
that r′ · a′ = ϕ(r) · ϕ(a) = ϕ(r · a) ∈ ϕ(G(x)) = ϕ(G)(x) and a′ · r′ = ϕ(a) · ϕ(r) =
ϕ(a · r) ∈ ϕ(G(x)) = ϕ(G)(x). It follows that ϕ(G)(x) is a hyperideal of ϕ(F )(x) for all
x ∈ Supp(ϕ(G), B). Therefore, (ϕ(G), B) is a soft hyperideal of (ϕ(F ), A).

4. Isomorphism theorems of soft hyperrings
In this section, we consider the isomorphism theorems of soft hyperrings. First, we

give the notions of soft homomorphism, soft monomorphism, soft epimorphism, and soft
isomorphism.

4.1. Definition. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hy-
perring R2, respectively, and ϕ : R1 → R2 and ψ : A → B be two mappings. If ϕ is a
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strong homomorphism and for all x ∈ A, ϕ(F (x)) = G(ψ(x)), then (ϕ,ψ) is called a soft
homomorphism, and (F,A) is soft homomorphic to (G,B), denoted by (F,A) ∼ (G,B).
If ϕ is a monomorphism (resp. epimorphism, isomorphism) and ψ is a injective (resp.
surjective, bijective) mapping, then (ϕ,ψ) is called a soft monomorphism (resp. epimor-
phism, isomorphism), and (F,A) is soft monomorphic (resp. epimorphic, isomorphic) to
(G,B). (F,A) ' (G,B) is used to denote that (F,A) is soft isomorphic to (G,B).

4.2. Theorem. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hyper-
ring R2, respectively, and (F,A) be soft epimorphic to (G,B). If (F,A) is an idealistic
soft hyperring over R1, then (G,B) is an idealistic soft hyperring over R2.

Proof. Suppose that (ϕ,ψ) is a soft epimorphism from (F,A) to (G,B). For every x ∈
Supp(F,A), F (x) is a hyperideal of R1, by Theorem 3.9, we have that ϕ(F (x)) a hy-
perideal of R2. For every y ∈ Supp(G,B), there exists x ∈ A such that ψ(x) = y, so
G(y) = G(ψ(x)) = ϕ(F (x)) is a hyperideal of R2. It follows that (G,B) is an idealistic
soft hyperring over R2.

In what follows, we say that (F/I,A) is a soft hyperring over R/I, which means
(F/I)(x) = F (x)/I for all x ∈ A, I ⊆ F (x) for all x ∈ Supp(F,A), and (F/I)(x) = ∅ for
x ∈ A− Supp(F,A), where (F,A) is a soft hyperring over R, and I is a normal hyperideal
of R.

4.3. Theorem. Let I be a normal hyperideal of R, and (F,A) be a soft hyperring over
R, then (F,A) is soft epimorphic to (F/I,A).

Proof. Since I ⊆ F (x) for all x ∈ Supp(F,A), it follows that F (x)/I is a subhyperring
of R/I. So (F/I,A) is a soft hyperring over R/I. Define ϕ : R → R/I by ϕ(x) = I∗[x],
for all x ∈ R, then ϕ is an epimorphism. Define ψ : A → A by ψ(x) = x for all x ∈ A.
Clearly, ψ is surjective. For all x ∈ A, ϕ(F (x)) = F (x)/I = F (ψ(x))/I. Therefore, (ϕ,ψ)
is a soft epimorphism, and (F,A) is soft epimorphic to (F/I,A).

4.4. Theorem. (First Isomorphism Theorem) Let (F,A) and (G,B) be soft hyperrings
over hyperring R1 and hyperring R2, respectively. If (ϕ,ψ) is a soft epimorphism from
(F,A) to (G,B) with kernel I such that I is a normal hyperideal of R1, then (F/I,A) '
(ϕ(F ), A). Moreover, if ψ is bijective, then (F/I,A) ' (G,B).

Proof. Clearly, (F/I,A) and (ϕ(F ), A) are soft hyperrings over R1/I and R2, respec-
tively. We define ϕ′ : R1/I → R2 by ϕ′(I∗[x]) = ϕ(x), for all x ∈ R1. According to the
first isomorphism theorem of hyperrings, ϕ′ is an isomorphism. Define ψ′ : A → A by
ψ′(x) = x for all x ∈ A, then ψ′ is bijective. Also ϕ′(F (x)/I) = ϕ(F (x)) = ϕ(F (ψ′(x)))
for all x ∈ A. It follows that (ϕ′, ψ′) is a soft isomorphism, and (F/I,A) ' (ϕ(F ), A).
Moreover, since ϕ′ is an isomorphism, ψ is bijective and for all x ∈ A, ϕ′(F (x)/I) =
ϕ(F (x)) = G(ψ(x)). So (ϕ′, ψ) is a soft isomorphism, and (F/I,A) ' (G,B).

4.5. Theorem. (Second Isomorphism Theorem) Let I and K be hyperideals of R, with
I normal in R. If (F,A) is a soft hyperring of K, then (F/(I ∩K), A) ' ((I + F )/I,A).

Proof. Clearly, (F/(I ∩K), A) and ((I+F )/I,A) are soft hyperring over (K/(I ∩K) and
(I+K)/I, respectively. ϕ : K → (I+K)/I is defined by ϕ(x) = I∗[x] for all x ∈ K. Then
ϕ is an epimorphism. ψ : A→ A is defined by ψ(x) = x for all x ∈ A. Then ψ is bijective.
For all x ∈ A, we have ϕ(F (x)) = {I∗[a] | a ∈ F (x)} = (I + F (x))/I = (I + F (ψ(x)))/I.
For {I∗[a] | a ∈ F (x)} = (I + F (x))/I, the proof is showed as follows.
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Clearly, {I∗[a] | a ∈ F (x)} ⊆ (I + F (x))/I. For any I∗[b] ∈ (I + F (x))/I, where
b ∈ I + F (x), which implies that there exist i ∈ I and k ∈ F (x) such that b ∈ i + k, so
I∗[b] = I + b = I + i+ k = I + k = I∗[k] ∈ {I∗[a] | a ∈ F (x)}.

Therefore, (ϕ,ψ) is a soft epimorphism from (F,A) to ((I+F )/I,A). Since I ∩K is a
normal hyperideal of K, if kerϕ = I ∩K, then, by Theorem 4.4, (F/(I ∩K), A) ' ((I +
F )/I,A). For any x ∈ K, x ∈ kerϕ ⇔ ϕ(x) = I∗[0] = I ⇔ I∗[x] = I + x = I ⇔ x ∈ I
(since x ∈ K)⇔ x ∈ I ∩K.

4.6. Theorem. (Third Isomorphism Theorem) Let K and I be normal hyperideals of
R such that I ⊆ K. If (F,A) is a soft hyperring over R, and K ⊆ F (x) for all x ∈
Supp(F,A), then ((F/I)/(K/I), A) ' (F/K,A).

Proof. We have that K/I is a normal hyperideal of R/I, because K and I are normal
hyperideals of R with I ⊆ K. Thus, (R/I)/(K/I) is defined. Since F (x) is a subhyperring
of R and I ⊆ K ⊆ F (x) for all x ∈ Supp(F,A), (F (x)/I)/(K/I) is defined and is a
subhyperring of (R/I)/(K/I). Clearly, Supp((F/I)/(K/I), A)= Supp(F,A). It follows
that ((F/I)/(K/I), A) is a soft hyperring over (R/I)/(K/I). Also, it is easy to obtain
that (F/I,A) and (F/K,A) are soft hyperrings over R/I and R/K, respectively. ϕ :
R/I → R/K, defined by ϕ(I∗[x]) = K∗[x], is an epimorphism, and ψ : A → A, defined
by ψ(x) = x for all x ∈ A, is bijective. Moreover, for all x ∈ A, ϕ(F (x)/I) = F (x)/K =
F (ψ(x))/K. So (ϕ,ψ) is a soft epimorphism from (F/I,A) to (F/K,A). By Theorem
4.4, if kerf = K/I, then ((F/I)/(K/I), A) ' (F/K,A). For any I∗[x] ∈ R/I, I∗[x] ∈
kerf ⇔ f(I∗[x]) = K∗[0] = K ⇔ K∗[x] = K + x = K ⇔ x ∈ K ⇔ I∗[x] ∈ K/I.

5. Fuzzy isomorphism theorems of soft hyperrings
In this scetion, we eatablish three fuzzy isomorphism theorems of soft hyperrings.

Firstly, we review some related results about fuzzy hyperideal of hyperrings [22, 35].
A fuzzy set µ of a hyperring R is called a fuzzy hyperideal of R if the following

conditions hold: (1) min{µ(x), µ(y)} ≤ infz∈x+y µ(z) for all x, y ∈ R; (2) µ(x) ≤ µ(−x)
for all x ∈ R; (3) max{µ(x), µ(y)} ≤ µ(xy) for all x, y ∈ R. A fuzzy hyperideal µ of R is
called normal if µ(y) ≤ infα∈x+y−x µ(α) for all x, y ∈ R.

Let µ be a normal fuzzy hyperideal of R. Define the relation on R: x ≡ y(mod µ) if
and only if there exists α ∈ x − y such that µ(α) = µ(0), denoted by xµ∗y, and µ∗ is
an equivalence relation. If xµ∗y, then µ(x) = µ(y). Let µ∗[x] be the equivalence class
containing x ∈ R, and R/µ be the set of all equivalence classes, i.e., R/µ = {µ∗[x] | x ∈
R}. Define operations ⊕ and � in R/µ by µ∗[x] ⊕ µ∗[y] = {µ∗[z] | z ∈ µ∗[x] + µ∗[y]},
and µ∗[x]� µ∗[y] = µ∗[x · y], respectively. Then (R/µ,⊕,�) is a hyperring.

Let I be a normal hyperideal of R, and µ be a normal fuzzy hyperideal of R. If µ is
restricted to I, then µ is a normal fuzzy hyperideal of I, and I/µ is a normal hyperideal of
R/µ. If µ and ν are normal fuzzy hyperideals of R, then µ∩ν is normal fuzzy hyperideals
of R.

IfX and Y are two non-empty sets, ϕ : X → Y is a mapping, and µ and ν are the fuzzy
sets of X and Y , respectively, then the image ϕ(µ) of µ is the fuzzy subset of Y defined as
follows: for all y ∈ Y , if ϕ−1(y) 6= ∅, ϕ(µ)(y) = sup

x∈ϕ−1(y)

{µ(x)}; otherwise, ϕ(µ)(y) = 0.

The inverse image ϕ−1(ν) of ν is the fuzzy subset of X defined by ϕ−1(ν)(x) = ν(ϕ(x))
for all x ∈ X.

Let R1 and R2 be two hyperrings, and ϕ : R1 → R2 be a strong homomorphism. If
µ and ν are (normal) fuzzy hyperideals of R1 and R2, respectively, then (1) ϕ(µ) is a
(normal) fuzzy hyperideal of R2; (2) if ϕ is onto, then ϕ−1(ν) is a (normal) fuzzy hyper-
ideal of R1. If µ and ν are normal fuzzy hyperideals of R1 and R2, respectively, then (1)
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if ϕ is onto, then ϕ(ϕ−1(ν)) = ν; (2) if µ is a constant on kerϕ, then ϕ−1(ϕ(µ)) = µ.
Let µ be a normal fuzzy hyperideal of R, then Rµ = {x ∈ R | µ(x) = µ(0)} is a normal
hyperideal of R.

5.1. Theorem. (First Fuzzy Isomorphism Theorem) Let (F,A) and (G,B) be soft hy-
perrings over hyperring R1 and hyperring R2, respectively. If (ϕ,ψ) is a soft epimorphism
from (F,A) to (G,B) and µ is a normal fuzzy hyperideal of R1 with (R1)µ ⊇ kerϕ, then
(F/µ,A) ' (ϕ(F )/ϕ(µ), A), where (F/µ)(x) = F (x)/µ for all x ∈ A. Moreover, if ψ is
bijective, then (F/µ,A) ' (G/ϕ(µ), B).

Proof. We obtain that (F/µ,A) is a soft hyperring over R1/µ, since (F,A) is soft hy-
perring over R1, and µ is a normal fuzzy hyperideal of R1. For all x ∈ Supp(F,A),
ϕ(F (x)) = G(ψ(x)) is a subhyperring of R2, so (ϕ(F )/ϕ(µ), A) is a soft hyperring over
R2/ϕ(µ). ϕ′ : R1/µ → R2/ϕ(µ) defined by ϕ′(µ∗[x]) = ϕ(µ)∗[ϕ(x)], for all x ∈ R1,
is an isomorphism, by the first fuzzy isomorphism theorem of hyperrings. ψ′ : A → A
defined by ψ′(x) = x for all x ∈ A, is bijective. Moreover, ϕ′(F (x)/µ) = {ϕ(µ)∗[a] | a ∈
ϕ(F (x))} = ϕ(F (x))/ϕ(µ) = ϕ(F (ψ′(x)))/ϕ(µ), for all x ∈ A. It follows that (ϕ′, ψ′) is
a soft isomorphism, and (F/µ,A) ' (ϕ(F )/ϕ(µ), A).

Moreover, for all x ∈ A, we have that ϕ′(F (x)/µ) = {ϕ(µ)∗[a] | a ∈ ϕ(F (x))} =
ϕ(F (x))/ϕ(µ) = G(ψ(x))/ϕ(µ). ϕ′ is an isomorphism, and ψ is bijective. It follows that
(ϕ′, ψ) is a soft isomorphism, and (F/µ,A) ' (G/ϕ(µ), B).

5.2. Theorem. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hy-
perring R2 respectively. If (ϕ,ψ) is a soft epimorphism from (F,A) to (G,B) and ν is
a normal fuzzy hyperideal of R2, then (F/ϕ−1(ν), A) ' (ϕ(F )/ν,A). Moreover, if ψ is
bijective, then (F/ϕ−1(ν), A) ' (G/ν,B).

Proof. Since ν is a normal fuzzy hyperideal of R2 and ϕ is an epimorphism, we have
that ϕ(ϕ−1(ν)) = ν and ϕ−1(ν) is a normal fuzzy hyperideal of R1. Thus, (F/ϕ−1(ν), A)
and (ϕ(F )/ν,A) are soft hyperrings over hyperrings R1/ϕ

−1(ν) and R2/ν, respectively.
For any x ∈ kerϕ, ϕ(x) = ϕ(0). It follows that ν(ϕ(x)) = ν(ϕ(0)), i.e., ϕ−1(ν)(x) =
ϕ−1(ν)(0), which implies that x ∈ (R1)ϕ−1(ν). So (R1)ϕ−1(ν) ⊇ kerϕ. By Theorem
5.1, we have (F/ϕ−1(ν), A) ' (ϕ(F )/ν,A). Furthermore, if ψ is bijective, then we have
(F/ϕ−1(ν), A) ' (G/ν,B).

5.3. Theorem. (Second Fuzzy Isomorphism Theorem) Let (F,A) be a soft hyperring
over R. If µ and ν are two normal fuzzy hyperideals with µ(0) = ν(0), then (Fµ/(µ ∩
ν), A) ' ((Fµ + Fν)/ν,A).

Proof. We have that µ ∩ ν and ν are normal fuzzy hyperideal of Rµ and Rµ + Rν ,
respectively. It follows that Rµ/(µ ∩ ν) and (Rµ +Rν)/ν are hyperrings. Since (F,A) is
a soft hyperring over R, we can obtain easily that (Fµ/(µ ∩ ν), A) and ((Fµ + Fν)/ν,A)
are soft hyperrings over Rµ/(µ ∩ ν) and (Rµ + Rν)/ν, respectively. ϕ : Rµ/(µ ∩ ν) →
(Rµ+Rν)/ν is defined by ϕ((µ∩ν)∗[x]) = ν∗[x] for all x ∈ Rµ. If (µ∩ν)∗[x] = (µ∩ν)∗[y],
then (µ∩ν)(x) = (µ∩ν)(y), i.e., min{(µ(x), ν(x)} = min{(µ(y), ν(y)}. Because x, y ∈ Rµ
and µ(0) = ν(0), we have µ(x) = µ(0) = ν(0) and µ(y) = µ(0) = ν(0). So ν(x) = ν(y).
It follows that ν∗(x) = ν∗(y). Thus, ϕ is well-defined. Moreover, we have

ϕ((µ ∩ ν)∗[x]⊕ (µ ∩ ν)∗[y]) = ϕ({(µ ∩ ν)∗[z] | z ∈ (µ ∩ ν)∗[x] + (µ ∩ ν)∗[y]})

= {ν∗[z] | z ∈ (µ ∩ ν)∗[x] + (µ ∩ ν)∗[y]} = ν∗((µ ∩ ν)∗[x])⊕ ν∗((µ ∩ ν)∗[y])

= ϕ((µ ∩ ν)∗[x])⊕ ϕ((µ ∩ ν)∗[y]),
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ϕ((µ ∩ ν)∗[x]� (µ ∩ ν)∗[y]) = ϕ((µ ∩ ν)∗[x · y]) = ν∗[x · y]

= ν∗[x]� ν∗[y] = ϕ((µ ∩ ν)∗[x])� ϕ((µ ∩ ν)∗[y])

and ϕ((µ ∩ ν)∗[0]) = ν∗[0] = 0. Consequently, ϕ is a homomorphism.
If (µ∩ν)∗[x] 6= (µ∩ν)∗[y], we have (µ∩ν)(x) 6= (µ∩ν)(y). It follows that ν(x) 6= ν(y),

so ν∗[x] 6= ν∗[y]. Hence, ϕ is a monomorphism. For any ν∗[x] ∈ (Rµ + Rν)/ν, where
x ∈ Rµ + Rν , which implies that there exist a ∈ Rµ and b ∈ Rν such that x ∈ a + b,
there is α ∈ x− a ⊆ a+ b− a ⊆ Rν , i.e., ν(α) = ν(0). Hence we have ν∗[x] = ν∗[a]. So
ϕ((µ ∩ ν)∗[a]) = ν∗[x], and ϕ is an epimorphism. Thus, ϕ is an isomorphism.
ψ : A→ A defined by ψ(x) = x for all x ∈ A, is bijective. For all x ∈ A, ϕ(Fµ(x)/(µ∩

ν)) = Fµ(x)/ν = (Fµ + Fν)(x)/ν = (Fµ + Fν)(ψ(x))/ν. The proof of Fµ(x)/ν = (Fµ +
Fν)(x)/ν is showed as follows.

Clearly, Fµ(x)/ν ⊆ (Fµ + Fν)(x)/ν. For all ν∗[a] ∈ (Fµ + Fν)(x)/ν, where a ∈
(Fµ + Fν)(x), which implies that there exist m ∈ Fµ(x) and n ∈ Fν(x) such that a ∈
m + n, there is α ∈ a − m ⊆ m + n − m ⊆ Fν(x), i.e., ν(α) = ν(0). It follows that
ν∗[a] = ν∗[m] ∈ Fµ(x)/ν.

Therefore, (ϕ,ψ) is a soft isomorphism and (Fµ/µ ∩ ν,A) ' ((Fµ + Fν)/ν,A).

5.4. Theorem. (Third Fuzzy Isomorphism Theorem) Let (F,A) be a soft hyperring
over a hyperring R. If µ and ν are two normal fuzzy hyperideals with ν ≤ µ, µ(0) = ν(0)
and Fµ(x) = Rµ for all x ∈Supp(F,A), then ((F/ν)/(Fµ/ν), A) ' (F/µ,A).

Proof. We can easily deduce that Rµ/ν is a normal hyperideal of R/ν. Because (F,A) be
a soft hyperring over R, we have that (F/ν,A), ((F/ν)/(Fµ/ν), A) and (F/µ,A) are soft
hyperrings over R/ν, (R/ν)/(Rµ/ν) and R/µ, respectively. ϕ : R/ν → R/µ is defined
by ϕ(ν∗[x]) = µ∗[x] for all x ∈ R. If ν∗[x] = ν∗[y] for all x, y ∈ R, then there exists
α ∈ x− y such that ν(α) = ν(0). Because ν ≤ µ and µ(0) = ν(0), we get µ(α) ≥ ν(α) =
ν(0) = µ(0), which implies that µ(α) = µ(0). So we have µ∗[x] = µ∗[y]. Thus, ϕ is
well-defined. Clearly, ϕ is an epimorphism. ψ : A→ A defined by g(x) = x for all x ∈ A,
is bijective. For all x ∈ A, ϕ(F (x)/ν) = F (x)/µ = F (ψ(x))/µ. Hence, (ϕ,ψ) is a soft
epimorphism from (F/ν,A) to (F/µ,A). Moreover, kerϕ = {ν∗[x] ∈ R/ν | ϕ(ν∗[x]) =
µ∗[0]} = {ν∗[x] ∈ R/ν | µ∗[x] = µ∗[0]} = {ν∗[x] ∈ R/ν | µ(x) = µ(0)} = {ν∗[x] ∈ R/ν |
x ∈ Rµ} = Rµ/ν. By Theorem 4.4, we have ((F/ν)/(Fµ/ν), A) ' (F/µ,A).

6. Conclusions
In this paper, we define soft hyperrings, idealistic soft hyperrings, soft subhyperrings

and soft hyperideals, and introduce homomorphism and isomorphism of soft hyperrings.
Furthermore, we generalize three (fuzzy) isomorphism theorems of hyperrings to three
(fuzzy) isomorphism theorems of soft hyperrings. Based on these results, we will apply
the notion of soft sets to other algebraic hyperstructures, and consider some applications
of soft hyperrings in decision making problems.
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