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ABSTRACT 

In this study, we propose a novel, fast and accurate segmentation algorithm to segment nuclei in H&E stained histopathological 

tissue images. The proposed algorithm does not require pre-processing, post-processing, and any manual parameter or threshold. 
The algorithm utilizes probabilistic and statistical properties of the pixels’ color value in the images with RGB color space, and 
determines whether pixels are a part of any nuclei or not by using an automatically calculated threshold value. The algorithm 
provides time efficiency and reduced overall cost in the segmentation. Two more algorithms are also proposed to distinguish nuclei 
cluster from the other clusters obtained by K-means, and eliminate false positives in nuclei cluster, which are not nuclei. In order 
to compare and evaluate the performance of the proposed segmentation algorithm in terms of time and cost efficiency, K-Means is 
preferred because of its common usage. Expert evaluation is declared as ground truth for determining the accuracy of the results. 
The experiments are performed on 60 healthy and 60 damaged kidney, and 60 healthy and 60 damaged liver tissue images. The 
evaluations show that the proposed algorithm can effectively segment nuclei. The comparison results also demonstrate that the 
deviation between proposed algorithm and the expert is 2%, while the deviation between K-Means and expert is 5%. 

Keywords: Image segmentation, medical image processing, clustering methods, pattern recognition. 

H&E ile Boyanmış Histopatolojik Doku İmgeleri için 

Yeni Bir Olasılıksal Hücre Çekirdeği Bölütleme 

Algoritması 

ÖZ 

Bu çalışmada, H&E boyalı histopatolojik doku imgelerindeki hücre çekirdeklerini bölütlemek için yeni, hızlı ve doğru bir 
bölütleme algoritması önerilmiştir. Önerilen algoritma ön işlem, son işlem, herhangi bir manuel parametre veya eşik değeri 
gerektirmez. Algoritma, RGB renk uzayında olan imgelerdeki piksellerin renk değerinin olasılıksal ve istatistiksel özelliklerini 
kullanır ve piksellerin herhangi bir çekirdeğin bir parçası olup olmadığını otomatik olarak hesaplanan eşik değeri kullanarak 

belirler. Algoritma, zaman verimliliği sağlar ve bölütleme genel maliyetini düşürür. Ayrıca, K-ortalama sonucu elde edilen kümeler 
içerisinden hücre çekirdeklerini içeren kümenin belirlenmesi ve hücre çekirdekleri kümesi içerisinde bulunan ancak hücre çekirdeği 
olmayan yanlış pozitiflerin elimine edilmesi için iki algoritma daha önerilmiştir. Önerilen bölütleme algoritmasının zaman ve 
maliyet verimliliği açısından performansını karşılaştırmak ve değerlendirmek için, yaygın kullanımı nedeniyle K-ortalama 
bölütleme algoritması tercih edilmiştir. Sonuçların doğruluğunu belirlenmesi için uzman değerlendirmesi baz alınmıştır. Deneyler 
60 sağlıklı ve 60 hasarlı böbrek ile 60 sağlıklı ve 60 hasarlı karaciğer görüntüsü üzerinde gerçekleştirilmiştir. Değerlendirmeler, 
önerilen algoritmanın çekirdekleri etkili bir şekilde bölütleyebildiğini göstermektedir. Karşılaştırma sonuçları ayrıca önerilen 
algoritma ile uzman arasındaki sapmanın %2 olduğunu, K-Ortalama ve uzman arasındaki sapmanın ise %5 olduğunu 
göstermektedir. 

Anahtar Kelimeler: Görüntü bölütleme, medikal görüntü işleme, kümeleme yöntemleri, örüntü tanıma.   

1. INTRODUCTION 

In histopathological analysis, the tissue samples are 

prepared by performing routine technical procedures 

which are fixation, dehydration, clearing, infiltration, 
embedding, sectioning, and staining respectively [1,2]. 

Staining procedure aims to reveal different tissue 

structures by staining it with different colors. 

Hematoxylin-Eosin (H&E) is the most common staining 

technique and many pathologists believe that H&E will 

continue to be common practice over the next 50 years 

[3,4]. Hematoxylin stains nuclei with blue color 

specification, while Eosin stains other structures such as 

cytoplasm, connective tissue, vascular lumen, etc. with 

white and pink color specification. Histopathological 

images can be obtained by different imaging techniques 

[2,5] depending on usage purposes. Fast slide scanners 

are usually used to generate digital histopathological 
*Sorumlu Yazar  (Corresponding Author)  
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images that contain relevant information about the 

specimen at a microscopic imaging.  

An expert evaluates digital histopathological images 
manually or by a Computer Assisted Diagnosis (CAD) 

system. In practice, experts visually examine the tissue 

sections through a microscope. However, this approach 

is slow, time consuming [6] and error-prone due to 

inexperience and subjectivity of experts.  It is also 

presented in [7–9] that the experts make joint decision 

between 61% and 73%.  

CAD systems have been used in histopathology besides 

other medical fields to provide quantitative data to 

experts in diagnosis process [3,10–23]. Furthermore, 

these data acquired by a CAD system may provide more 

confidence in decision-making process during a 

diagnosis. CAD systems also reduce the workload, and 

speed up the diagnosis and treatment process. Thanks to 

recent advances in CAD systems, different various 

disease detection and grading application have been 

proposed, including counting of ovary follicles [24], 
compute areas and volume of the scar cardiac tissue [19], 

diagnosing melanocytic and non-melanocytic skin 

lesions [25], locating and qualification of fatty and 

necrosis area of liver tissues [21–23], detection and 

analysis of cancer such as breast [26], prostate [27], lung 

[28]. 

Segmentation is an important initial step of many CAD 
systems, and the success of the CAD systems largely 

depends on the quality of the segmentation algorithm. A 

segmentation algorithm aims to separate interested tissue 

structure from others. However, it is not an easy task due 

to the complex nature of histopathological images and the 

variability in the sample preparation, staining and image 

acquisition process. In many histopathological image 

analysis systems, segmentation mainly focuses on 

identification of nuclei owing to its major and distinct 

properties. The nuclei can be identified by using general 

or specific image segmentation algorithms.  

Well-known image segmentation algorithms can be 

categorized based on threshold, edge, region, and cluster 

in the literature. Threshold based segmentation assumes 

that certain structures have significantly different 

intensities than the background or other structures. It 

applies a fixed threshold value to image globally or 

locally. The threshold value can be depending on the 

global or local features of the image such as color 
intensities, histogram, and statistical properties of the 

features. The threshold value can be determined 

manually or calculated by a method such as Otsu [29]. 

Edge based segmentation algorithms are performed on 

especially gray level images by detecting strength 

intensity changes in pixels. The first or second order 

derivative operators such as Prewitt, Sobel, Canny, Test, 

Zero–Crossings and Laplacian are used to identify the 

pixels changing. These pixels constitute of the boundary 

of components. Region based segmentation algorithms 

aim to divide the image into homogeneous sub-regions 

considering similarity criteria such as a thresholded color 

value, equality of gray level, or relationship between any 

features based on histogram, color, etc. Region Growing 

[30], Splitting and Merging [31] are  well known 

algorithms of this category. Clustering based 
segmentation algorithms such as K-Means, Fuzzy C-

Means and Unsupervised Fuzzy C-Means separate 

images into different homogeneous sub-images called 

cluster. K-means [13,22,23,32] and Fuzzy C-Means 

[33,34] divide image into n clusters. The determination 

of number and initial pixels of clusters plays essential 

role in success of the segmentation. 

Specific nuclei segmentation algorithms have also been 
presented in the literature. H. Kong et al. proposed to 

classify pixels of histopathological images into cell and 

extra-cellular clusters by using color-texture properties 

instead of color intensities. The color-texture at each 

pixel is extracted by using local Fourier transform from 

the most discriminant color space that is optimized to be 

a linear combination of the original RGB color space 

[35]. X. Zhang et al. developed a segmentation method 

to describe cell by using Gaussian-based hierarchical 

voting and repulsive balloon model [36]. Y. Xu et al. 

proposed the multiple clustered instance learning to 
classify, segment and cluster medical images [37]. S. 

Wienert et al. suggested contour based cell detection and 

segmentation method utilizing minimal priori 

information and avoiding segmentation bias related to 

shape features. [38]. Y. Al-Kofahi et al. proposed a novel 

segmentation method consisting of various ideas. In first 

step of the method, foreground is separated from 

histopathological images by using graph-cut based 

binarization. After that, seed point of nuclei is obtained 

by multi-scale Laplacian of Gaussian filtering that is 

restrained by distance-map-based adaptive scale 

selection. These points are then used to perform initial 
segmentation improved by using second graph-cut based 

algorithm including the alpha expansions and graph 

coloring methods [39]. 

The well-known image segmentation and specific 

histopathological image segmentation algorithms require 

pre-processing, post-processing, algorithm specific 
parameter or threshold value determined manually. 

These increase the mathematical calculations naturally. 

However, the nuclei segmentation can be performed 

without these operations to achieve relatively reduced 

overall operational cost, if the concern is to segment cell 

nuclei in H&E stained histopathologic images, which is 

major structure of a tissue especially in cancer 

researches.  

Two main contributions are presented in this study. The 

first contribution is proposed Probabilistic Nuclei 

Segmentation Algorithm. The algorithm is novel, fast 

and accurate. In addition, it does not require pre-

processing, post-processing, and any parameter or 

threshold value determined manually, to identify nuclei 

in H&E stained histopathological images. The algorithm 

utilizes probabilistic and statistical properties of the 

pixels’ color value in the images with RGB color space, 
and determines whether pixels are a part of any nuclei or 
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not by using an automatically calculated threshold value. 

The probabilistic and statistical operations are focused on 

blue channel of the RGB color space due to the fact that 

the cell nuclei are stained with blue in the H&E stained 
histopathological images. This approach provides time 

efficiency and reduced overall cost in nuclei 

segmentation process. Two more algorithms are 

proposed as second contribution to distinguish cluster 

containing nuclei from the other clusters obtained by K-

means, and eliminate false positives in nuclei cluster, 

which are not nuclei. 

We preferred to compare our proposed algorithm with a 

well-known segmentation algorithm, which has been 

used in histopathological image segmentation, to 

evaluate the performance of the proposed nuclei 

segmentation algorithm in terms of time and cost 

efficiency as well as accuracy of results. For this, K-

means is considered because of its common usage 

[12,13,22,23,32,40,41]. The accuracy of an algorithm for 

nuclei segmentation is to locate and identify all nuclei 

correctly in histopathological image. Expert evaluation is 
declared as ground truth for determining the accuracy of 

the proposed algorithm. 

The experiments performed on 60 healthy and 60 

damaged kidney, and 60 healthy and 60 damaged liver 

tissue images reveal that the proposed algorithm is 

effective to obtain accurate nuclei segmentation and cell 
counting. In addition, the experiments show that the 

results of the proposed algorithm are closer to expert’s 

evaluation than the results of K-Means. It is also shown 

that the proposed algorithm is faster than K-Means. 

The rest of this paper is organized as follows. Section 2 

highlights the requirements of the histopathological 
image segmentation algorithms and introduces K-Means. 

Nuclei distinguishing, and false positive removal 

algorithm are also explained in Section 2.  The proposed 

segmentation algorithm is presented and analyzed in 

section 3. Section 4 describes dataset, evaluations and 

discussions of experiments. Conclusions are summarized 

in section 5.  

 

2. CELL NUCLEI SEGMENTATION  

The well-known histopathological image segmentation 

algorithms generally require pre-processing, post-

processing, algorithm specific parameters or threshold 

value determined manually as stated in introduction. 

Watershed needs to convert image color space from RGB 

to gray-scale as a pre-processing step. Similarly, 

thresholding requires transforming color space from 

RGB to binary or gray-scale in pre-processing step. K-
Means, Watershed, Region Growing and Fuzzy C-Means 

algorithms segment image into different clusters, but the 

algorithms does not identify the cluster containing nuclei. 

Thus, the algorithms include a post-processing step. In 

addition, K-Means needs parameters to determine the 

number of cluster and initial location of each cluster. 

Region Growing requires also number of seed and initial 

position of each seed. In threshold-based segmentation 

algorithms, determination of a threshold value parameter 

is necessary as well.  

The proposed algorithm is compared to K-Means 

Segmentation Algorithm since it is widely used in 

histopathological image segmentation [12,13,22,23, 

32,40,41]. 

2.1. K-Means Segmentation Algorithm 

K-Means Segmentation Algorithm divides image into 

homogeneous sub-images as clusters. Thus, it is essential 

to determine number of clusters for clear segmentation. 
The number of clusters can be determined manually or 

computationally [42]. If number of clusters is 

predictable, it is determined manually to avoid raising the 

computational cost. K-Means Segmentation Algorithm is 

expressed step by step as follows:  

1. Number of clusters is determined. 

2. Initial centroid of clusters is selected. 

3. Distances between pixels and centroids are 

calculated by using Euclidian distance as in (1). 

𝑑𝑖,𝑗 = ||𝑝𝑖 − 𝜇𝑗||                                         (1) 

where 𝑝𝑖 is location of ith pixel, i = [1, 2, 3, …, the 

number of pixels], 𝜇𝑗 is centroid of jth cluster, j = 

[1, 2, 3, …, the number of clusters k], 𝑑𝑖,𝑗  is 

Euclidian distance between location of ith pixel 

and centroid of jth cluster. 

4. Each pixel is assigned to nearest cluster.  

5. Centroid of clusters is recalculated as in (2). 

𝜇𝑗 =
1

𝑛𝑗
∑ 𝑝𝑙

𝑗
 

𝑛𝑗

𝑙=1
                                         (2) 

                

where 𝑛𝑗  is number of pixels in jth cluster, 𝑝𝑙
𝑗
 is 

location of lth pixels in jth cluster. 

6. Steps 3, 4 and 5 are repeated as long as the 

centroid of clusters shifts. This repetition can be 
terminated when the amount of shift is smaller 

than a predefined threshold value. 

Cost function of K-Means 𝐽 is calculated by summing of 

squares of Euclidian distances between each pixel and 

centroid of cluster that contains the pixel as in (3). 

   

𝐽 = ∑ ∑‖𝑝𝑙
𝑗

− 𝜇𝑗‖
2

𝑛𝑗

𝑙=1

𝑘

𝑗=1

                                                    (3) 

                 

A histopathological liver tissue image shown in Figure 

1(a) is used to demonstrate the segmentation results of K-

Means with 5 clusters. The clusters results of 

segmentation are shown in Figure 1(b-f). The structures 

in histopathological image are assigned to different 

clusters as seen in Figure 1. In this paper, we propose an 

algorithm to distinguish nuclei cluster from these 

different clusters automatically, since K-Means cannot 

distinguish nuclei cluster itself without post-processing. 
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Figure 1. A histopathological liver tissue image and its K-

Means segmentation result with 5 clusters (a) Liver 

image. (b) Nuclei. (d) Fat vacuoles, vascular 

lumens and connective tissue. (c), (e), and (f) 

Cytoplasm. 

 

2.2. Distinguishing Nuclei Cluster 

The segmented structures are not identified after cluster-

based segmentation algorithms such as K-Means. Thus, 
it is required to distinguish the cluster containing the 

nuclei from the other clusters. We propose to take 

advantage of average of structure’s color intensity value 

for identification. First, clusters are converted to gray 

level images and average of structure’s gray level 

intensity value is calculated by considering only pixels of 

white foreground structures without pixels of black 

background area. Second, cluster with minimum average 

is identified as the nuclei cluster because structures 

stained with blue color have lower intensity value than 

the other image structures in H&E stained 
histopathological tissue images. Distinguishing of the 

nuclei cluster is formulated in (4), (5) and (6). 

𝑆𝑗 =

∑ 𝐼𝑗
𝑛𝑗

𝑙=1
(𝑝𝑙

𝑗
)                                                                          (4)                            

𝐶𝑗 =
𝑆𝑗

𝑛𝑗
                                                                                  (5)                                     

𝑁 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝐶)                                                             (6) 

where 𝑛𝑗  is number of pixels in jth cluster, 𝑝𝑙
𝑗
 is location 

of lth pixels in jth cluster, 𝐼𝑗 is gray level image of jth 

cluster, 𝑆𝑗  is total gray level intensity of 𝐼𝑗, 𝐶𝑗 is average 

gray level intensity of 𝐼𝑗, 𝑁 is nuclei cluster binary image. 

 

The obtained nuclei cluster after applying the proposed 

distinguishing algorithm to clusters in Figure 1(b-f) is 

shown in Figure 2(a). As seen in Figure 1(b) and Figure 

2(a), nuclei cluster contains false positive tiny points that 
are not nuclei. These points have to be removed from 

cluster to segment nuclei accurately.   

2.3. False Positive Removal 

Tiny points in blue color specification can be seen in the 
H&E stained histopathological images when the images 

are examined in detail. These misleading points can 

occur due to the complex nature of histopathological 

tissue and the variability in the sample preparation, 

staining and image acquisition process. Thus, these 

points cause to appear false positive points (FPP) in 

nuclei cluster. These FPP are in fact not part of any 

nuclei. The FPP is required to be removed from nuclei 

cluster for preventing identification of misleading points 

as cell nuclei. A false positive removal algorithm is 

proposed to remove the FPP. 

Area of FPP is considerably smaller than a nucleus area. 

Thus, area thresholding is applied to nuclei cluster to 

remove FPP in binary nuclei cluster. The threshold can 

be determined manually depending on nature and 

resolution of image or automatically. In automatic 

thresholding, first r the ratio between number of pixels in 

foreground of binary nuclei cluster and resolution of 

image (total pixels count of the image) is computed as in 
(7). The calculated ratio r is used as circle radius. Then, 

the area of circle of radius r is calculated as in (8) and this 

area is used as area threshold Ԏ. Finally, the component 

whose area is smaller than Ԏ is removed from binary 

nuclei image as in (9). 

𝑟 =
𝜓

φ
                                                                    (7)  

Ԏ = 𝜋𝑟2                                                               (8) 

Ƒ𝑖 = {
1, 𝐴𝑖 ≥ Ԏ
0, 𝐴𝑖 < Ԏ

                                                    (9) 

where ψ is the resolution of image, which is number of 

pixel in image; φ is the number of pixels in foreground 

of binary nuclei image; r is the ratio between the number 
of pixels in foreground of binary nuclei image and 

resolution of image; Ԏ is the area of circle of radius r; 𝐴𝑖 

is the area of ith foreground component, which is the 

number of pixels in the component;  Ƒi is false positive 

removal function of ith component. The component is 

removed from image if Ƒi equals to 0. The solution for 

overlapping nuclei is proposed in [11].  

The proposed false positive removal algorithm is applied 

to nuclei cluster in Figure 2(a). The obtained nuclei are 

shown in Figure 2(b) where FPP are removed. 
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Figure 2. Segmentation result of Figure 1(a) by K-Means 

Segmentation Algorithm (a) Binary nuclei cluster 

that is result of distinguishing algorithm. (b) Nuclei 

that is result of false positive removal algorithm. 

 

3. THE PROPOSED SEGMENTATION 

ALGORITHM 

Tissue staining technique plays an important role in 

selection and success of segmentation algorithms. Many 

pathologists believe H&E staining will maintain its 

dominance in practice over the next 50 years [3,4].  When 

histopathological tissue sections are stained with H&E, 

cell nuclei are typically stained with blue color and its 

specifications in the images with RGB (Red, Green, and 

Blue) color space [5]. Thus, blue color value of nuclei is 

generally greater than their red and green color value. 

The proposed algorithm aims to separate nuclei from the 

other structures in H&E stained histopathological tissue 

images on the strength of these truths. The overall 

schematic of the proposed algorithm is shown in Figure 

3.  

 
Figure 3. The overall schematic of the proposed algorithm 

 

The proposed algorithm processes an input image with 

RGB color space depending on color specification the 

image contains. The regions that contain blue color 

specifications are determined as foreground (nuclei) 

while the rest of the image is determined as background 

after the proposed algorithm processes each pixel in the 

image. As shown in Figure 4, the output of foreground is 

white, and the output of background is black. 

 
Figure 4. The sample input and output regions for the proposed 

algorithm working on blue channel 

 

The proposed algorithm firstly calculates the ratio of blue 

(B) value for each pixel as in (10). This ratio represents 

the probability of being a part of any nuclei for the pixels. 

By utilizing these probabilities, the threshold value t is 

set as in (11), (12) and (13) to decide if the pixel is a part 

of any nuclei or background. The decision function is 

presented in (14). 

𝑝𝑖 =
𝑏𝑖

(r𝑖 + 𝑔𝑖 + 𝑏𝑖)
                                                          (10) 

where ri, gi, and bi are red, green, and blue values of ith 

pixel in RGB color space respectively; pi is the ratio of 

the blue value that represents the probability of being a 

part of any nuclei for ith pixel.  

𝜇 =
1

𝑛
∑ 𝑝𝑖

𝑛

𝑖=1

                                                                      (11) 

𝜎 = √
1

(𝑛 − 1)
∑(𝑝𝑖 − 𝜇)2

𝑛

𝑖=1

                                         (12)  

𝑡 = 𝜇 + 𝜎                                                                           (13)                             

where n is number of pixels, μ is the mean of the 

probabilities, σ is standard deviation of probabilities. 

𝑓𝑖 = {
1, 𝑝𝑖 ≥ 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

}                                                    (14)                                                       

The pixel is a part of any nuclei, if decision function 𝑓𝑖 

equals to 1 for ith pixel; otherwise the pixel belongs to the 

background. If set of images is homogeneous and 

threshold value is predictable, t can be calculated once or 

defined manually. This reduces workload, and speeds up 

process. However, various processes and factors such as 

faults in any histopathological procedure and imaging 

generally make the dataset heterogeneous. Thus, t is 

calculated as in (11-13). The homogeneity means that the 

similar structures in image dataset are in the similar color. 

The pseudocode of the proposed algorithm is given in 

Algorithm 1. 
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Algorithm 1. Probabilistic Nuclei Segmentation  

                       Algorithm 

Input: RGB image 

𝐼(𝑥, 𝑦, 𝑧) = {u |255 ≥ 𝑢 ≥ 0 ∧ u, x, y ∈
ℕ ∧ z = {0,1,2} } 

Output: Binary image 𝐵(𝑥, 𝑦) = {0,1} and x, y ∈
ℕ 

V
a
ri

a
b

le
s:

 

v is vertical size of I 

h is horizontal size of I 

I(i,j,0) is red (R) color intensity of I 

I(i,j,1) is green (G) color intensity of I 

I(i,j,2) is blue (B) color intensity of I 

p is probability 

𝜇 is mean 

𝜎 is standart deviation 

𝑡 is threshold probability 

prob is temporary variable 

n is temporary pixel counter variable 

δ is temporary variable 

Algorithm: 

1 prob=0; 

2 n=0; 

3 δ=0; 

4 for i = 0; i < 𝑣; i=i+1 do 

5 for j = 0; j < ℎ; j=j+1 do 

6 

𝑝𝑖,𝑗 = 𝐼(𝑖, 𝑗, 2) / (𝐼(𝑖, 𝑗, 0) +

 𝐼(𝑖, 𝑗, 1) +  𝐼(𝑖, 𝑗, 2)) ; 

7 𝑝𝑟𝑜𝑏 =  𝑝𝑟𝑜𝑏 + 𝑝𝑖,𝑗; 

8      end 

9 end 

10 𝑛 = ℎ × 𝑣; 

11 𝜇 = 𝑝𝑟𝑜𝑏 / 𝑛; 

12 for i = 0; i < 𝑣;  i = i + 1  do 

13 for j = 0; j < ℎ;  j = j + 1 do 

14 δ = δ + (𝑝𝑖,𝑗 − 𝜇)2;  

15 end 

16 end 

17 𝜎 = √δ (𝑛 − 1)⁄  ;  

18 𝑡 = 𝜇 + 𝜎;  

19 for i = 0; i < 𝑣; i=i+1 do 

20 for j = 0; j < ℎ;  j = j + 1 do 

21 if 𝑝𝑖,𝑗 ≥ 𝑡  then 

22 𝐵(𝑖, 𝑗) = 1;  

23 end 

24 else 

25 𝐵(𝑖, 𝑗) = 0; 

26 end 

27 end 

28 end 

  

3.1. Time Complexity of The Probabilistic Nuclei 

Segmentation Algorithm 

Table 1. Computation time of the proposed  

               algorithm 

Step Computation 
Time 

(CC) 

1 T 1 

2 T 1 

3 T 1 

4 vA+(v+1)C+ (v+1)T 3v+2 

5 v(hA+(h+1)C+ (h+1)T) 3vh+2v 

6 vh(T+D+2A) 4vh 

7 vh(T+A) 2vh 

8 - - 

9 - - 

10 T+M 2 

11 T+D 2 

12 vA+(v+1)C+ (v+1)T 3v+2 

13 v(hA+(h+1)C+ (h+1)T) 3vh+2v 

14 vh(T+A+2S+M) 5vh 

15 - - 

16 - - 

17 T+R+D+S 4 

18 T+A 2 

19 vA+(v+1)C+ (v+1)T 3v+2 

20 v(hA+(h+1)C+ (h+1)T) 3vh+2v 

21 vhC vh 

22 vhT vh 

23 - - 

24 - - 

25 vhT vh 

26 - - 

27 - - 

28 - - 

Total                                                      22vh+15v+19 

 

Time complexity is important to evaluate the algorithm 

efficiency. Thus, time complexity of proposed 

Probabilistic Nuclei Segmentation Algorithm given in 

Algorithm 1 is calculated step by step in Table 1. The 

differences between the computation times of 

mathematical operations such as addition (A), 

subtraction (S), multiplication (M), division (D), 

comparison (C), square root (R) and assignment (T) are 

ignored. The computation time of the mathematical 

operations is denoted as A, S, M, D, C, R and T 

respectively. Computation time of each operation is 

accepted as 1 clock cycle (CC). For example, a=b/f+d+e 

is denoted as T+D+2A, which means there are 1 

assignment, 1 division and 2 addition. The total 

computation time of the expression is equal to 4 CC. 

Step 22 and 25 do not operate together. Only one of them 

is operated and total computation time of these two steps 
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is vh. The worst case, best case and average case of the 

proposed algorithm is the same as in (15). 

𝑇 = 22𝑣ℎ + 15𝑣 + 19 = 𝑂(𝑣ℎ) = 𝑂(𝑛)              (15) 

As seen in (15), the time complexity of the proposed 
algorithm is O(n) where n is number of pixels in the 

image. 

 

4. EXPERIMENTS 

4.1. Datasets 

In this study, histopathological images of liver and 

kidney tissues were obtained by the expert at Inonu 

University and these images were used for experiment. 

Liver tissue samples were removed from 150-180g male 

Wistar Albino Rats grouped as healthy (control) 

damaged. The damaged group were injected with olive 
oil and 1 ml/kg/day CCl4 a xenobiotic used in the 

generation of experimental liver damage, and causes 

injury on liver by increasing generation of free radicals, 

decreasing the activities of antioxidant enzymes, and 

inducing lipid peroxidation. Kidney tissue samples were 

removed from left kidney of 250-280g male Sprague 

Dawley Rats grouped as damaged and healthy. 100 

mg/kg/day the intraperitoneal Aluminium Chloride 

(AlCl3) was injected to damaged group. The rats had been 

held in 22-24 oC rooms, the seasonal daylight period, and 

fed with standard rat chow pellets and tap water. The rats 
were slept using Ketamine (Ketalar, Parke-Davis, 

Eczacıbaşı, Turkey) and Xylazine HCl (Alfazyne %2; 

Alfasan, Woerden, Netherlands) anesthesia and tissue 

samples were taken. The samples determined with 10% 

formaldehyde were embedded into paraffin block 

through routine histologic follow-up procedures. The 

sections were cut with a microtome and stained with 

H&E. The images were taken from these sections by 

Leica DFC280 light microscopy and Leica Q Win (Leica 

Microsystems Imaging Solutions, Cambridge, UK) 

image analysis system.  

Kidney images have 1920x2560 and liver images have 

768x1024 resolution. Eight of the obtained 240 

histopathological images are shown in Figure 5 where 

there are three components with blue, pink and white 

color. Blue ones represent nuclei whereas pink and white 

ones represent other tissue structures. Dataset consists of 

60 healthy and 60 damaged kidney, and 60 healthy and 
60 damaged liver tissue images. 

4.2. Evaluation  

Segmentation of cell nuclei is a crucial step in automatic 

analysis of histopathological images. In the experiment, 

K-Means [43] and the proposed algorithm are used for 

segmentation. In preprocessing step for K-Means, RGB 

images are converted to L*a*b* color space image to 

reduce color space from three channels (R-G-B) to two 

channels (a*-b*). 'L*' layer of the L*a*b* space indicates 

a luminosity, 'a*' layer indicates chromaticity (red-

green), and 'b*' layer indicates chromaticity (blue-
yellow). K-Means is applied to 'a*' and 'b*' layers in 

which all of the color information is. Number of clusters 

for K-Means is selected as 5. Proposed distinguishing 

algorithm is applied to distinguish nuclei cluster from 

other clusters. False positive removal algorithm is used 

to remove non-nuclei components from nuclei cluster. 

The segmentation results of K-Means and the proposed 

algorithm for eight liver and kidney images are shown in 

Figure 5. The nuclei segmented by the proposed 

algorithm and K-Means can be counted by any connected 

component labeling method such as [44]. The expert also 

counted the nuclei in images manually. The number of 
nuclei segmented by K-Means, the proposed algorithm, 

and expert is illustrated in Table 2 for quantitative 

comparison. As shown in Table 2, the number of the cell 

counted by the proposed algorithm is closer to expert 

evaluation than K-means. 

The number of nuclei segmented by the proposed 
algorithm and K-Means is plotted in Figure 6 for 200 

images in dataset. The difference between the number of 

nuclei segmented by the proposed algorithm and K-

Means is also plotted in Figure 6 in order to illustrate 

variation. However, the results for 40 images in dataset 

are not plotted in Figure 6 since K-Means produces over-

segmented or under-segmented results for these images. 

Why K-Means produces such results and how the 

proposed algorithm eliminates these errors are described 

in discussion section. The comparison results also 

demonstrate that the deviation between the proposed 
algorithm and the expert is 2%, whereas the deviation 

between K-Means and Expert is 5%. 

  

 
Figure 5. Histopathological liver and kidney tissue images and 

segmentation results 
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Table 2. The number of nuclei for images in  

               Figure 5 

Kind No K-Means 
The Proposed 

Algorithm 
Expert 

L
iv

er
 

H
ea

lt
h
y
 1 148 128 119 

2 161 167 164 

D
am

ag
ed

 

1 145 143 143 

2 135 139 139 

K
id

n
ey

 

H
ea

lt
h
y
 1 201 199 196 

2 181 181 176 

D
am

ag
ed

 

1 215 211 206 

2 206 217 217 

 

      

 
Figure 6. The number of nuclei segmented by the proposed 

algorithm and K-Means, and difference between 

them. 1-50: healthy kidney, 51-100: damaged 

kidney, 101-150 healthy liver and 151:200 

damaged liver tissue images.    

 

 

 

 

 

  Table 3. Processing time of the algorithms 

Method Tissue Kind Time (second) 

K
-M

ea
n
s 

S
eg

m
en

ta
ti

o
n
 

L
iv

er
 Healthy 8.121 

Damaged 9.038 

K
id

n
ey

 Healthy 26.888 

Damaged 39.315 

D
is

ti
n
g
u
is

h
in

g
 

L
iv

er
 Healthy 0.126 

Damaged 0.116 

K
id

n
ey

 Healthy 0.335 

Damaged 0.568 

T
h
e 

p
ro

p
o
se

d
 

al
g
o
ri

th
m

 L
iv

er
 Healthy 1.350 

Damaged 1.335 

K
id

n
ey

 Healthy 5.104 

Damaged 8.462 

         

Table 4. Ratio of processing time for the algorithms 

T
is

su
e 

Kind 

Time (second) 

K-Means 

(K) 

The Proposed 

Algorithm (P) 

Ratio 

(K/P) 

L
iv

er
 Healthy 8.247 1.350 6.109 

Damaged 9.153 1.335 6.857 

K
id

n
ey

 Healthy 27.223 5.104 5.334 

Damaged 39.883 8.462 4.713 

Average 22.443 3.930 5.575 

 

The segmentation results of two algorithms are generally 

close to each other except images that K-Means fails to 

segment. However, there is relatively more difference 

between some results especially in the liver images as 

seen in Figure 6, since the difference between the 

distributions ratios of the components in the liver images, 

which are stained with different color, is greater than the 

difference between the distributions ratios of the 

components in the kidney images. The details are in 

discussion section. 

The proposed method is much more efficient than K-

means in terms of processing time. The processing times 

of K-Means and the proposed algorithm for all images in 

dataset are shown in Table 3 and Table 4. 
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The proposed distinguishing algorithm takes much less 

time than segmentation in K-Means as seen in Table 3. 

The ratios of total processing time for two algorithms are 

presented in Table 4 for more convenient comparison of 
the processing times. Distinguishing and segmentation 

times of K-Means are summed in Table 4.      

The processing time of K-Means changes depending on 

selection of the initial points for clusters, whereas 

processing time of the proposed algorithm is constant for 

an image. The proposed algorithm is approximately 6 
times faster than K-Means in average as seen in Table 4. 

4.3. Discussion 

In histopathological image analysis, experts and CAD 

systems rely on histological tissue specimens. The 

complex three-dimensional (3D) specimens consisting of 

structures such as cell nuclei or cytoplasm is sectioned 

with a microtome into thin sections, and two-dimensional 

(2D) images are obtained from these sections. The size, 

shape, color specification and frequency of nuclei in the 

sections depend on a variety of parameters, including the 

orientation and position of the sectioning plane. The 
nuclei in sections are shown as blue spots in the images. 

The distance between microtome and nuclei affects the 

blue color specification of the nuclei in sectioning 

process. The nuclei appear in dark blue color 

specification as in Figure 7(b), if the microtome passes 

through the nuclei. However, the nuclei appear in light 

blue color specification as in Figure 7(c-e), if the 

microtome passes over the nuclei. The expert, K-Means, 

and the proposed algorithm can see and segment dark 

nuclei easily, whereas determination of the nuclei shown 

in Figure 7(d-e) is more difficult. In case of many nuclei 

with light blue color specification, the result of expert and 
the proposed algorithm is close to each other than K-

means as seen in Figure 5 and Table 2. 

 
Figure 7. Representation of nuclei in different color 

specification of blue. (a) A histopathological tissue 
image (b) A nucleus of (a) in dark blue color 
specification. (c-e) A nucleus of (a) in light blue 
color specification.    

      

Imperfections in routine technical procedures in 

preparation process of the tissue samples may yield more 

different color specification than three main color 

specification in H&E stained tissue images. An example 

of this can be seen in Figure 8(a), where two samples of 

unexpected color specification are shown in rectangles. 
These imperfections may hamper performance of 

segmentation algorithms, while may have no effect on 

the expert’s evaluation. A test image with imperfections 

shown in Figure 8(a) is segmented with the proposed 

algorithm and K-Means and evaluated by the expert. 

While the number of nuclei counted by the expert is 130 

and the number of nuclei segmented by the proposed 
algorithm is 125 for Figure 8(b), K-Means produces 

different results depending on the cluster initial point 

selected randomly. There are two different results of K-

means as seen in Figure 8(c-d) when the number of 

clusters is determined as 5. The number of segmented 

nuclei in Figure 8(d) is 122 that is close to expert and the 

proposed algorithm results, while there is under-

segmentation in Figure 8(c). When the number of clusters 

is determined as 3, K-Means produces over-segmented 

results as seen in Figure 8(g). In addition, the number of 

clusters is increased and selected as 6, K-Means produces 

under-segmented result as shown in Figure 8(h). The 
similar results as seen in Figure 8(e-f) are obtained when 

the number of clusters is selected as 4. The proposed 

algorithm has no requirements of factors such as number 

of clusters or initial points, and thus segments images 

with imperfections accurately. 

 
Figure 8. Over and under segmentation example for K-Means 

 
5. CONCLUSIONS 

Segmentation is a crucial initial stage of many CAD 

systems, and the quality of the segmentation algorithm 

significantly affects the success of the CAD system. In 

this paper, a novel segmentation algorithm named 

Probabilistic Nuclei Segmentation Algorithm is proposed 

to segment H&E stained histopathological images 

without any requirement of pre-processing, post-

processing, and any parameter or a threshold value 

determined manually. Experimental results show that the 
proposed algorithm segments histopathological images 

more accurately and approximately 6 times quickly than 

K-Means. Additionally, the proposed algorithm is able to 

yield a success result in case of processing images with 

imperfections, where K-Means fails to produce success 

result. The comparison results of the number of nuclei 

also demonstrate that the deviation between the proposed 

algorithm and the expert is 2%, while the deviation 

between K-Means and Expert is 5%. 

In addition, the study has two other contributions. First, 

the distinguishing nuclei cluster algorithm is developed 

to distinguish nuclei cluster from other clusters for K-

means. Second, false positive removal algorithm is 

proposed to eliminate tiny points of nuclei cluster, which 

can cause deceptive nuclei evaluation. 
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