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ABSTRACT

In this study, we determine the generalized taxicab group consisting all isometries of the real plane
endowed with the generalized taxicab metric. First we develop natural analogues of Euclidean
reflection and rotation notions, and then determine all isometries in the generalized taxicab plane.
Finally, we show that the generalized taxicab group is semidirect product of the translation group
and the generalized taxicab symmetry group of the unit generalized taxicab circle, as Euclidean
group. We also see that there are transformations of the real plane onto itself which preserve the
generalized taxicab distance, but not preserve the Euclidean distance.
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1. Introduction

The taxicab metric was given in a family of metrics of the real plane by Minkowski. Using this metric, taxicab
geometry was introduced by Menger [10], and developed by Krause [8]. In [15], Lawrance J. Wallen altered the
taxicab metric by redefining in order to get rid of imperative symmetry, and called it the (slightly) generalized
taxicab metric. During the recent years, metric geometries based on these metrics have been studied and
developed in many directions. See [1], [2], [3], [4], [5], [6], [7], [12], [13], and [14] for some of studies.
Let P1 = (x1, y1) and P2 = (x2, y2) be two points in R2. For each positive real numbers a and b, the function
dTg : R2 ×R2 → [0,∞) defined by

dTg
(P1, P2) = a |x1 − x2|+ b |y1 − y2| (1.1)

is called generalized taxicab distance function in R2, and the real number dTg (P1, P2) is called generalized taxicab
distance between points P1 and P2, while the well-known Euclidean distance between points P1 and P2 is

dE(P1, P2) = ((x1 − x2)2 + (y1 − y2)2)1/2. (1.2)

The real plane endowed with the generalized taxicab metric is called the generalized taxicab plane, and this metric
space is denoted by R2

Tg
. An isometry is a transformation of a metric space onto itself which preserves distances,

and one of the basic geometric problems for a given metric space is to determine the group of isometries of it.
It is well-known that the group of all isometries of the Euclidean plane is the Euclidean group E(2) which is
semidirect product of the translation group T (2) consisting of all translations, and the symmetry group of unit
circle O(2). In [3], Euclidean isometries that preserve the generalized taxicab distance are studied. In this study,
our main aim is to determine the all isometries of R2

Tg
and the generalized taxicab isometry group Tg(2) related

to them. To do that, we first define angle measurement in the generalized taxicab plane, then we develop
natural analogues of Euclidean reflection and rotation notions in the generalized taxicab plane. Finally, we see
that Tg(2) is semidirect product of the translation group T (2) consisting of all translations, and the generalized
taxicab symmetry group of the unit generalized taxicab circle OTg

(2), as Euclidean group. Here, we also see
that there are transformations of the real plane onto itself which preserve the generalized taxicab distance, but
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not preserve Euclidean distance. Throughout the paper, we sometimes use gt- prefix for generalized taxicab to
shorten phrases.
The following proposition states an equation which relates the Euclidean distance to the generalized taxicab
distance between two points in the Cartesian coordinate plane (see also [3]):

Proposition 1.1. For any two points P1 and P2 in R2 that do not lie on a vertical line, ifm is the slope of the line through
P1 and P2, then

dTg (P1, P2) = µ(m)dE(P1, P2) (1.3)

where µ(m) = (a+ b |m|)/(1 +m2)1/2. If P1 and P2 lie on a vertical line, then

dTg
(P1, P2) = b dE(P1, P2). (1.4)

Proof. Let P1 = (x1, y1) and P2 = (x2, y2) such that x1 6= x2. Then m = (y2 − y1)/(x2 − x1). Clearly, dTg
(P1, P2) =

|x1 − x2| (a+ b |m|) and dE(P1, P2) = |x1 − x2| (1 +m2)1/2, thus we have dTg
(P1, P2) = µ(m)dE(P1, P2), where

µ(m) = (a+ b |m|)/(1 +m2)1/2. If x1 = x2, then dTg (P1, P2) = b |y1 − y2| and dE(P1, P2) = |y1 − y2|, thus we have
Equation (1.4).

The following two corollaries follow directly from Proposition 1.1:

Corollary 1.1. Let P1, P2, P3 and P4 be four points in R2. If lines P1P2 and P3P4 are coincident, parallel or symmetric
about a line parallel to an axis; in addition for a = b, if lines P1P2 and P3P4 are perpendicular, then

dTg (P1, P2) = dTg (P3, P4) if and only if dE(P1, P2) = dE(P3, P4). (1.5)

Corollary 1.2. In R2, if P1 and P2 two distinct points and X is a point on the line P1P2, and distinct from P1 and P2,
then

dTg
(P1, X)/dTg

(X,P2) = dE(P1, X)/dE(X,P2). (1.6)

2. The Generalized Taxicab Angle Measurement

To measure angles in the generalized taxicab plane, we will mirror the usual Euclidean radian notion, as in [13]
(see also [1] and [7] for angle measurement functions in the taxicab plane). So, we define angle measurement
on the unit generalized taxicab circle which is shown in Figure 1.

Figure 1: Unit generalized taxicab circle (for a = 1/5 and b = 1/3).

Definition 2.1. One generalized taxicab radian (gt-radian) is the measure of a positive directed central angle
that intercepts a gt-arc of gt-length of 1 in the unit gt-circle. The measure θ in gt-radian of an angle is the
number of gt-radians subtended by the angle on the unit gt-circle about the vertex.

As usual, we take angles with counterclockwise orientation as positive measure, and denote the measure in
gt-radians of directed angle P1OP2 by mTg (P1OP2) (see Figure 2).

It follows that the unit gt-circle has 8 gt-radians since it has circumference 8. Since all distances along a gt-circle
are scaled equally as the radius changed, for a central angle θ of any gt-circle, the gt-length s of the gt-arc
intercepted on a circle of radius r by the angle, is given by s = rθ, as in Euclidean geometry. Notice that the
ratio of the circumference of any generalized taxicab circle to its diameter is πTg

= 4.
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Figure 2: The generalized taxicab measures of positive directed angles:
mTg (A1OP1) = dTg (A1, P1), mTg (P1OP2) = dTg (P1, A2) + dTg (A2, P2).

The following proposition states a formula to calculate measure in gt-radians of positive directed angles in
standard position:

Proposition 2.1. Let P = (x, y) be a point on the unit gt-circle. Then, measure in gt-radians of positive directed angle
A1OP is

mTg (A1OP ) =

{
2− 2ax , if P ∈ [A1, A2] ∪ [A2, A3]
6 + 2ax , if P ∈ [A3, A4] ∪ [A4, A1]

(2.1)

Proof. Using definitions of the gt-distance and the gt-radian, one has the following equation:

mTg
(A1OP ) =


a
∣∣x− 1

a

∣∣+ b |y| , if P ∈ [A1, A2]
2 + a |x|+ b

∣∣y − 1
b

∣∣ , if P ∈ [A2, A3]
4 + a

∣∣x+ 1
a

∣∣+ b |y| , if P ∈ [A3, A4]
6 + a |x|+ b

∣∣y + 1
b

∣∣ , if P ∈ [A4, A1]

In addition, if P ∈ [A1, A2], then y = (1− ax)/b; if P ∈ [A2, A3], then y = (1 + ax)/b; if P ∈ [A3, A4], then y =
(−1− ax)/b; if P ∈ [A4, A1], then y = (ax− 1)/b. Using these values in equation above, one gets Equation
(2.1).

Notice that having the same measure in gt-radians is not enough for angles to be Euclidean congruent since not
every Euclidean congruent angles have the same measure in gt-radians. It is easy to see that opposite angles
always have the same measure in gt-radians and straight angles always have measure of 4 gt-radians. Besides,
if a = b, then Euclidean right angles always have measure of 2 gt-radians. But if a 6= b, the only Euclidean right
angles with measure of 2 gt-radians are angles whose sides are parallel to coordinate axes (see Figure 3). Let us
call an angle with measure of 2 gt-radians, gt-right angle. Thus, we naturally have gt-perpendicular notion, too:
In Figure 3, the lineQ1Q2 is the gt-perpendicular bisector of the line segment [P1P2], sincemTg

(P1OQ1) = 2 and
dTg

(P1, O) = dTg
(O,P2), and similarly the line P1P2 is the gt-perpendicular bisector of the line segment [Q1Q2],

since mTg
(P1OQ1) = 2 and dTg

(Q1, O) = dTg
(O,Q2). It is not difficult to see that if lines l1 and l2 with slope m1

and m2 are gt-perpendicular, then m1m2 = −a
2

b2 .

Figure 3: The generalized taxicab right angles:
mTg (P1OQ1)=mTg (Q1OP2)=mTg (P2OQ2)=mTg (Q2OP1)=πTg/2=2 gt-radians.
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3. The Generalized Taxicab Reflections

We take the natural analogue of Euclidean reflection for the generalized taxicab version:

Definition 3.1. The generalized taxicab reflection σα in line α is the mapping of R2
Tg

such that σα(X) = X if
point X is on α, and σα(X) = Y if point X is off α and α is the gt-perpendicular bisector of the line segment
[XY ]. If σα(X) = Y , then Y is called gt-symmetry of the point X about the line α.

Since gt-perpendicular bisector for the line segment XY is different from the Euclidean analogue, we need
to determine a way to find σα(X) for a given line α and any point X : Given a line α and any point X . If X
is on α, then σα(X) = X by definition. Let X be off α. First, draw the unit gt-circle with center X , then for a
point P such that the ray [XP is parallel to α, determine the point P ′ such that mTg

(PXP ′) = 2 gt-radians (see
Figure 4). Thus, the line P ′X is gt-perpendicular to α. If I is the intersection point of the line P ′X and α, then
the gt-symmetric point of X with respect to the point I (clearly, gt-symmetry about a point is the same as the
Euclidean symmetry about a point) is σα(X) = Y , since dTg

(X, I) = dTg
(I, Y ) by Corollary 1.2, and so α is the

gt-perpendicular bisector of the line segment [XY ]. Note that gt-reflection in line parallel to y = 0 or x = 0, and
gt-reflection in line parallel to y = x or y = −x for a = b, are the same as their Euclidean analogues. In addition,
σα fixes every point on α; σα fixes line β if and only if β = α or β is gt-perpendicular to α; if α1 and α1 are
parallel, then σα1σα2 is a translation; and σασα = I , as in Euclidean geometry.

Figure 4: Y is the image of the point X under the gt-reflection σα.

To determine isometric gt-reflections of R2
Tg

, let us consider gt-reflections in lines through origin. Let σl be a
gt-reflection in a line l through origin, and let C be a gt-circle with center O. Clearly, if σl(X) is off C for a
point X is on C, then σl is not an isometry. Besides, if σl is an isometric gt-reflection in line through origin,
then σl fixes C. One can see that gt-reflection in line y = 0, x = 0, y = a

bx or y = −abx fixes gt-circles with center
O. To be precise, let P1 = (x1, y1) and P2 = (x2, y2) two points, then σy=0(Pi) = (xi,−yi), σx=0(Pi) = (−xi, yi),
σy= a

b x
(Pi) = ( bayi,

a
bxi), and σy=− a

b x
(Pi) = (− b

ayi,−
a
bxi) for i = 1, 2. Using the definition of the generalized

taxicab distance between two points one gets dTg
(P1, P2) = dTg

(σl(P1), σl(P2)) where l is y = 0, x = 0, y = a
bx or

y = −abx. Thus, a gt-reflection in line parallel to y = 0, x = 0, y = a
bx or y = −abx is an isometry. One can also

see easily that the other gt-reflections in a line through origin are not isometries, since they do not fix gt-circles
with centerO. Therefore, a gt-reflection in line not parallel to y = 0, x = 0, y = a

bx or y = −abx is not an isometry.
Notice that if a = b then isometric gt-reflections σy=0, σx=0, σy= a

b x
and σy=− a

b x
preserve also the Euclidean

distances. If a 6= b then isometric gt-reflections σy=0 and σx=0 preserve also the Euclidean distances, but
isometric gt-reflections σy= a

b x
and σy=− a

b x
do not preserve the Euclidean distances, while they preserve the

generalized taxicab distances.

Now, we state following proposition as a result of our observations above:

Proposition 3.1. In the generalized taxicab plane, the set of isometric gt-reflections in lines through origin is

STg =
{
σy=0, σx=0, σy= a

b x
, σy=− a

b x

}
.

One can also write the isometric gt-reflections in matrix form as:

STg =

{[
1 0
0 −1

]
,

[
−1 0
0 1

]
,

[
0 b

a
a
b 0

]
,

[
0 − b

a
−ab 0

]}
.

www.iejgeo.com 86

http://www.iej.geo.com


Harun Barış Çolakoğlu

4. The Generalized Taxicab Rotations

Similarly, we take the natural analogue of Euclidean rotation for the generalized taxicab version:

Definition 4.1. The generalized taxicab rotation ρC,θ about point C through directed angle of θ in gt-radians
is the mapping of R2

Tg
such that ρC,θ(C) = C, and ρC,θ(X) = Y for X 6= C, where dTg

(C, Y ) = dTg
(C,X) and

θ = mTg
(XCY ).

Since gt-distance function and measure of angle in gt-radians are different from Euclidean analogues, we need
to determine a way to find ρC,θ(X) for given points C, X and directed angle measure in gt-radian θ: Given
points C, X and directed angle measure in gt-radian θ. If X = C, then ρC,θ(X) = C, by the definition. Let
X 6= C. First, we draw the unit gt-circle C1 with center C and the gt-circle C2 with center C and radius [CX],
then we take the intersection point P of the ray [CX and the gt-circle C1. Thus, for the point P ′ such that
mTg

(PCP ′) = θ, the intersection point of the ray [CP ′ and the gt-circle C2 is Y = ρC,θ(X), since θ = mTg
(XCY )

and dTg
(C, Y ) = dTg

(C,X) (see Figure 5). Note that gt-rotation about a point through 4 gt-radians, and gt-
rotation about a point through 2 gt-radians for a = b, are the same as their Euclidean analogues. In addition, a
nonidentity gt-rotation fixes exactly one point (its center); a gt-rotation with center C fixes every gt-circle with
center C; and ρC,θ2ρC,θ1 = ρC,θ1+θ2 , as in Euclidean geometry.

Figure 5: Y is the image of the point X under the gt-rotation ρC,θ.

To determine isometric gt-rotations of R2
Tg

, let us consider gt-rotations about
origin through directed angle of θ ∈ [0, 8), for the points A1 and A2 of the unit
gt-circle. Clearly, if σO,θ is an isometric gt-rotation, then dTg (ρO,θ(A1), ρO,θ(A2))
= 2 since dTg (A1, A2) = 2. One can see that dTg (ρO,θ(A1), ρO,θ(A2)) = 2 for θ ∈ {0, 2, 4, 6}. To be
precise, let P1 = (x1, y1) and P2 = (x2, y2) two points, then ρO,0(Pi) = (xi, yi), ρO,2(Pi) = (− b

ayi,
a
bxi),

ρO,4(Pi) = (−xi,−yi), and ρO,6(Pi) = ( bayi,−
a
bxi) for i = 1, 2. Using the definition of the generalized taxicab

distance between two points one gets dTg
(P1, P2) = dTg

(ρO,θ(P1), ρO,θ(P2)) for θ ∈ {0, 2, 4, 6}. Thus, a gt-
rotation about a point C through directed angle of θ ∈ {0, 2, 4, 6} in gt-radians is an isometry. One can
also see easily that the other gt-rotations about origin are not isometries, since dTg (ρO,θ(A1), ρO,θ(A2))
< 2 for θ ∈ [0, 8)− {0, 2, 4, 6}, due to points ρO,θ(A1) and ρO,θ(A2) are not on opposite sides of the unit gt-circle.
Therefore, a gt-rotation about a point C through θ ∈ [0, 8)− {0, 2, 4, 6} is not an isometry.
Notice that if a = b then isometric gt-rotations ρC,0, ρC,2, ρC,4 and ρC,6 preserve also the Euclidean distances. If
a 6= b then isometric gt-rotations ρC,0 and ρC,4 preserve also the Euclidean distances, but isometric gt-rotations
ρC,2 and ρC,6 do not preserve the Euclidean distances, while they preserve the generalized taxicab distances.

Now, we state following proposition as a result of our observations above:

Proposition 4.1. In the generalized taxicab plane, the set of isometric gt-rotations about origin for θ ∈ [0, 8) is

RTg = {ρO,0, ρO,2, ρO,4, ρO,6}.

One can also write the isometric gt-rotations in matrix form as:

RTg
=

{[
1 0
0 1

]
,

[
0 − b

a
a
b 0

]
,

[
−1 0
0 −1

]
,

[
0 b

a
−ab 0

]}
.

One can see that the composition of any two isometries in STg
∪RTg

is also in STg
∪RTg

:
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• σy=0σy=0 = σx=0σx=0 = σy= a
b x
σy= a

b x
= σy=− a

b x
σy=− a

b x
= ρO,0 = I

• σy= a
b x
σy=0 = σy=0σy=− a

b x
= σx=0σy= a

b x
= σy=− a

b x
σx=0 = ρO,2

• σx=0σy=0 = σy=0σx=0 = σy=− a
b x
σy= a

b x
= σy= a

b x
σy=− a

b x
= ρO,4

• σy=− a
b x
σy=0 = σy=0σy= a

b x
= σy= a

b x
σx=0 = σx=0σy=− a

b x
= ρO,6

• ρO,2ρO,6 = ρO,6ρO,2 = ρO,4ρO,4 = ρO,0 = I ; ρO,4ρO,6 = ρO,6ρO,4 = ρO,2
• ρO,2ρO,2 = ρO,6ρO,6 = ρO,4 ; ρO,2ρO,4 = ρO,4ρO,2 = ρO,6
• If φ ∈ STg ∪RTg then ρO,0φ = φρO,0 = φ
• ρO,2σy=0 = σx=0ρO,2 = σy= a

b x
; ρO,2σx=0 = σy=0ρO,2 = σy=− a

b x

• ρO,2σy= a
b x

= σy=− a
b x
ρO,2 = σx=0 ; ρO,2σy=− a

b x
= σy= a

b x
ρO,2 = σy=0

• ρO,4σy=0 = σy=0ρO,4 = σx=0 ; ρO,4σx=0 = σx=0ρO,4 = σy=0

• ρO,4σy= a
b x

= σy= a
b x
ρO,4 = σy=− a

b x
; ρO,4σy=− a

b x
= σy=− a

b x
ρO,4 = σy= a

b x

• ρO,6σy=0 = σx=0ρO,6 = σy=− a
b x

; ρO,6σx=0 = σy=0ρO,6 = σy= a
b x

• ρO,6σy= a
b x

= σy=− a
b x
ρO,6 = σy=0 ; ρO,6σy=− a

b x
= σy= a

b x
ρO,6 = σx=0

5. The Generalized Taxicab Isometry Group

Now, let us consider the image of the unit gt-circle under an isometry fixes the origin: Given an isometry φ :
R2
Tg
→ R2

Tg
such that φ(O) = O. Assume that φ(A1) ∈ (A1, A2), then φ(A2) ∈ [A3, A4] since dTg

(φ(A1), φ(A2)) = 2.
Then φ(A3) ∈ [A1, A2], and we have dTg

(φ(A1), φ(A3)) < 2, which is a contradiction since dTg
(A1, A3) = 2.

Thus, φ(A1) /∈ (A1, A2). Using the same way, one gets the fact that φ(Ai) ∈ {A1, A2, A3, A4}. In addition, if
X ∈ (AiAi+1) for i ∈ {1, 2, 3, 4} (assume that A5 = A1), then dTg (O,φ(X)) = 1 and

dE(Ai, X)

dE(X,Ai+1)
=

dTg (Ai, X)

dTg
(X,Ai+1)

=
dTg (φ(Ai), φ(X))

dTg
(φ(X), φ(Ai+1))

=
dE(φ(Ai), φ(X))

dE(φ(X), φ(Ai+1))

by Corollary 1.1 and Corollary 1.2. Thus, φ([AiAi+1]) = [φ(A1)φ(Ai+1)] for each i ∈ {1, 2, 3, 4}, and
so points O, φ(A1) and φ(A3) (so points O, φ(A2) and φ(A4)) are collinear. Therefore, there are
8 possible cases for φ(A1, A2, A3, A4): (A1, A2, A3, A4), (A1, A4, A3, A2), (A3, A2, A1, A4), (A2, A1, A4, A3),
(A4, A3, A2, A1), (A4, A1, A2, A3), (A3, A4, A1, A2), (A2, A3, A4, A1). It is clear that these conclusions are valid
also for a circle C with center O, radius r, and vertices C1, C2, C3, C4 (labels are as in Figure 1). Moreover, points
φ(Ai) and φ(Ci) are the same order of above eight possible cases, since dTg (Ai, Ci) = dTg (φ(Ai), φ(Ci)) = |r − 1|.
Hence, we can state following proposition using our observations above:

Proposition 5.1. Let φ : R2
Tg
→ R2

Tg
be an isometry such that φ(O) = O. Then φ ∈ STg or φ ∈ RTg .

Proof. In the observation above, if φ(A1, A2, A3, A4) = (A1, A2, A3, A4), then φ is identity. If φ(A1, A2, A3, A4) =
(A1, A4, A3, A2), then φ is the gt-reflection in line y = 0. If φ(A1, A2, A3, A4) = (A3, A2, A1, A4), then φ is
the gt-reflection in line x = 0. If φ(A1, A2, A3, A4) = (A2, A1, A4, A3), then φ is the gt-reflection in line y =
a
bx. If φ(A1, A2, A3, A4) = (A4, A3, A2, A1), then φ is the gt-reflection in line y = −abx. If φ(A1, A2, A3, A4) =
(A2, A3, A4, A1), then φ is the gt-rotation about O through 2 gt-radians. If φ(A1, A2, A3, A4) = (A3, A4, A1, A2),
then φ is the gt-rotation about O through 4 gt-radians. If φ(A1, A2, A3, A4) = (A4, A1, A2, A3), then φ is the gt-
rotation about O through 6 gt-radians. Therefore, φ ∈ STg

or φ ∈ RTg
.

So, we have the gt-orthogonal group OTg
(2) of the real plane with dTg

metric, consisting of four gt-reflections
and four gt-rotations:

OTg (2) = STg ∪RTg

which is also the gt-symmetry group of the unit gt-circle. There is one more isometry type having no fixed
points: translations. They are the same as Euclidean geometry, since there is no distance or angle notions in the
definition:

Definition 5.1. A translation is a mapping τv : R2
Tg
→ R2

Tg
such that τv(x, y) = (x+ v1, y + v2), where v = (v1, v2)

is a translation vector.

Let P1 = (x1, y1) and P2 = (x2, y2) two points and v = (v1, v2) is a translation vector, then Pi = (xi + v1, yi + v2)
for i = 1, 2 and one gets dTg

(τv(P1), τv(P2)) = dTg
(P1, P2) by using definition of the generalized taxicab distance.

So, we can state the following proposition:
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Proposition 5.2. Every translation is an isometry in R2
Tg

.

One can see that we have all isometries of the generalized taxicab plane, by the following theorem:

Theorem 5.1. Let f : R2
Tg
→ R2

Tg
be an isometry. Then there is a unique τv ∈ T (2) and φ ∈ OTg

(2) such that f = τv ◦ φ.

Proof. Let f(O) = V where V = (v1, v2). Define φ = τ−v ◦ f . Then, φ is an isometry and φ(O) = O. Thus,
φ ∈ OTg

(2) by Proposition 5.1, and f = τv ◦ φ. The proof of uniqueness is trivial.

Finally, we have the generalized taxicab group Tg(2) which is semidirect product of the translation group T (2)
and the gt-symmetry group of the unit gt-circle OTg (2) (one can use 3x3 matrix form of the generalized taxicab
isometries to show this conclusion as in [12]). The generalized taxicab group Tg(2) consists all isometries of the
real plane with the generalized taxicab metric, which are all translations, all four isometric gt-reflections, all
four isometric gt-rotations and their compositions.

Clearly, if we take a = b = 1 then all definitions and conclusions given can be adapted for the taxicab geometry.
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