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Abstract 

Some numerical solutions of the extended Fisher-Kolmogorov(EFK) equation have been obtained via quartic 

B-spline differential quadrature method(DQM). 2nd order weighting coefficients are obtained directly by quartic 

B-splines. Since the 4th order derivatives of quartic B-splines do not exist, the 4th order weighting coefficients 

have been obtained by matrix multiplication approach. After the discretization of the eFK equation via DQM, 

ordinary differential equation systems have been obtained and strong stability preserving Runge-Kutta method 

has been used for time integration. To be able to control the accuracy of the method three test problems have 

been solved and error norms L2 and L∞ are calculated. 

Keywords: Partial Differential Equations, Differential Quadrature Method, Runge-Kutta method, B-splines. 

 

Extended Fisher-Kolmogorov Denklemini Çözmek İçin Kuartik B-Spline Diferansiyel Kuadratur 

Metot 

Öz 
Extended Fisher-Kolmogorov (EFK) denkleminin bazı çözümleri kuartik B-spline diferansiyel quadrature 

metot (DQM) ile elde edildi. İkinci mertebeden ağırlık katsayıları kuartik B-spline fonksiyonlar ile direkt olarak 

elde edildi. Kuartik B-spline fonksiyonların dördüncü mertebeden türevleri mevcut olmadığından, dördüncü 

mertebeden ağırlık katsayıları matris çarpımı yaklaşımı ile elde edildi. EFK denklemi DQM ile 

ayrıklaştırıldıktan sonra adi diferansiyel denklem sistemi elde edildi ve kararlılığı güçlü bir şekilde koruyan 

Runge-Kutta metot ile zamana bağlı integre edildi. Metodun tamlığını kontrol etmek için üç adet test problemi 

çözüldü ve L2 ile L∞ hata normları hesaplandı. 

Anahtar Kelimeler: Kısmi diferansiyel denklemler, Diferansiyel Quadrature Metot, Runge-Kutta metot, B-

spline fonksiyonlar. 

1. Introduction 

The extended Fisher-Kolmogorov (EFK) 

equation has been investigated via quartic B-

spline Differential Quadrature Method (QAB-

DQM). The EFK equation is given in the 

following format 

𝑢𝑡 − 𝑢2𝑥 + 𝜑𝑢4𝑥 + 𝑓(𝑢) = 0,                   (1)   
𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 ≥ 0,  
where 𝑓(𝑢) = 𝑢3 − 𝑢 and 𝜑 > 0.  
Coullet et al. (1987) and van Saarlos (1987); 

van Saarlos (1988); van Saarlos (1989) and 

Dee and van Saarlos (1988) introduced the 

EFK equation given in the Eq.(1) for the value 

of the  𝜑 ≠ 0. When the value of the 𝜑 = 0 

the Eq.(1) turns into the standard Fisher-

Kolmogorov (FK) equation.EFK equation has 

been used in many applications in various 

scientific areas such as model of a phase 

transition in a binary system near the Lipschitz 

point (Hornreich et al.,1975; Zimmerman, 

1991), propagation of domain walls in liquid 

crystals (Zhu,1982), spatiotemporal chaos 

(Coullet et al.,1987) and pattern formation in 

bistable systems (Dee and van Saarlos, 1988). 

EFK equation (1) has been solved with 

various methods by many researchers 

(Danumjaya and Pani, 2005; Mittal and 
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Arora,2010; Mittal and Dahiya, 2016). We 

investigated numerical solutions of EFK 

equation via QAB-DQM. DQM was firstly 

supposed by Bellman et al. (1972). DQM has 

had wide application areas because of its using 

of considerably less number of nodal points 

and simplicity. DQM is a method in which 

partial derivative of a function in terms of a 

coordinate direction is expressed as a linear 

combination of all the values of the function 

at all nodal points along that direction 

(Shu,2000). Several authors have recently 

developed various types of DQM by using 

different base functions (Striz et al., 1995; Shu 

and Xue, 1997; Shu and Wu, 2007; Korkmaz 

and Dağ, 2011; Başhan et al.,2015; Başhan et 

al.,2016; Başhan et al.,2017;  Başhan, 2018; 

Başhan et al.,2018). 

 

2. Quartic B-spline DQM 

Let us take the uniform grid distribution 𝑎 =

𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 of the finite domain 

[𝑎, 𝑏] into account. Assuming that any given 

function 𝑓(𝑥) is smooth enough throughout 

the solution domain of problem, its 

derivatives in terms of 𝑥 at a nodal point 𝑥𝑖 
can best be approached by a linear 

combination of all the functional values over 

the solution domain, that is, 

𝑓𝑥
(𝑟)(𝑥𝑖) =

𝑑(𝑟)𝑓

𝑑𝑥(𝑟)
|
𝑥𝑖
= ∑ 𝑤𝑖𝑗

(𝑟)𝑁
𝑗=1 𝑓(𝑥𝑗),   𝑖 =

1, 2, … ,𝑁, 𝑟 = 1, 2, … ,𝑁 − 1                    (2) 

where 𝑟 represents the order of derivative, 

𝑤𝑖𝑗
(𝑟)

 ’s denote the weighting coefficients of 

the 𝑟𝑡ℎ order derivative approximation, and 𝑁 

represents the number of nodal points in the 

given solution domain. Here, the index 𝑗 

indicates the fact that 𝑤𝑖𝑗
(𝑟)

 is the 

corresponding weighting coefficient of the 

value of the function 𝑓(𝑥𝑗). 

Let 𝑄m(𝑥) be the quartic B-splines with nodal 

points at the points 𝑥𝑖 where the uniformly 

distributed 𝑁 grid points are chosen as 𝑎 = 𝑥1 

< 𝑥2 < . . . < 𝑥𝑁 = 𝑏 on the real axis. Then, the 

quartic B-splines {𝑄−1, 𝑄0, ..., 𝑄𝑁+1} constitute 

a basis for all functions described throughout 
[𝑎, 𝑏]. The quartic B-splines 𝑄m(𝑥) are 

described by the relationships: 
(𝑥)

=
1

ℎ4

{
  
 

  
 
(𝑥 − 𝑥𝑚−2)

4                                                                , [𝑥𝑚−2, 𝑥𝑚−1]

(𝑥 − 𝑥𝑚−2)
4 − 5(𝑥 − 𝑥𝑚−1)

4                                     , [𝑥𝑚−1, 𝑥𝑚]

(𝑥 − 𝑥𝑚−2)
4 − 5(𝑥 − 𝑥𝑚−1)

4 + 10(𝑥 − 𝑥𝑚)
4       , [𝑥𝑚 , 𝑥𝑚+1]

(𝑥𝑚+3 − 𝑥)
4 − 5(𝑥𝑚+2 − 𝑥)

4                                 , [𝑥𝑚+1, 𝑥𝑚+2]

(𝑥𝑚+3 − 𝑥)
4                                                                 , [𝑥𝑚+1, 𝑥𝑚+2]

0                                                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where ℎ = 𝑥𝑚 − 𝑥𝑚−1 for all 𝑚 

(Prenter,1975).  

 

Table 1. The value of quartic B-splines and derivatives 

functions at the nodal points. 

𝑥 𝑥𝑚−2 𝑥𝑚−1 𝑥𝑚 𝑥𝑚+1 𝑥𝑚+2 𝑥𝑚+3 

𝑄𝑚  0 1 11 11 1 0 

𝑄𝑚
′  0 4/h 12/h -12/h -4/h 0 

𝑄′𝑚
′  0 12/h2 -12/h2 -12/h2 12/h2 0 

𝑄𝑚
′′′ 0 24/h3 -72/h3 72/h3 -24/h3 0 

Substitution of each quartic B-spline function 

into the DQM equation (2) for a fixed 𝑥𝑖 and 

𝑟 = 2 gives  

𝑑(2)𝑄𝑚(𝑥𝑖)

𝑑𝑥(2)
= ∑ 𝑤𝑖𝑗

(2)𝑚+2
𝑗=𝑚−1 𝑄𝑚(𝑥𝑗).               (4) 

      

After using the value of 𝑄𝑚 at the first nodal 

point 𝑥1, we obtained linear equation system 

(4) which contains N+3 equations and at the 

same time N+6 unknowns given in the matrix 

form as below 
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[
 
 
 
 
1 11 11 1

1 11 11 1
⋱ ⋱ ⋱ ⋱

1 11 11 1
1 11 11 1 ]

 
 
 
 

[
 
 
 
 
 
 𝑤1−2

(2)

𝑤1−1
(2)

⋮

𝑤1𝑁+2
(2)

𝑤1𝑁+3
(2)

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
12/ℎ2

−12/ℎ2

−12/ℎ2

12/ℎ2

0
⋮
0 ]

 
 
 
 
 
 
 

                       (5)                                    

As it can be seen, this unsolvable equation system (5) needs three additional equations. By using  

𝑑(3)𝑄−1(𝑥1)

𝑑𝑥(3)
= ∑ 𝑤1𝑗

(2)

1

𝑗=−2

𝑄−1
′ (𝑥𝑗), 

𝑑(3)𝑄𝑁(𝑥1)

𝑑𝑥(3)
= ∑ 𝑤1𝑗

(2)

𝑁+2

𝑗=𝑁−1

𝑄𝑁
′ (𝑥𝑗), 

𝑑(3)𝑄𝑁+1(𝑥1)

𝑑𝑥(3)
= ∑𝑤1𝑗

(2)

𝑁+3

𝑗=𝑁

𝑄𝑁+1
′ (𝑥𝑗), 

 

additional equations, three unknown terms 𝑤1−2
(2)
, 𝑤1𝑁+2

(2)
 and 𝑤1𝑁+3

(2)
 are eliminated. So, the equation 

system has N+3 equations and N+3 unknowns given in the matrix for as below 

[
 
 
 
 
 
 
8 14 2
1 11 11 1

1 11 11 1
⋱ ⋱ ⋱ ⋱

1 11 11 1
2 14 8

30 42]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤1−1

(2)

𝑤10
(2)

⋮

𝑤1𝑁−1
(2)

𝑤1𝑁
(2)

𝑤1𝑁+1
(2)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
18/ℎ2

−12/ℎ2

−12/ℎ2

12/ℎ2

0
⋮
0 ]

 
 
 
 
 
 
 

                       (6) 

 

By the same process, for the 𝑥𝑚 nodal points, 2 ≤ 𝑚 ≤ 𝑁 − 1 we obtained 

 

[
 
 
 
 
 
 
8 14 2
1 11 11 1

1 11 11 1
⋱ ⋱ ⋱ ⋱

1 11 11 1
2 14 8

30 42]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 𝑤𝑚−1

(2)

⋮

𝑤𝑚𝑚−2
(2)

𝑤𝑚𝑚−1
(2)

𝑤𝑚𝑚
(2)

𝑤𝑚𝑚+1
(2)

⋮

𝑤𝑚𝑁+1
(2)

]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

0
⋮
0

12/ℎ2

−12/ℎ2

−12/ℎ2

12/ℎ2

0
⋮
0 ]

 
 
 
 
 
 
 
 
 
 

                      (7) 

 

equation system. And for the final nodal point 𝑥𝑁 we obtained  

[
 
 
 
 
 
 
8 14 2
1 11 11 1

1 11 11 1
⋱ ⋱ ⋱ ⋱

1 11 11 1  
2 14 8

30 42]
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 𝑤𝑁−1

(2)

⋮

𝑤𝑁𝑁−3
(2)

𝑤𝑁𝑁−2
(2)

𝑤𝑁𝑁−1
(2)

𝑤𝑁𝑁
(2)

𝑤𝑁𝑁+1
(2)

  

]
 
 
 
 
 
 
 
 

  =   

[
 
 
 
 
 
 
 

  

0
⋮
0

12/ℎ2

−12/ℎ2   

−30/ℎ2

6/ℎ2

 

]
 
 
 
 
 
 
 

                                 (8) 

equation system (8). By using Thomas algorithm, equation systems (6)-(8) have been solved easily.  



Quartic B-spline Differential Quadrature Method for Solving the Extended Fisher-Kolmogorov Equation  

 

  

 

 59 

 

 

 

Then to get the weighting coefficients of the 

4th order derivatives, we used 2nd order 

weighting coefficients. By using the matrix 

multiplication approach, 4th order weighting 

coefficients have been calculated as shown 

below [12]: 

[𝐴(4)] = [𝐴(2)][𝐴(2)],  

where [𝐴(2)] and [𝐴(4)] represent the 

weighting coefficients’ matrices of the 2nd 

order and 4th order  derivatives, respectively.  

3. Numerical discretization 

The EFK equation of the form 

𝑢𝑡 − 𝑢2𝑥 + 𝜑𝑢4𝑥 + 𝑢
3 − 𝑢 = 0              (9) 

       

has the boundary conditions  

 

𝑈(𝑎, 𝑡) = 𝜇1(𝑡),  𝑈(𝑏, 𝑡) = 𝜇2(𝑡),  
𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 ≥ 0, 

and the initial condition  

𝑈(𝑥, 0) = 𝑢0(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏.  
 Eq. (9) is rewritten as 

𝑢𝑡 = 𝑢2𝑥 − 𝜑𝑢4𝑥 − 𝑢
3 + 𝑢 = 0.      (10) 

 

Next, the differential quadrature derivative 

approaches of the 2nd order and 4th order have 

been substituted for 𝑢2𝑥 and 𝑢4𝑥 in Eq. (10) 

 
𝑑𝑈(𝑥𝑖)

𝑑𝑡
= ∑ 𝑤𝑖𝑗

(2)𝑁
𝑗=1 𝑈(𝑥𝑗 , 𝑡) −

𝜑∑ 𝑤𝑖𝑗
(4)𝑁

𝑗=1 𝑈(𝑥𝑗 , 𝑡) − 𝑈
3(𝑥𝑖, 𝑡) + 𝑈(𝑥𝑖, 𝑡), 

i=1,2,...,N                                               (11) 

 

and ordinary differential equation (ODE) (11) 

was obtained. After that, the ODE represented 

by Eq. (11) was integrated with respect to 

time. Here, we have chosen strong stability-

preserving Runge-Kutta43 method Ketcheson 

(2010) thanks to its many advantages like 

accuracy, efficiency and simplicity. 

 

4. Numerical Examples and Results  

Here, we obtained the approximate solutions 

of the EFK by the QAB-DQM. The accuracy 

and efficiency of the new method have been 

controlled by calculating the error norms L2 

and L∞, respectively: 

L2= ‖𝑢 − 𝑈‖2 ≅ √ℎ∑ |𝑈𝑗
𝑒𝑥𝑎𝑐𝑡 − (𝑈𝑁)𝑗|

2𝑁
𝑗=1 , 

L∞ =‖𝑢 − 𝑈‖∞ ≅ 𝑚𝑎𝑥
𝑗
|𝑈𝑗

𝑒𝑥𝑎𝑐𝑡 − (𝑈𝑁)𝑗|,        j 

= 1, 2, ...,N − 1. 

Since the analytical solution of EFK equation 

does not exist, newly obtained numerical 

solution was compared with those solutions 

obtained when nodal point number was taken 

as N = 160 instead of exact solution. 

 

4.1. Test problem 1 

The first test problem has the initial condition as 

follows: 

𝑈(𝑥, 0) = −𝑠𝑖𝑛(𝜋𝑥)            (12)

      

having the boundary conditions 

𝑈(−4, 𝑡) = 𝑈(4, 𝑡) = 0,           (13)

    

at the domain −4 ≤ x ≤ 4. 

We fixed the number of nodal points as N = 81 and 

time increment as ∆𝑡 = 0.0001 when 𝜑 = 0,  𝜑 =
0.0001 and  𝜑 = 0.1, respectively. Numerical 

simulations are shown in Figures 1 − 3. 

 

Figure 1. Numerical simulations of Test problem 1 for 

𝜑 = 0. 
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Figure 2. Numerical simulations of Test problem 1 for 

𝜑 = 0.0001. 

 

 

Figure 3. Numerical simulations of Test problem 1 for 

𝜑 = 0.1. 

 

As it can obviously be seen from Figure 1 and 

Figure 2 that the behaviors of solutions for  

𝜑 = 0 and  𝜑 = 0.0001 are similar to each 

other. Except for  𝜑 = 0.1 simulations given 

in Figure 3 that solutions decline to 0 very 

rapidly because of stabilizing behaviour of 

EFK. The calculated values of the error norms 

L2 and L∞ are illustrated in Table 2. As it is 

obviously seen from the results given in Table 

2 that by the increasing of the nodal point 

numbers the error norms L2 and L∞ got 

decreased and also both results are in 

concordance with each other. 

 

Table 2. L2 and L∞ error norms at t=0.2. 

N Present(QAB-DQM) 

 L2  L∞ 

20 0.01620 0.01313 

40 0.00891 0.00794 

80 0.00292 0.00276 

 

4.2. Test problem 2 

The initial condition of the second test 

problem is given below: 

𝑈(𝑥, 0) = 10−3𝑒𝑥𝑝(−𝑥2)                     (14)

       

with boundary conditions 

𝑈(−4, 𝑡) = 𝑈(4, 𝑡) = 1,          (15)

        

at the domain −4 ≤ x ≤ 4. 

The simulations are running up from t = 0.25 

to t = 4.50 are given in Figure 4. It is clear 

from Figure 4 that the approximate solution of 

𝑈 declines as time increases and eventually it 

comes near close to the value 1.  

 

 

Figure 4. Numerical simulations of test problem 2 for 

𝜑 = 0.0001. 
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4.3. Test problem 3 

 

Finally, the third test problem has initial 

condition 

𝑈(𝑥, 0) = −10−3𝑒𝑥𝑝(−𝑥2)          (16)

       

and boundary conditions 

𝑈(−4, 𝑡) = 𝑈(4, 𝑡) = −1,          (17)

       

at the domain −4 ≤ x ≤ 4. 

The simulations running up from t = 0.25 to    

t = 4.50 are given in Figure 5. Figure 5 shows, 

the approximate solution of 𝑈 declines when 

time increases and eventually it comes near 

close to the value −1. 

 

Figure 5. Numerical simulations of Test problem 3 for 

𝜑 = 0.0001. 

 

5. Discussion 

In this study, we have implemented QAB-

DQM for numerical solution of EFK equation. 

To obtain the 2nd order weighting coefficients, 

we solved the equation systems by Thomas 

algorithm and then to obtain the 4th order 

weighting coefficients we used the matrix 

multiplication approach. The accuracy of the 

present method has been tested by 

determining the error norms L2 and L∞. The 

results obtained here are in concordance to 

each other. 

6. References 

Başhan A, Karakoç, SBG, Geyikli T. 

Approximation of the KdVB equation 

by the quintic B-spline differential 

quadrature method, Kuwait Journal of 

Science, 2015; 42; 2; 67-92. 

Başhan A, Uçar Y, Yağmurlu NM, Esen A. 

Numerical Solution of the Complex 

Modified Korteweg-de Vries Equation 

by DQM, Journal of 

Physics:Conference Series 2016; 766; 

012028 doi:10.1088/1742-

6596/766/1/012028 

Başhan A, Yağmurlu NM, Uçar Y, Esen A. 

An effective approach to numerical 

soliton solutions for the Schrödinger 

equation via modified cubic B-spline 

differential quadrature method, Chaos, 

Solitons and Fractals, 2017; 100; 45-56. 

Başhan A. An effective application of 

differential quadrature method based on 

modified cubic B-splines to numerical 

solutions of KdV equation, Turkish 

Journal of Mathematics, (2018) 42: 373-

394. 

Başhan A, Uçar Y, Yağmurlu NM, Esen A. A 

new perspective for quintic B-spline 

based Crank-Nicolson differential 

quadrature method algorithm for 

numerical solutions of the nonlinear 

Schrödinger equation, Eur. Phys. J. Plus 

(2018) 133: 12 

Bellman R, Kashef BG, Casti J. Differential 

quadrature: a tecnique for the rapid 

solution of nonlinear differential 

equations, Journal of Computational 

Physics, 1972;10; 40-52. 

Coullet P, Elphick C, Repaux D. Nature of 

spatial chaos,Phys. Rev. Lett. 1987; 

58;5; 431-434. 



Quartic B-spline Differential Quadrature Method for Solving the Extended Fisher-Kolmogorov Equation  

 

  

 

 62 

 

 

Danumjaya P, Pani AK. Finite element 

methods for the extended Fisher-

Kolmogorov equation. Journal of 

Computational and Applied 

Mathematics, 2005; 174; 101-117. 

Dee GT, van Saarloos W. Bistable systems 

with propagating fronts leading to 

pattern formation, Phys. Rev. Lett. 

1988; 60; 25; 2641-2644. 

Hornreich RM,  Luban M, Shtrikman S. 

Critical behaviour at the onset of k-

space instability at the line, Phys.Rev. 

Lett. 1975; 35; 1678-1681. 

Ketcheson DI. Runge–Kutta methods with 

minimum storage implementations, 

Journal of Computational Physics, 

2010; 229; 1763–1773. 

Korkmaz A, Dağ I. Shock wave simulations 

using Sinc Differential Quadrature 

Method, International Journal for 

Computer-Aided Engineering and 

Software, 2011; 28; 6; 654-674. 

Mittal RC, Arora G. Quintic B-spline 

collocation method for numerical 

solution of the extended Fisher-

Kolmogorov equation, Int. J. Appl. 

Math Mech. 2010; 6; 1; 74-85. 

Mittal RC, Dahiya S. A study of quintic B-

spline based differential quadrature 

method for a class of semi-linear Fisher-

Kolmogorov equations, Alexandria 

Engineering Journal, 2016; 55; 2893-

2899. 

Prenter P M. Splines and Variational 

Methods, New York: John Wiley, 1975. 

Shu, C. Differential Quadrature and its 

application in engineering, Springer- 

Verlag London Ltd., 2000. 

Shu C, Xue H. Explicit computation of 

weighting coefficients in the harmonic 

differential quadrature, Journal of 

Sound and Vibration, 1997; 204; 3; 549-

555. 

Shu C, Wu YL. Integrated radial basis 

functions-based differential quadrature 

method and its performance, Int. J. 

Numer. Meth. Fluids, 2007; 53; 969-

984. 

Striz AG, Wang X, Bert CW. Harmonic 

differential quadrature method and 

applications to analysis of structural 

components”, Acta Mechanica, 1995; 

111; 85-94. 

Van Saarloos W. Dynamical velocity 

selection: marginal stability, Phys. Rev. 

Lett. 1987; 58; 24; 2571-2574. 

Van Saarloos W. Front propagation into 

unstable states: marginal stability as a 

dynamical mechanism for velocity 

selection, Phys. Rev. Lett. A 1988; 

37;1;211-229. 

Van Saarloos W.  Front propagation into 

unstable states. II. Linear versus 

nonlinear marginal stability and rate of 

convergence, Phys. Rev. Lett. A 1989; 

39; 12; 6367-6389. 

Zhu G. Experiments on director waves in 

nematic liquid crystals, Phys. Rev. Lett. 

1982; 49; 1332-1335. 

Zimmerman W. Propagating fronts near a 

Lifschitz point, Phys.Rev. Lett. 1991; 

66; 1546. 

 

 


