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Abstract

The intended objective of this paper is to introduce a new class of generalized ¢g-Hermite based Apostol type
polynomials by combining the ¢-Hermite polynomials and a unified family of g-Apostol-type polynomials. The
generating function, series definition and several explicit representations for these polynomials are established.
The g-Hermite-Apostol Bernoulli, g-Hermite-Apostol Euler and g-Hermite-Apostol Genocchi polynomials are
studied as special members of this family and corresponding relations for these polynomials are obtained.
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1. Introduction and preliminaries

The g-calculus has been extensively studied for a long time by many mathematicians, physicists and engineers. The g-calculus
is a generalization of many subjects, like the hypergeometric series, complex analysis and particle physics. The g-analogues of
many orthogonal polynomials and functions assume a very pleasant form reminding directly of their classical counterparts. The
g-calculus is mostly being used by physicists at a high level. In short, g-calculus is quite a popular subject today.

Throughout the present paper, C indicates the set of complex numbers, N denotes the set of natural numbers and Ny
indicates the set of non-negative integers. Further, the variable ¢ € C such that |¢| < 1. The following ¢-standard notations and
definitions are taken from [1].

The g-analogue of the shifted factorial (a), is defined by
n—1
(@9)o=1,(a:q)n=[[(1—¢"a), neN.

m=0

The g-analogues of a complex number a and of the factorial function are defined by

1—
[a]qzli—qq’ geC—{1}; a€eC,

In]y! = Il[m]q: ((lq;_qq);n, g#1;neN, [0,!=1,q€eC.
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The g-binomial coefficient [}] , is defined by
| .
m _ '[”]‘f' = <q’q?” . k=0,1,....n.
k q klg!ln =kt (¢:@)k(q: @)n—k
The g-exponential function is defined as:

2 X" 1
= = 1—g|l L. 1.1
Ll ((—gmge M<l-d b

The g-Hermite polynomials are special or limiting cases of the orthogonal polynomials as they contain no parameter other
than ¢ and appears to be at the bottom of a hierarchy of the classical g-orthogonal polynomials [2]. The g-Hermite polynomials
constitute a 1-parameter family of orthogonal polynomials, which for ¢ = 1 reduce to the well known Hermite polynomials.
We recall that the g-Hermite polynomials H, 4(x) is defined by the following generating function [3]:

oo

Fy(x,1) 1= Fy(t)eq(xt) = ) Hyg(x) 7, (12)
n=0 [l’l]q
Fit) = (17D ol = Do 2. 2

DyxHy g4(x) = [n]gHn—1,4(x).
Recently, many mathematicians studied the unification of the Bernoulli and Euler polynomials. Luo and Srivastava [4, 5]
introduced the generalized Apostol-Bernoulli polynomials B,(zoC> (x) of order a. Further, the generalized Apostol-Euler polyno-

mials E,(,a> (x) of order « and the generalized Apostol-Genochhi polynomials Gﬁ,a) (x) of order « are investigated by Luo [6,7].
Thereafter, in 2014 Ernst [8] defined the g-analogues of the generalized Apostol type polynomials.

The generalized g-Apostol-Bernoulli polynomials BE:X A (x) of order @ € Ny are defined by the following generating
function [8]:

t o > a "
(7w,1(t)1> eq(xt) = ’;)Bi,q),l (x) ! (1.3)

The generalized g-Apostol-Euler polynomials E,(:Z) 5 (x) of order o € Ny are defined by the following generating function [8]:

2 \° @ (1"
(leq(l‘)—i—l) eyfot) = Y B, (071 (1.4)

n=0 [l’l]q'

The generalized g-Apostol-Genocchi polynomials Gl(;xq) 5 (x) of order a € Ny are defined by the following generating
function [8]: '

2\ =Y 6 ) (15)
Aegt)+1) 0" —n;) nah Tl 1 '

In view of equations (1.3)-(1.5), the generalized g-Apostol type polynomials ,92( ) (x k,a,b) (a0 € No,A,a,b € C) of
order o are defined by the following generating function:

o1—kgk o o 2@ m
(ﬂbe ()_ab> eq(xt) :n;) mq’ﬁ(x,k,a,b)w, (1.6)

q-

where 9( (k a,b) = ,@( )B (0;k,a,b) are the g-Apostol type numbers of order o.
If we take the limit ¢ — 1, the generalized g-Apostol type polynomials defined by equation (1.6) reduces to the unified
Apostol type polynomials [9]. In fact, the following special cases hold:

hm:@ )(X,l,lal) B;(f/l)(x)’

g—1 "4
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lim 2%, (x:0,—1,1) = £\ (x),

q—1

lim 2%, (1,-1/2,1) = G (),

where Bfl(_xl) (x), E}(Z X( )and G a)B (x) are the generalized forms of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi
polynomials.

In the current article, the g-Hermite-Apostol type polynomials are introduced and their explicit relations are proved.
The corresponding results for the g-Hermite-Apostol Bernoulli, g-Hermite-Apostol Euler and g-Hermite-Apostol Genocchi
polynomials are established.

2. Generalized ¢-Hermite Apostol type polynomials

In this section, a new hybrid class of the generalized g-Hermite-Apostol type polynomials (GqHATyP), denoted by g QZISO;) B (x;k,a,b)
is introduced by convoluting the g-Hermite polynomials and generalized g-Apostol type polynomials. In order to establish the
generating function for the these polynomials, the following result is proved:

Theorem 2.1. The following generating function for the generalized q-Hermite based Apostol type polynomials H@ (e ) (x k,a,b)(a €
No,A,a,b € C) holds true:

n

zlfktk o t
(B”eq(t)—a”> a(t)eq(xt) = Z‘,H@ xk,a,b)W,

2.1)
Jq!

Proof. Expanding the exponential function e, (xf) and then replacing the powers of x,i.e. x%;x1;x%; - -+ ;2" by the correlating

g-Hermite polynomials Ho 4(x); Hi 4(x);--- ;Hpq(x) in the Lh.s. of equation (1.6) and after summing up the terms of the

resultant equation and denoting the resultant GQHATYP in the r.h.s. by H@}TZ B (x;k,a,b), assertion (2.1) is proved. 0

Taking x = 0 in equation (2.1), we get

H‘@nqﬁ

(ka,b) = u P75 (0sk,a,b),
where H@é? B (k,a,b) are the g-Hermite Apostol type numbers of order o.

Next, the series expansions for the GQHATyP H‘@fz?. B (x;k,a,b) is obtained by proving the following result:

Theorem 2.2. The following series expansions for the generalized q-Hermite based Apostol type polynomials g 9)5_0;) B (x;k,a,b)

hold true:

" [n
H@iqﬁ(x;k,a,b):;%}LL,@r(q)ﬁ(k a,b)Hy g (x), 2.2)
n P (x:k,a,b) :ZEJ[ } n Py (k,a,b)x"". 2.3)

Proof. Utilizing equations (1.2) and (1.6) in the 1.h.s. of generating function (2.1) and then using Cauchy-product rule in the
Lh.s. of the resultant equation, it follows that

ZZH 70 D)y (x)

n=0r=0

li’l 0 n

= AL x;k,a,b ! .
i~ 2 nap kD

Equating the coefficients of identical powers of ¢ in both sides of equation (2.4), assertion (2.2) follows.
Utilizing equation (1.1) in the L.h.s. of generating function (2.1), it follows that

i i o () t"
ZH,@ x k a, b)[ ]q' I;)x [n]q' = rq.B (k,a,b) [n]r!’

which on applying the Cauchy product rule in the r.h.s. and then comparing the coefficients of same powers of ¢ in both sides of
resultant equation yields assertion (2.3).

2.4)

O
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S.No. k; a; b; B Generating function Name of the polynomials
() n
L k=1, a=1, (W) Fy(t) eq(xt) = Z uB ,q)k( )[t] The generalized g-Hermite-
b=1;, B=4 Apostol Bernoulli polynomials (GqHABP)
() n
IL k=0; a=—1; (W) Fy(t)ey(xt) = Z HEn q) 2 (%) [’] The generalized ¢g-Hermite-
n=0
b=1;, B=4 Apostol Euler polynomials (GqHAEP)

() n . .
II1. k=1, a=-1/2; (%) Fy(t)ey(xt) = Z HGn q)/l( ) [’] The generalized g-Hermite-

b=1;, B=1/2 Apostol Genocchi polynomials (GqHAGP)

Table 1. Certain members belonging to the generalized g-Hermite-Apostol family

Different members of the generalized g-Hermite-Apostol family can be obtained by making suitable selections of the
parameters k,a,b and 3 in generating relation (2.1). Some of these members are listed in Table 1.

Proposition 2.3. The following relations for the generalized q-Hermite based Apostol type polynomials 1-19 (x k,a,b)
holds true:

Dy req(xt) = x eq(xt),

Do (n P05 (x:k,0,b) ) = [l n P\ g (xik,,D).

Theorem 2.4. For each n € N and for the q-commuting variables x and u such that xu = qux, the generalized q-Hermite based

Apostol type polynomials H’@/EZ? B (x;k,a,b) satisfy the following relations:

Hﬂ’,ﬁ‘ff,{ (x:k,a,b) = Z [ } rqﬁ (x;k,a,b) P D opkasb). (2.5)
n P\ %D (x+usk,a,b) = ;) H n P 0 (xik,a, ) 2D (uwsk,a,b). 2.6)

Proof. Replacing o by ¢ + ¥ in definition (2.1), we have

had (OH»’}') tn Zlfktk a+y
Z H‘@n,q,ﬁ (‘X;k7a7b) = Fq(t)eq(xt)
n=0

[n],! Bbey(t) —ab

= <ZH<@rqﬁ(xkab)Hq ) <Z‘@nqﬁ (k,a,b) ]q>

Using Cauchy-product rule in the r.h.s. of above equation, it follows that

Zﬂﬁz el xkab . ZZ H o (x:k,a,b) 7, )rqﬁ(k,a,b)[n]q! 2.7)

n=0r=0

Equating the coefficients of identical powers of ¢ in both sides of equation (2.7), assertion (2.5) follows. Further, replacing
a by a+ 7y and x by x + u in Definition 2.1 and proceeding on the same lines of proof as above, assertion (2.6) follows. [

Theorem 2.5. For each n € N and for the q-commuting variables x and u such that xu = qux, the generalized q-Hermite based

(a)

Apostol type polynomials Hﬁkoq‘_ B (x;k,a,b) satisfy the following relation:

1-k
2"l 'H@( D (x:k,a,b). 2.8)

B u P\ (xt 1ik,a,b) — 'y P (xik,a,b) = Tk ek

n,q,p
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S.No. Special polynomials  Results

n.q,h & Ll
I GqHABP HBy g2 (@) (x) = éo (1], Bl &
B,y () WB W = B U, w0 B
HB;(ﬁ:AY) (x+u)= ,)::0 7] q HBS)/I (%) B:(zqu 2 (@)

1=k,
ﬁbHB(l)Z)’ (x+1)—abHB(ix)A (x) = 2[ []]‘ HB£, kq))L( )

g,
L GqHAEP HEn g2 (@)(x) = ¥ (1], HELo, &
WE, (%) HES ) = ¥ [, nES, () B,

(a+7) v (&) )
HE fx i (X—I— u) - rg() [r]q HEr,Z,)L (X) Enzr,q.,l (u)

21k [p) ! -1
(x) = [n—l[c],];{ HEr(z‘jk,q?/l(x)

BPHE), (x+1)—d’yE\Y,

n,q,A = tra rq,A
n
I.  GqHAGP HGuga (@) = X [, HGo, o
=
HG(,q)iL( ) HG,(;;Y) (x) = E [? q HGiZ?A (x) G,(qy,)r’q,;L

HG((.ZTY) <x+l/t) = ;0 Dl]q HGE‘Z?A <X> Gi(l)i)r.q,l (u>
B 21Ky ! -1
BbHG ()C+ ]) — abHGfgq),l ()C) = ﬁ HGi(i]gq),l ()C)

Table 2. Certain results for the GqHABP ;B.%), (x), GGHAEP yE\%), (x) and GgHAGP G\%, (x)

n,q,A

Proof. From generating relation (2.1), we have

Vl

[ry! ]q [nly!
ko o 1—kk a
_ b <Bbezq(t)t—ab) Fy(t)e,((x+1)1) — ( 2! ) Fy(t)eq(xt)

ﬁbeq( )—ab
1=k k o
~ (o) et (B “’b)

Zﬁbgﬁnqﬁ(x—i—lkab ZaH@ )(xkab)

9,8

o k
b pa) 1=k, p\® 1) "
ngo(ﬁ n 2% (x+lkab)—aH32nqﬁ(xkab) Zz AT xkab)[]q_.
Equating the coefficients of same powers of ¢ in both sides of the above equation, assertion (2.8) follows. O

In view of Table 1, ceratin results for the GgHABP HBE;?;), 5, (x), GQHAEP HE’(fZ 5 (x) and GqHAGP HGEZ?;)., 5, (x) are established
and are given in Table 2.

In the next section, certain explicit representations for the GqHATYP HQZ ) (x k,a,b) are established.
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3. Explicit representations

In order to derive the explicit representations for the GqHATyP H9< ) (x k,a,b), we recall the following definition:

Definition 3.1. The generalized g-Stirling numbers Sy(n,v,a,b,B) of the second kind of order v is defined as [10]:

3 n be _Clb v
Y 8,(n,v,a,b,B) 1" _ (Bley(t) —a”)"

far nlg! V]!

Theorem 3.2. The following explicit formula for the generalized q-Hermite based Apostol type polynomials ng (x k,a,b)
in terms of the generalized g-Stirling numbers of the second kind Sy(n,v,a,b, B) holds true:

A

_ [
vk p ik a.b) = pvte-n) Vlg!ln = vilg! Vk ZH H@l ) (x:k,a,b)Sq(n—1,v,a,b,B). 3.1

[lq

Proof. From generating relation (2.1), we have

(x:k, "o 21Kk ’ o (x (ﬁbeq(f)_ab)v [v]g!
L#2Liptuka) ‘( ) o (@air=a7)

[n]4! ﬁbeq(t)—ab Mq! (t) —ab)”
21 ktk ZH‘@lZﬁv xkab (ZSqnvabﬁ)[ >

Applying the Cauchy-product rule on the r.h.s. of the above equation, it follows that

n+Vk o0 n
Zngnqﬁ(x k,a b) T [v]qyz(k—l)v Z { Z [ILH@MB (x;k,a,b)

n=0 | /=0

(3.2)
tn
xS;(n—1,v,a,b,B) p ——.
1 } [”]q!
Equating the coefficients of identical powers of ¢ in both sides of equation (3.2) yields assertion (3.1). ]

Theorem 3.3. The following explicit relation for the generalized q-Hermite based Apostol type polynomials HL@( ) (x k,a,b)
in terms of the generalized q-Apostol Bernoulli polynomials B,, , 5 (x) holds true:

() ) _ 1 ntl n+1 " r
H’@"‘Iﬁ(x’kﬂ’b)_ml]q{lz [ Z m qBrH»lfr,q,?L(x)

r=0 r q m=0

» (3.3)
& [n+1
- Z |: :| n+lfm,q.,l (x)}ng (k a b)
q
Proof. Consider generating function (2.1) in the following form:
21k N\ plkk N\ t dey(t) —1
(o) Foeten = (ragy=a) 0 (=)~ eato
which on simplifying and rearranging the terms becomes
zlfktk o 217k k o t 2
(o) 059 = (gragy =) 50 (s a0 st s
1 21-kk N\ 1 GH
~H(Fam=a) 70 (o= o).
Using equations (1.3) and (2.1) in equation (3.4), we have
v @) o1 - -
Y u?,, pkab) oA t(x Z H?}J (k a, b)[ I ) B, '
n=0 q q° n=0 nlg! 51 (3.5)

_Zngmqﬁ(kab[ q};Bnqu) ]q.>
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S. No. Special Explicit representations
polynomials
HB (0 = P S ] Bl ) S(n -1, 1,1.2)
r n+1
L GqHABP HBE'O;)A ()C) = [n+1 {A' Z’ [”Jrl] mEO [r:J anJrl*r,q,l ()C) - mZ:’O [n;;l] anJrlfm,q,l ()C) } HBE”OZJ
HBE:?:]),X (X) HBE:Z{)L ()C) = %mEO {A’ E‘O [ﬂ qEn—rq l( ) +E,_ —m,q, l( )} HBEn ; 2
() nil U il ()
HB,,?:17A(X) = 2[n<1H]q{l rgo[ t ]q mEO [m]an+lfnq,l( ) E [ . ] n+1— m,qk( )}HquJL
HE,gj’;fl (x) = e i (1], HE! &) S(n—1,v,—1,1,4)
- n+1 r n+1
1. GqHAEP HE’SZ)-,A () = ['”rll]q {A ;0 [iltl] q ;0 [V:J qB’H—l—h,q-,l (x) — ;0 [";‘;—11] an+1—m,q~,l (x) } HEIESq)J
HE;E,(;),A (x) HE;EZ?A (x) = %WEO {/’{’ rgo [n] qEnﬂgq,l (X) + Enfm,q,l (x) } HE,<11 ; A
(o) _ (o Lo ndl o ()
HE, 3 (%) = 3t {’1 X [, X ) Grr1-rg.2 (%) —méo[ g Ont1-mga () p HE, )5
n=v],' & _
HGLY, g () = Mol £ [1], Gl 5 S(i=1,v.=1/2,1.2./2)
n+1 r n+1
1L GqHAGP HGE:;),A (x) = [n+l1],, {)“ L s q ;0 L] Bt g (6) = );0 "] Br1-man(x) } uG® (; N
HGE:E])JL (x) HG;S(,);),A ()C) = % mEO {A’ rEO [n] qEnfr,q,)L (X) + Enfm.,q,l (x) } HG,(n ;7

n+1 r ntl
HG,S q)ﬂ( ) 2[n+1 {ﬂ, )y [n+1] q mEO [,:J an+l—r,q,7L (x) - ZO [n;l] Gn+1—m7q7l( )} HG,(n ;JL

Table 3. Explicit representations for the GqHABP HB(a) (x), GqHAEP HEfli;) (x) and GqHAGP HGE,aq) 2 (%)

Comparing the coefficients of identical powers of 7 in both sides of equation (3.5) yields assertion (3.3). ]
Similarly, we can prove the following results:

Corollary 3.4. The following explicit relation for the generalized q-Hermite based Apostol type polynomials H@)S_O;) B (x;k,a,b)
in terms of the the generalized q-Apostol Euler polynomials E,, , ; (x) holds true:

ngr(lg)-, (v:k,a,b) = Z{AZ{} n—rga (X )JFEn—m,q,}L(X)}HQZ o) (kab)

m=0

Corollary 3.5. The following explicit relation for the generalized q-Hermite based Apostol type polynomials g @ (x k,a,b)
in terms of the generalized q-Apostol Genocchi polynomials G, 4 ; (x) holds true:

(@) , 1 n1] & [r
ngnvqﬁ(x,kﬂ,b) _M]{A Z |: Z m an+17r’q72‘(x)

r=oL T lgm=0
n+1
n+1
-y { } GH],,,,,I’A(X)}H@ 5(k.ab).
m=0 m q

In view of Table 1, ceratin explicit representations for the GqHABP HBELO;) 5 (x), GQHAEP HE;EZ)A (x) and GqHAGP

HGqu), 5 (x) are established and are given in Table 3.
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Note. It is to be observed that for A = 1, the results derived above for the generalized g-Hermite-Apostol Bernoulli

5102 5 (x), the generalized g-Hermite-Apostol Euler polynomials HEr(liQ 1
() I

n,q,A

polynomials g B (x) and generalized g-Hermite-Apostol

Genocchi polynomials y G~/ , (x) gives the analogous results for the generalized g-Hermite Bernoulli polynomials HBE,?;) (x),

the generalized g-Hermite Euler polynomials HE,(:),;) (x) and generalized ¢g-Hermite Genocchi polynomials HGE,?;) ().
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