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ABSTRACT  

The effect of an axial magnetic field on the flow produced by counter-rotation of the top and bottom disks in 

a truncated conical enclosure filled with a liquid metal is studied. The governing Navier-Stokes, and potential 

equations are solved by using the finite-volume method. It was observed that the Reynolds number is increased, the 

axisymmetric basic state loses stability and giving an asymmetric mode m=1. It is also found that the primary 

thresholds Recr corresponding to the modes m=1 increase with increasing of the Hartmann number (Ha). Finally, 

stability diagram (Re-Ha) has been established according to the numerical results of this investigation. 
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INTRODUCTION 

The flows between two rotating disks were the subject of many studies. These flows, first studied by 

Batchelor [1] were given the name of Von Kármán swirling flows by Zandbergen and  Dijkstra[2],and occurred 

frequently in geophysical and in industrial applications. The major characteristics of the flow are known to be 

determined by  two dimensionless parameters: The aspect ratio ( =H/R)and the Reynolds number (Re = ΩR2/ν). 

 When a magnetic field is applied to a flow of an electrically conducting fluid, complex induction 

mechanisms occur and induced currents and magnetic field that are generated [3]. In the case of crystal growth, 

for example, magnetic fields are used to suppress the convective motion induced by the arising strong fluxes in 

order to control the flow in the melt, and consequently the crystal quality [4]. There are various studies of  flow 

and heat transfer in a rotating system in the presence of a magnetic field [5-12] .We continue our previous study 

[13,14,15] with attention has turned to the three-dimensional symmetry breaking of the basic state in a conical 

enclosure. 

We have studied the three-dimensional forced convective magnetohydrodynamic flow in a truncated 

conical enclosure of radius R (bottom) and Rtop=1/2R (top), having an aspect ratio (γ=H/R=2), filled with a 

liquid metal characterized by a small Prandtl number (Pr=0.015) and submitted an axial magnetic field. The 

bottom disk is rotating with a constant angular velocity Ω. Numerical results were obtained for various values of 

angular velocity (Ωtop =1/4Ω, 1/2Ω, Ω, 2Ω, 4Ω respectively) and for Hartmann numbers Ha=5, 10, 15 and 20. 

The objective is to determine critical Reynolds numbers for the transition from axisymmetric to non-

axisymmetric flow. The critical Reynolds number Recr are observed depending on the combination of the angular 

velocity of the top disk number and Hartmann numbers. 

MATHEMATICAL MODELLING   

Model 

The geometry under consideration is shown in Fig. 1. A liquid metal with a density, a kinematic 

viscosity  and an electrical conductivity, fills a truncated conical enclosure of radius R(bottom disk) and 

Rtop=1/2R (top disk) and height H (=H/R=2), submitted to an axial magnetic field B. The bottom disk is rotating 

with a constant angular velocity Ω, while the top disk is in counter-rotating with various values of angular 

velocity (Ωtop =1/4Ω, 1/2Ω, Ω, 2Ω, 4Ω respectively). The walls of the truncated cone are electrically insulated. 

The induced magnetic field is negligible because the magnetic Reynolds number Rem is much smaller than the 

unity. All the physical properties are taken as constant. 
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Figure. 1 Flow geometry and schematic of symmetries 

Governing Equations 

By neglecting the dissipation, and using R, 1/Ω, ΩR, ρ(ΩR)2 and ΩR2B as typical scales, respectively, 

for lengths, time, velocities, pressure and electric potential, the continuity, momentum and potential equations 

can be written, in a dimensionless form, as follows [13,14,15]: 
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 U is the velocity vector (u, v, w): u, v and w for the radial, axial and azimuthal velocity components, 

respectively. ez is the unit vector in the axial direction; P is the dimensionless pressure. 

The dimensionless physical parameters are:  

The Reynolds number, /2RRe  and the Hartmann number,  /BRHa 
.
  

The initial condition for each parametric case is that the fluid must be at rest. The bottom disk start their 

rotation with angular velocity Ω and the top disk is in counter-rotating with various values of angular velocity 

(Ωtop =1/4Ω, 1/2Ω, Ω, 2Ω, 4Ω ) respectively.   

At τ = 0:   

          0u , 0v , 0w , 0                (4) 

 

   The boundary conditions, for τ>0, are:  

Sidewall electrically insulated:  
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At rotating bottom disk:   

 

0u  0v ,  rw  ,   0




z
    0z                                                    (6) 

At counter-rotating top disk: 
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with =1/4,1/2,1, 2, 4 respectively, the periodicity condition: 
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NUMERICAL METHOD 

The governing equations (1)-(3), with the associated boundary conditions, are solved using the finite-

volume method. The components of the velocity (u, v and w) are stored at the staggered locations, and the scalar 

quantities (P and Φ) are stored in the centre of these volumes. A fully implicit time marching scheme is used. The 

numerical procedure, which is SIMPLER [16], is used to handle the pressure-velocity coupling. For treatment of the 

diffusion terms in equations (2)-(3), central difference scheme is adopted. Convergence at a given time step is 

declared when the maximum relative change between two consecutive iteration levels fell below  10−5 , for u, v,  and 

w. At this stage, the steady state solution is obtained. At this stage, the steady state solution is obtained. The solution 

was obtained as follows: 

 Equations (1) and (2) are first solved to get P, u, v and w. 

 The potential Φ are subsequently computed from Eqs. (3) .  

The different quantities associated with the set of equations, are discretised on non-uniform grids and 

solved on the (r; θ; z). For a properly resolved direct numerical simulation, especially in the case of MHD flow, 

the features of the specific flow, heat transfer and boundary layers must be considered. In particular, the increase 

of Ha results to thinner Hartmann layers at the walls normal to the magnetic field of thickness ~1/Ha. As a 

result, non-uniform grids were used for the simulation of the cases Ha=0 to Ha=20.  
 

RESULTS AND DISCUSSION 

Validation 

In the case without magnetic field, the present numerical results are compared with the previous numerical 

study of Escudier et al.[17],  ,who carried numerical calculations for flow in a truncated cone generated by rotation of 

one endwall. In Fig.2, we have shown the reproduced streamlines for geometry with Re = 1854, for angle of 

inclination of container sidewall (= -7). 

 

 

Figure 2. Comparison between present numerical results and numerical result of Escudier et al.[17]: Streamlines for 

convergent geometry with Re = 1854 and = -7. 

 

Basic State 

The basic flow consists of a dominant azimuthal shear layer produced by the counter-rotating end disks [1]. 

There are also second-order recirculation zones due to Ekman pumping in the area of each disk. The two zones of the 

meridional flow meet at the mid-plane and converge to form an inwardly directed radial jet. The configuration in 

basic state is invariant under rotations Rθ  about the z-axis. These symmetries are illustrated in Fig.1, which shows the 



Journal of Thermal Engineering, Research Article, Vol. 5, No. 2, Special Issue 9, pp. 77-83, February, 
2019 

80 

 

plots of vertical velocity contours at Re = 300. (basic state flow). We have remarked that v is invariant under rotations 

Rθ  about the z-axis. 

 

Bifurcations without Magnetic Field (Ha=0) 

Starting from the calculated Re =500 and increasing Ωtop gradually until the first asymmetric solution is 

observed up to Ωtop= 2Ω, the mode m = 1 was shown in this case, and becomes stable at Ωtop= 4Ω via a sequence of 

bifurcations. The vortices shown in Fig. 3 are confined near the sidewall and are manifested in the bulk as waviness 

in the shear layer. Fig. 3 shows that the maximum axial velocity is increased by increasing the angular velocity of the 

top disk. The bifurcation from the azimuthal mode m =0 (axisymmetric) shown in Fig. 3(a-c) to the steady state 

branch of mode m = 1 (non-axisymmetric), occurs for Ωtop1.8Ω. The mode m=1 can be viewed as the result of the 

first instability of the equatorial shear layer produced by the counter-rotating disks. 

 

 

                (a)                                    (b)                                    (c)                                      (d)                                       (e) 

Figure 3. Iso-contours of axial velocity with Re = 500 and Ha=0 (a) Ωtop=1/4Ω, (b) Ωtop=1/2Ω , (c) Ωtop=Ω , (d) 

Ωtop=2Ω, (e) Ωtop=4Ω. 

 

Bifurcations with Magnetic Field (Ha ≠ 0) 

When an axial magnetic field is imposed, some interesting changes are observed in the motion of the fluid. 

In the case of turbulent flow, the presence of the magnetic field results in the stabilization of the flow turning it to 

laminar and axisymmetric.  

As it is already mentioned, for the case Re=500 and Ωtop= 2Ω, the flow is fully asymmetric. For High values 

of Ha number, the asymmetric flow becomes axisymmetric. Fig. 4 shows the axial velocity at meridional plane r=0, 

for Re=500, and for different values of angular velocity (Ωtop =1/4Ω, 1/2Ω, Ω, 2Ω, 4Ω respectively). We can see It is 

easily observed at this value of Hartmann number that the flow remains axisymmetric whatever the rotation rate. As 

it concerns the flow structure the magnetic field suppresses the fluid motion and the axial velocity decreases with 

increasing Hartmann number (see, Fig.5). We can see the decrease of the axial velocity when the Hartmann number 

increases. The regions located just under the rotating disk and just above the bottom counter-rotating disk correspond 

to a concentration of the electric current lines perpendicular to the magnetic field B. As a result, in these locations the 

Lorentz force is large. When the Hartmann number increases, the Ekman layer characterised by the equilibrium 

between the centrifugal and viscous forces is progressively replaced by the Hartmann layer characterised by 

equilibrium between electromagnetic and viscous forces [8]. This is shown in Fig. 5 where iso-contours of axial 

velocity at  z= 0.5 (bottom), z = 1 (middle), and z = 1.5 (top), for the cases Ωtop =Ω and various values Hartmann 

number Ha=5, 10, 15 and 20 are compared. 

Stability Diagram 

For the counter-rotating end disks case with Ωtop=Ω, the stability diagram presented in Fig.6 is constructed 

on (Recr–Ha) plane. It is observed in this figure the evolution of the primary thresholds, Recr corresponding to the 

mode m=1 as a function of Ha. We have shown that the order of appearance of these mode changes when Re is 

increased (the contour plots of the vertical velocity v in the horizontal plane, for the corresponding mode, are 

given with respect to this order).  The only effect of increasing Ha is a continuous increase in Recr. In this diagram, 

we also give the iso-contours of the vertical velocity in the z=1 plane for the different branches of solutions (above 

the curve) at (Re =450, Ha=5); (Re =700, Ha=10); (Re =900, Ha=15). For Ha=5 the mode m=1 appears for at Re= 

405. For Ha=10 the mode m=1 appears at Re= 560  and for Ha=15 the m=1 appears at Re=810.  
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 Figure. 4 Iso-contours of axial velocity with Re = 500and Ha=20 (a) Ωtop=1/4Ω, (b) Ωtop=1/2Ω , (c) Ωtop=Ω , 

(d) Ωtop=2Ω, (e) Ωtop=4Ω. 

 

Figure 5. Iso-contours of axial velocity at  z= 0.5 (bottom), z = 1 (middle), and z = 1.5 (top), for the case of     Re 

= 1000 (Ωtop=Ω)  . Asymmetric flow for three cases: Ha=5, Ha=10 , Ha=15; axisymmetric basic flow for the case 

of Ha=20. 

 
For a moderate Hartmann number (Ha=20) , the flow sets in with the mode m=1 for Re= 1050. Under 

the curve, we present the structure of axisymmetric contours of vertical velocity at meridional plane r=0, which 

correspond to an axisymmetric solution (m=0) in case of Re=300 with Ha= 10 and 20. Finally, all the primary 

thresholds increase with the Hartmann number, confirming the phenomenon of flow stabilization by the application 

of the magnetic field. 

 

Figure 6. Stability diagram in the (Recr–Ha) plane for(Ωtop=Ω). Evolution of the primary thresholds 

Recrcorresponding to the modes m=1, as a function of Ha. 
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CONCLUSION 

Flow produced by counter-rotation of the top and bottom disks in a conical enclosure having an aspect ratio 

equals to 2, filled with a liquid metal has been numerically studied. The bottom disk is rotating with a constant 

angular velocity Ω, while the top disk is in counter-rotating with various values of angular velocity. The study is 

divided into two parts, with and without magnetic field. The finite volume method has been used to solve 

numerically the transport equations. The effects of both the magnetic field and angular velocity have been studied. 

The main results obtained in this study are as follows: 

 The developed code in this study was validated with the results found in the literature, and a good agreement 

has been obtained.  

 It was observed that when the Reynolds number is increased, the axisymmetric basic state loses stability and 

different complex flows appear successively and the structure of the flows is dominated by the mode m=1. 

 The present results show that the increase of the Hartmann number causes the increase of the critical Reynolds 

number. Therefore, the increase in the values of Ha, suppresses the fluid motion and reduce the axial velocity. 

 It is shown when the magnitude  of the magnetic field (Ha) exceeds a certain value the steady three-dimensional 

flow obtained for large Re, due to the counter-rotation mechanism tends to be axisymmetric flow and 

confirming the phenomenon of flow stabilization by the application of the magnetic field. 

 

NOMENCLATURE 

B magnitude of the external magnetic field   (Tesla) 

H height of the cylinder        (m) 

P dimensionless pressure        ( - ) 

R radius of the cylinder        (m)  

r, θ, z dimensionless spatial coordinates   (m) 

U dimensionless velocity vector     ( - ) 

Greek symbols 

α thermal diffusivity of the fluid      (m2/s)  

    thermal expansion coefficient      (1/K) 

 aspect ratio          ( - ) 

 dimensionless temperature      ( - ) 

 density of the fluid         (kg/m3)  

 electric conductivity         ( /m) 

 dimensionless electric potential       ( - ) 

Ω angular velocity            (rad/s)  

 dimensionless time          ( - ) 

Subscripts 

cr critical value. 
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