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Abstract

This article is devoted to the study of a N-space dimensional linear high-order para-
bolic equation, subject to Cauchy-Dirichlet boundary conditions. The problem is set in a
non-symmetric conical domain. The analysis is performed in the framework of weighted
anisotropic Sobolev spaces by using the domain decomposition method.
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1. Introduction

This work is devoted to the study of the following high-order parabolic problem

du+ Au=feL2(Q),
Ok — 0, k=0,..,m—1, (1.1)

BQ\FT

where A = (=1)"™(92™ + 02" + ... + 02™), m belongs to the set of all nonzero natural
numbers N* 9@ is the boundary of @), 't is the part of the boundary of Q) where t =T,
and 9, stands for the normal derivative. L2 (Q) is the space of square-integrable functions
on ) with the measure wdtdxidxs...dzy, where the weight w is a real-valued function
defined on [0, T7], differentiable on ]0,7]. Here @ is the non-symmetric conical domain
0< o8, 4+ B 4 4 T
Q=1 (t, 21,79, wn) € RV : 22 (t) T (1) @3 (t) ,

0<t<T

where T' > 0, ¢ and h are two Lipschitz continuous real-valued functions on [0, T'] satisfying

©(0) =0, and ¢ (t) >0, Vt € 10,77, (1.2)
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0<d<h(t)<p, vVtel0,T], (1.3)
where 0 and (8 are positive constants.

The difficulty related to this kind of problems comes from the fact that the domain
() considered here is nonstandard since it shrinks at ¢ = 0 (¢ (0) = 0), which prevents
the domain @ to be transformed into a regular domain without the appearance of some
degenerate terms in the parabolic equation, see for example Sadallah [24]. On the other
hand, we cannot recast such problems in semi groups setting. Indeed, since the initial
condition is defined on a set measure zero, then the semi group generating the solution
cannot be defined.

It is well known that there are two main approaches for the study of boundary value
problems in such non-smooth domains. We can work directly in the non-regular domains
and we obtain singular solutions (see, for example [13,16,17,25]), or we impose conditions
on the non-regular domains to obtain regular solutions (see, for example [10,11,21,24]).
It is the second approach that we follow in this work. So, let us consider the anisotropic
weighted Sobolev space

2" (Q) = {u e B (Q): ofu

with
HL*™(Q) = {u: dpu, 0% € L2 (Q), |a] < 2m}
where
a = (i1,i2,...,in) € N o] = i1 + iz + ... + iy, 0% = 0L 02 ..ON .

The space HL?™ (Q) is equipped with the natural norm, that is

1/2
||“”H572m(Q) = (HatUH%g(Q) + Z ||aa“||%g(Q)) :

|| <2m

In this paper we prove that Problem (1.1) admits a unique solution u in H.?™ (Q), under
the following additional conditions on the functions ¢ and w

o)™ () — 0 ast—0, me N, (1.4)
YVt e [0,T]:w(t) >0,
w is a decreasing function on ]0,77. (1.6)

Our main result is the following.

Theorem 1.1. Let us assume that the functions w, ¢ and h verify assumptions (1.5),
(1.6), (1.2) and (1.8). Then, Problem (1.1) admits a unique solution u € HL?*™(Q) in
one of these two cases:

(1) the functions (hy) and ¢ are increasing in a neighborhood of 0,
(2) the function ¢ wverifies condition (1.4).

The case m = 1 corresponding to a second-order parabolic equation is studied in [9] and
[12] both in bi-dimensional and multidimensional cases. In Sadallah [26] and Kheloufi et
al. [14], the second-order parabolic problem has been studied in the case of a symmetric
conical domain; i.e., in the case where h = 1, both in bi-dimensional and multidimensional
cases.

Whereas second-order parabolic equations in non-smooth domains are well studied, the
literature concerning higher-order parabolic problems in non-cylindrical domains does not
seem to be very rich. The solvability of the first boundary-value problem for higher-
order parabolic equations in non-cylindrical domains in Sobolev spaces was considered in
Mikhailov [22] for the one-dimensional case, and in [23] for the multidimensional case. The
author considered a class of “backward” paraboloid for which the parabolic boundary lies
below the characteristic plane ¢ = 0. In the case of Holder spaces functional framework, in
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Baderko [1] and [2], we can find solvability results of boundary value problems for a 2m-th
order parabolic equation for non-cylindrical domains (of the same kind but which can not
include our domain) with a non-smooth (in t) lateral boundary. In [7] the authors obtained
well posedness results for the solution of a boundary value-problem for the parabolic

equation
N

Lu =8+ (=)™ R+ 077, Ju=f
j=1
in a noncylindrical domain with respect to one spatial variable. More precisely, the spatial

domain considered is
D= {(x,xN+1) cx € RY oy (z) <y < ag(x)}

with ap € CHRY), k € {1,2}. Further references on the analysis of higher-order para-
bolic problems in non-cylindrical domains are: Cherepova [4], Labbas and Sadallah [18],
Galaktionov [6] and Cherfaoui et al. [5].

The plan of this paper is as follows. First, we prove a uniqueness result for Problem
(1.1). Then, to prove the existence of the solution of Problem (1.1), we divide the study
into two steps:

a) We prove a uniqueness and existence result with estimates, for a Problem (3.1)
similar to (1.1) where @ is replaced by the truncated domain

1
Qn = {(t,l’l,l'z,...,l'N) €Q: - <t<T}, n € N¥,

(Theorem 3.1 and Proposition 3.10).

b) We build a solution u of Problem (1.1) when T is small enough, by considering u,
the 0-extension to @ of the solution of (3.1) (u, exists by Theorem 3.1), and showing
(in virtue of Proposition 3.10) that u,, — u, weakly in L2 (Q), for a suitable increasing
sequence of integers (nj)r>1. The obtained existence local result can be extended to a
global in time one by considering

Dy = {(t7$17x27-'-7xN> S Q0<t<T1}

and
Dy ={(t,z1,22,...an) €Q:Th <t <T}
with 77 small enough and applying the previous case.

2. Uniqueness of solutions and technical lemmas

Proposition 2.1. Under the assumptions (1.5) and (1.6) on the weight function w, Prob-
lem (1.1) admits at most one solution.

Proof. Let us consider u € Hy>™ (Q) a solution of Problem (1.1) with a null right-hand

0,w
side term. So, the calculations show that the inner product (dyu + Au,u) in L2(Q) gives

0 = Jp, [uw(T)deidmy...dey — [o 5 Jul*o' (t) dt doydzs...dzy

2
+fQ <|8£}u|2 + |6;r;u}2 + ..+ agfvu’ ) w(t)dt dridzs...dry.

2
Thanks to the conditions (1.5) and (1.6), this implies that lagﬁu|2+ |8$u‘2+...+ H?Nu‘ =
0 and consequently 02"y = 927w = ... = 977u = 0. Then, the equation of Problem (1.1)

gives Qyu = 0. Thus, u = ZZL;OI apz®, ar € R, k=0,1,...,m—1. The boundary conditions
imply that u = 0 in Q. This proves the uniqueness of the solution of Problem (1.1). O

Remark 2.2. In the sequel, we will be interested only in the question of the existence of
the solution of Problem (1.1).
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The following result is well known (see, for example, [20]).

Lemma 2.3. Let B(0,1) be the unit ball of RN. Then, the operator
A:H*™(B(0,1))NHJ" (B (0,1)) — L*(B(0,1)), v+ Av = (— 282’”

is an isomorphism. Moreover, there exists a constant C' > 0 such that
||U||H2m(B(0,1)) < C ||AU||L2(B(O,1)) ) Yov € H2m (B (0, 1)) N H(?)TL (B (O, 1)) .

In the above lemma, H?™ and HJ* are the usual Sobolev spaces defined, for instance,
in Lions-Magenes [20]. In Section 3, we will need the following result.

Lemma 2.4. For a fized t € 0, T[, there exists a constant C > 0 such that for each
u € H?™ (), we have

Loo1? 2(2m—1) 2 ,

] ) u‘ <Oy V() [ Aul 32y 1= 0,1,.0,2m — 1, j = 1,2, .., N.

AR ZI(r
Here, Qy is the section of Q defined (for a fized t €]0,T[) by

N . a? a3 ay
Q= R 13.
t {(xlm’ ) ER S en o T T Re }

Proof. 1t is a direct consequence of Lemma 2.3. Indeed, let ¢ € ]0,7[ and define the
following change of variables

B (0, 1) — Qt,

(xlaer"u'rN) — (h(t)@(t).fl,@(t)IQ,7g0<t).%'N) = (xll7xl27ax/]\[)
Set v (21,22, ..., zn) = u (¥}, 25, ..., ¥y), then if v € H?™ (B (0, 1)), u belongs to H>™ (Q).

(a) We have

2
L2(B(0,1))

2
— fB(O,l) (8;11)) (z1,22,...,zN) dx1dTe...dT N

2
= Jo, (R @) (0, u) (@1, 3, ., 2y) rrawg Aot dah...day

2
= RA-L(4) AN ( (t) Jo, (3i,u) (2], xh, ..., &y ) dadxhy...dx'y
20-1 21-N !
B0 e 0o

where [ € {0,1,...,2m — 1}. On the other hand, we have
1491172 5(0.1)) )
— fB(o,l) [(—1)m (a%i% + 6%;”1) + .+ 8%7;1@) (x1, 22, ..., xN)] dxidxs...dxy

2
= Jo, [(B () @ ()™ 02w+ Sy 2™ (8) 0] (ah, @b, s 2y)

1

xmdx’ldxé...dm’]v

4mt

2
- ﬁ o, (th (t )Oifnu + Z{XZQ Oizlu) (2], xh, ..., xy) dzl dhy...dx'y

— 2
< N (max(52™,1))> Jo, ( my 4+ YN, 82,mu> dzday...dx'y
S 504m N Kth <82mu—|— Zk 28 ’LL) d:UldCCQ dl‘N
S047n N
< 7[( HAUHL2
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where K = (max(8%™, 1))2 and 0 and [ are the constants which appear in (1.3). Using
the Lemma 2.3 and the condition (1.3), we obtain the desired inequality.

(b) For j =2,..., N, we have
2
L2(B(0,1))

l

‘81}

2
T = fB(o,l) (@lcjv) (x1, 2, ...,xN) dr1dTs.. . dT)N
2
= o P (0 (0Ly10) (@ ) iz ey

- 2
- %fm (%Qu) (2], xh, ..., ) da dxhy...dx'y
2l_N(t 2
h(t)

_ @

o u

x'.
J

L2(Q)
where [ € {0,1,...,2m — 1} . On the other hand, we have

Am—N
%) t
I 4vlam0n) < E K Aulaga,

of Lemma 2.3 and condition (1.3), we obtain the desired inequality

Using the inequality

!
0y, v

2 2
Loy S CllAvliza s,

2
\@m < 0D (1) | Aul3 g, -
J L2(Q4)
O
Remark 2.5. In Lemma 2.4 we can replace ||.|| ;2 by ||.]| 2 -
3. Existence result for problem (1.1)
We divide the proof of Theorem 1.1 into two steps.
3.1. Step 1: Existence result in truncated domains (),
In this subsection, we replace @ by Q,, n € N* and % <T:
1
Qn = {(t,xl,mg,...,m]\/) €Q: - <t< T}.
Theorem 3.1. For each n € N* such that % < T, the problem
Oy, + Aup = fr € Li (Qn) »
Unle—3 =0, (3.1)

8’,fun‘ —0, k=0,1,...,m—1,

OQn~(DrU{t=211)
where f, = f‘Qn admits a unique solution u, € HL?™ (Q,) .

Proof of Theorem 3.1. The change of variables

2

(t,xl,xz,...,xzv) — (t,y17y2,,.,,yN) = (t’W’W"“’%>

transforms @)y, into the cylinder P, = } L T[XB (0,1), where B (0, 1) is the unit ball of RY.
PUttlng Un (ta x1,T2, ,I'N) = Un (tu Y1,Y2, .-y yN) and fn (t7x17x27 7(EN) = gn (t7y17y27 7yN) 9
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then problem (3.1) is transformed, in P, into the following variable-coefficient parabolic
problem
(=nm
Oyvp, + 27 (D)
Unl1 =0,

m m h / /
[hZT}L(t) 851 Up + Z;V:Q (9,3] Un] — ( (i;)(giﬂ ayl'Un - (’;T(:)) §V:2 yjayj Un = Gn,

k

yvn

’ L =0,k=0,1,..,m—1,
OP,~(SrU{t=11})
where Y7 is the part of the boundary of P, where ¢t = T. The above change of variables

(=p™  (=D™  (h)
h2 (,02777” L%72'm 9 h(p

/
conserves the spaces L2 and H>?™ because and % are bounded

functions when ¢ €], 7. In other words

fn € L2 (Qn) <= gn € L2 (Py), u, € HLYY™(Q,) <= v, € HL*™(P,).

Proposition 3.2. For each n € N* such that % < T, the following operator is compact

(h¢") () 11 P () & 1,2m 2
— 0y — Zyjay, cHyl" (Pn) — L (Py) .

o) () 0 (t) 2¥i% o

Proof. P, has the "horn property" of Besov (see [3]). So, for j =1,2,...., N
1,2m l—ﬁ,Qm—l
Oy, - Hy, (P,) — Hy (Pn), vi— Oy, v,
_ 1 —

is continuous. Since P, is bounded, the canonical injection is compact from Hi 2m 21
into L2 (P,) (see for instance [3]), where

(Pn)

1

1
waﬁﬂmfl

1 1
(P) = L (TP (B 0.) ) nH 3 (LT (B (0.1))).

n n
For the complete definitions of the H™* Hilbertian Sobolev spaces, see for instance [20].
Consider the composition

1—-L 2m—1

By,  Hy2" (Pa) — Hu ™ (Py) = L2 (Py), v 8,0+ 9y,

then 9y, is a compact operator from H, V2™ (P,) into L2 (P,) . Since — ;L}(L;‘;ggg and — £ are

Ow (1)
a bounded functions for % <t < T, the operators — (}Eigo))(%“ Oy, —‘PSD(%”“ Oy, k=2,3,..,N
are also compact from H&im (P,) into L2 (P,). Consequently,
he') (t () &
D, O,
@ e (t) =
is compact from H&y’im (P,) into L2 (Py). O

So, thanks to Proposition 3.2, to complete the proof of Theorem 3.1, it is sufficient to
show that the operator

(D™ om (CD™ S0
o + 5 5 o + 5 m
@ () e @)
is an isomorphism from Hglﬁm (P,) into L2 (P,) .
Lemma 3.3. For each n € N* such that % < T, the operator
(D™ o (CD™ S0
O + ———5——02" m
t + R2m (£) 2 (t) YL + 02 (t) Yj

Jj=2

is an isomorphism from Héfjm (P,) into L2 (P,).
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nm  (ym
h2m (t) > (L) o> (t)
ularity is given by Ladyzhenskaya, Solonnikov and Ural’tseva [19]. U

are bounded in P,, the optimal reg-

Proof. Since the coefficient

We shall need the following result in order to justify the calculus of this section.

Lemma 3.4. For each n € N* such that % < T, the space

{un € H*™(P,) : vpl,_1 = 8l,fvn‘ =0, kzO,l,...,m—l}

OP,\(SpU{t=1})

is dense in the space

{vn € HY™ (P,) : vnl,_1 = 851;”‘ 0, k=0,1,....,m — 1} .

OP,~(SpU{t=11) -
Here, H*™ stands for the usual Sobolev space defined, for instance, in Lions-Magenes [20)].
The proof of the above lemma may be found in [20].

Remark 3.5. In Lemma 3.4, we can replace P, by @), with the help of the change of
variables defined above.

3.2. Step 2: Existence result in the conical domain @)

3.2.1. An "energy" type estimate. Now, we return to the conical domain @) and we
suppose that the functions h and ¢ satisfy conditions (1.2), (1.3) and (1.4).

For each n € N* such that 1 < T, we denote f,, = flg,, and un € HL?™ (Q,,) the solution
of Problem (1.1) in @,. Such a solution exists by Theorem 3.1. We look for a constant
K1 > 0 independent of n satisfying the estimate

[unll grrom g,y < K llfnllpz @) < Killfllczq) - (3:2)
Let us denote the inner product in L2 (Q,) by (.,.), then we have
an”%g(cgn) = (Oyun + Aup, Opun + Auy)
= ”atunH%g(Qn) + HAUnH%g,(Qn) + 2(0run, Aun).

We need the following result which is a consequence of Lemma 2.4 and Grisvard-Looss
[8, Theorem 2.2].

Lemma 3.6. There exists a constant C > 0 independent of n such that

> 10%ullizq.) < CllAualizz g, -

|a]=2m
In the sequel, we will estimate the inner product (9yu,, Au,) making use of the boundary
conditions

un’t:% - a];un‘ =0, k=0,....m—1,

0Qn~(TrU{t=1})

which are equivalent to

Un|,_1 = OF uy, =0,k=0,...,m—1;=1,2,..,.N

i ‘aQn\(FTU{t:%})

This equivalence can be proved, for instance, by induction.
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Lemma 3.7. One has

2(Bytin, Aun) = /O o /0 i /O " A ! ((hp)' (£) cos? 01 + (h') () sin® 6y )
N

Proof. We have
ANk k 2m—k—1 ket 1 2
Ot Aty = Zl L}zjo Ou, (08, B 02"y ) (~1)FH™ 4 50 (0run) ] .
Then
2(0up, Auy) = Qan Ot Aup.w (t) dtdrdey...dey
= 2o, LI S0 Oy (08,0 02wy, ) (~ )R
Xw (t) dtdxidze...dx N
2
+ Jo., O Z;-V_l (8mun) w (t) dtdzydzs...dzy

2
+ Jao, > (3 un) Vp.w (t) do
— an (8 un)2 W (t) dtdzydes...dxy

with v, v4,, ..., Vg, are the components of the unit outward normal vector at 0Q,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part

of the boundary of @Q;,, where t = —, we have u, =0, 1 = —land v,; =0, 7 =1,2,..., N.
n

Consequently the corresponding boundary integral vanishes. On the part of the boundary
where t = T', we have v,; =0, j =1,2,..., N and 14 = 1. Accordingly, the corresponding
boundary integral

/ Z 8mun (T, z1,2z2,....,2N) w (T) dridzs...dey
I'r

is nonnegative. On the part I'y of 0Q),, defined by

2 2 2
X x xT
Fl:{(t,xl,x%“.’x]\[):h2(t>:02(t)+ 2 + ...+ N :1}’

we have, for k =1,2,...., N — 1,
h(t)sin ;... sin 0y_1 cos by,

" \/(90/ (t) h(t) sin? 01 + (hp)’ (t) cos? 91)2 + (h(t) sin 91)2 + cos? 0 ’

h(t)sinf;...sinOy_osinOn_;

\/(go’ (t) h(t) sin2 0; + (hep)' (t) cos®61)° + (h(t) sin 6;)? + cos? 6, ’

Ven =




188 S. Cherfaoui, A. Kessab, A. Kheloufi

— (¢’ (t) h(t) sin® 61 + (hep)’ (t) cos® b4)
\/ (¢ () h(t) sin2 0y + (he) (t) cos? 61)* + (h(t) sin 61)? + cos? 6,

Vy =

and
Bﬁjun(t,h(t)go(t) cos B, ¢ (t)sin 0y cos Oa, ..., v (t) sin 61 sin O... sin O _9 cos Oy _1,
(p(t) sin91 sinﬁg...siHGN_g sinHN_l) = 0, k= 0, ey T — 1; j = 1,2, ,N

Let us denote

I = 2/
I
We have

Io= 2 [, o (O 02 ) (<1)" vy 0 (1) do
+2 fI‘l §V:1 2?2712 (8’;jc’)tun,agzﬁ—k—1un> (71)k+m Ve,
=2 Jr, ;’V:I (8;?_1815“71'6;?71%) Vg, -w (t) do

= Io+ 11 + Ip-1.

3

N
S (08,0 02 N ) (1M v 0 (1) do
7=1 k=0

w(t)do

a) Estimation of Iy =2 [, Zjv:l (&un.@g;"*lun) (=1)" vy, w (t) do -
We have

un(t,h () @ (t) cosby, ¢ (t)sin b cosby, ..., (1) sin Oy sin O;... sin O cos On_1,
@ (t)sin B sinfs...sinfy_9sinfy_1) = 0.

Differentiating with respect to ¢, we obtain
Ou, = —¢' (t) {Zg;; sin @, ... sin 01 cos 0.0y, up + sin ;... sin HN,l.(?xNun}
— (hg)' (t) cos 01.0,,u, = 0.
So, the boundary integral Iy vanishes.
b) Estimation of I, =2, >N 72 (a;;jatun.ag;%k*lun) ()™ v, w (t)do -
We have
Olafjun(t, h(t) e (t)cosb, e (t)sinby cosbs, ..., (t)sinb; sinbs...sin Oy _o cosOn_1,
¢ (t)sinf sinfs...sinfy_9sinfy_1) =0, k=1,...,m—2;57=1,2,..,N.

Differentiating with respect to ¢, we obtain
N—-1
8t(9§j up = —¢ (t) Z sinf ...sin6;_, cos 01.8x18§jun
=2

— ' (t)sinf; ...sin 9N_1.8xN8§jun
— (he) (t) cos@l.axlaﬁjun, k=1,...m—-2;,7=1,2,...,N.
The Dirichlet boundary conditions on I'; lead to
ata’;jun = —¢' () Zl]i;}l#j sinf; ...sin6;_; cos 95.8@8’;#”
—¢' (t)sinb; .. .sin HN_l.axNﬁlgjjun
— (hp)' (1) Cosﬁl.axlﬁﬁjun, k=1,..m—-2;j=2,...,N —1,

8t8§1un = —¢'(t) Zfigl sinfy ...sin6;_; cos 91.6118§1un
—¢' (t)sinby ...sinOn_1.0,,OF un,
and
&g@iNun = —¢ (¢) Zl]\;l sinfy ...sin6;_1 cos 91.8@85]\,11”

— (hp) (t) cos 01.0,, 0% w,, kE=1,...,m—2.

1Y N
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Now, differentiating the formula
algjun(t, h(t) e (t)cosb, e (t)sinby cosbs, ..., (t)sinb; sinbs...sin Oy _o cosOn_1,
¢ (t)sinfy sinfs...sinfy_o9sinfy_1) =0, k=1,...m—2;57=1,2,..,N,
with respect to 01,...,0ny_2 and Ox_1, we obtain for p=2,..., N — 2,
sin 61,.8%85]% = cosf, Zf\;;il sinf,41...sin¢;_; cos 91.6@85], Uy,

+costpsinfpi ...sin HN_1.8xN8§jun,

N-1
h(t).sin 61.0y, 8]9;_ Uy, = cos 0 Z sinfy ...sin6;_1 cos 0;.0,, Ol;j Uy,
1=2

+ cosfysinfs .. .sin 9N—1-8zN3];ij
and
sin eN,laxN_laijun = cos ON,laxN(?;fjun
where k =1,...,m —2; j=1,..., N. The Dirichlet boundary conditions on I'; lead to
3xi6§jun =0, k=1,...m—2;i=1,...,N,j=1,...,N
and consequently
00y up =0,k =1,...,m—2;j=1,...,N.
So, the boundary integral I; vanishes.
c) Estimation of [, = -2 frl Z;V:l (8;’;*18tun.8;’]‘_un) Vg, -w (t) do :
We have
8;;_1un(t, h(t) ¢ (t)cosby,p (t)sinby cosba, ..., o (t)sin b sinbs...sin Oy _o cos On_1,
¢ (t)sin#y sinfs...sinfy_o9sinfy_1) =0, j=1,2,...,N.

Differentiating with respect to ¢, we obtain

T~z

N-1
8t6;’;*1un =—¢ () Z sinfy ...sin6;_q cos ;.05 0™ tu,
=2

— ¢ (t)sinf; ...sin eN_l.axNag;—lun
— (hy) (t) cos 91.89018;7;_%”, j=1,2,...,N.
The Dirichlet boundary conditions on I'; lead to

8t8$_1un = —¢' (t) Zl]ig}l#j sinf; ...sin#;_1 cos al.azla;;;—lun

—¢' (t)sinb; .. .sin eN_l.axNag;—lun
— (he)' (t) cos 91.89618;7;_%”, j=2,...,N -1,

6t6;’f1un = —¢' (t) Zl]\igl sinfy ...sin6;_; cos 91.8@8;’;*%71
—¢' (t)sinb; .. .sin 9N,1.8xN8;’i_1un,
and
8t8;”N_1un = —¢'(t) Zl]igl sinfy ...sin#;_q cos 01.89618;”N_1un

— (h)' (t) cos 1.0, O uy,.
Now, differentiating the formula
8;?_1un(t, h(t) ¢ (t)cosby,p (t)sinby cosba, ..., o (t)sin b sinbs...sin Oy _o cos On_1,
@ (t)sin by sinfs...sinfy_osinfy_1) =0, j=1,2,.. N.
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with respect to 61,...,0n_2 and Ony_1, we obtain for p =2,..., N — 2,

N-1
sin ep.axpa;f;*lun =cos b, Z sin @41 ...sin6¢;_; cos 61.81;[8;’;*%“
I=p+1

+ cos 6, [sin0p+1 .. .sinHN_lﬁxNag;‘flun} , j=1,...,N
h(t).sin 91.85,;182;_%“ = cosb [Zf\gl sinfy ...sin#;_q cos el.axla;;—lun}
cos 01 [Sin 05 ...sin eN,I.axNag;—lun} ,
and

: m—1 m—1 .
81n9N_181N718xj Uy = COS 9N_18$N8x]_ Up, j=1,...,N.

Taking into account these relationships we deduce
Lt = 2[5 f5 I T ((h) () cos? 01 + (he') () sin? 6 )
X (25.21 (ag;unf) (B (£) dtdf, .. dBy_odfn 1
Finally
2(rtun, Awn) = J3" - ST ((h) () cos® 01 + (hg') (t) sin® 0y )
x (z;V:l (agg;un)Q) () () dtdby ... dBx—odfx

N N2 (3.3)
+ pr =1 <8zjun) (T, x1,x9,....,xN) w (T) dridrs...dey
N m 2 /
—fo, (2N <8mjun> W' () dtdazrdas...dzy.
(]
Remark 3.8. Observe that the integrals
N 2
/ Z (8;”,un) (T, z1,22) .w (T) dz1dxs...dxN
re \;= v
and
N 2
—/ Z (8;”un) & (t) dtdrydxs...doyy,
Qn j=1 J

which appear in the last formula are nonnegative thanks to the assumptions (1.5) and (1.6)
on the weight function w. This is a good sign for our estimate because we can deduce
immediately

||fn”%g(Qn) > ”8tu”||ii(Qn) + HA“"”%@(Q,L)
S Y ((h) () cos® 01 + (hg') (t) sin® 0y )
X (Zﬁil (8£}un)2> p(t)w (t) dtdb; ... dON_odfy .
So, if ¢ and hy are increasing functions in the interval (%, T), then
TG I T (o) (8) cos? 01 + () (1) sin? 6y )
x ( j=1 ((9;7;%)2) p(t)w (t) didby ... doN—2dfN—1 = 0.

Consequently,
1 £alZ20n) = 10unllZz 0. + AUl 0,y - (3.4)
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But, thanks to Lemma 2.4 and since ¢ is bounded in (0,7’), there exists a constant C’ > 0

such that

; 2

[

Taking into account Lemma 3.6 and estimate (3.4), this proves the desired estimate (3.2).
So, it remains to establish the estimate (3.2) under the hypothesis (1.4). For this

purpose, we need the following lemma.

< HAunH%a(Qn) ., 1=0,1,....2m—1;5=1,2,...,N.

Lemma 3.9. One has
2(0ptuy,, Auy) = 2fQ ( x18mun + £ Z o x;0 un> Au,
w(t )dtdxldxg...dasN
m, \2 4 ¢ m, )2
~ V=2 Jo, (42 @)+ £ T (05un))
w(t )dtda:ldxg ...dry
+ Jry (3’” ) (T, z1,22) w (T)dxidzs . ..dey.

Proof. This result can be obtained by following step by step the proof of [9, Lemma
3.8]. O

Proposition 3.10. Let us assume that the functions w, ¢ and h verify assumptions (1.5),
(1.6), (1.2) and (1.8). Then for T' small enough, there exists a constant K; independent
of n such that

[unll grom g,y < K[l fall 2@, < K1 llflL2 g
if one of the following conditions is satisfied

(1) the functions hp and ¢ are increasing in a neighborhood of 0,
(2) the function ¢ verifies condition (1.4).

Proof. The case when hy and ¢ are increasing functions in a neighborhood of 0 has been
treated in Remark 3.8. Then assume that ¢ verifies the condition (1.4).

Remark 3.11. Let € > 0 be a real which we will choose small enough. The hypothesis
(1.4) implies the existence of a real number 7' > 0 small enough such that

vt e (0,T),]¢ (1) ™ (1)] < . (3.5)
Now, we continue the proof of Proposition 3.10. We have

‘an ( he)’ 100 up + = Z o ;0 un) Aup.w (t )dtd(]?ldxg‘

< lAunllzg .|| % e 10, ‘LQ(Q + Al g g, |5 Sile 205 ‘LZ(Qn)’
but Lemma 2.4 yields for j =2,..., N
Ca 2 T 2
H%xjamjun‘%@n) — f% 90, th< ) (2 ) W dtdxldan dzry
< f%%'z() Jo, (amun) w (t) dtdzrdzs...dzy
< 02f1( )¢ (1)) Ja, (Aup)? w (t) dtdz dxy...dzy
<

26| dunl 3 )
since (™ (t) ¢’ (t)) < € thanks to the condition ( .5). Similarly, we have

, 2
H (he) | my,

< C%é || Aunl 72 )

hp L2(Qn)
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Then

(he)'
/n ( ho 10, Up + — - Z:c]({) Uy, | Aup.w (t) dtdzidz,...dey

j=2

< NCe||Aun?2 0,

Therefore, Lemma 3.9 shows that

h
/n ((}:;) 18 m Uy + = 5 ]z;%a Un) Au,w ()dtdl’ld$2...d$N

/ N
—%N—&)@n(“”) )+ 3 (0w

he =

12(Opu, Aup)| > —2

/

) w (t) dtdrrdzs...dzy

4

N
2
—i—/ E (8;’;%1) (T, x1,z9,....,2N) w (T) dridzy...dey
rr i

> —NCe || Aun| 0,
Hence

1allZ2 0 = 10sunliz (0, + 1AunlZz g + 2(Brtn, Auy)
18eunl|Z (g, + (1 = N2Ce) | Aunlz2 g,

Then, it is sufficient to choose € such that 1 — N?2Ce > 0 to get a constant Ky > 0
independent of n such that

v

1Fallzz @y = Ko lunll gz g
and since
1l 2 @) < 1Nz )
there exists a constant K7 > 0, independent of n satisfying
||un||H5»2m(Qn) < K ||fn||Lg(Qn) <K HfHLg(Q)
This completes the proof of Proposition 3.10. O
3.2.2. Passage to the limit. Choose a sequence (Qy,),,cn- of the domains defined above

(see subsection 3.1), such that @, C Q. Then, we have @,, — @, as n — oo. Consider the
solution u,, € HL?™ (Q,,) of the Cauchy-Dirichlet problem

Oy, + Aup, = f € Li (Qn),

Un|t:% =0,

8’,jun‘ —0, k=0,1,...,m—1,

0Qn~(TrU{t=1})

where f, = f |Q" . Such a solution u,, exists by Theorem 3.1. Let u, the 0-extension of
Up to Q. In virtue of Proposition 3.10 for 7" small enough, we know that there exists a
constant C' such that

Il 2 ) + ||

pa@t 2 Haa“nHz < Clifllzzq)

1<|a|<2m

This means that @, dytn, 0%uy, for 1 < la] < 2m are bounded functions in L? (Q). So,
for a suitable increasing sequence of integers ng, k = 1,2, ..., there exist functions

u, v and v, 1 < |af < 2m

in L? (Q) such that

Up, — U, Oy, — U, 0%y, — Vg
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weakly in L2 (Q) as k — oo, 1 < |a| < 2m. Clearly,
v = 0, vq = 0%, 1 < |a| < 2m
in the sense of distributions in Q and so in L2 (Q). So, u € HL?™ (Q) and
Owu+ Au = fin Q.
On the other hand, the solution u satisfies the boundary conditions

oku =0,k=0,1,...,m—1,
8Q\FT
since
vn €N, ulg = un.

This ends the proof of Theorem 1.1 in the case of T' small enough.

Remark 3.12. The obtained local in time result can be extended easily to a global in
time one by considering

Dy ={(t,z1,22,..,an) €Q : 0 <t <T1}
and
Dy = {(t,z1,72,...any) €EQ :Th <t < T}
with 77 small enough and applying the previous case. For more details, see [15].

Remark 3.13. Note that this work may be extended at least in the following directions:
1. The function f on the right-hand side of the equation of Problem (1.1), may be taken
in LP (Q), p € ]1,00[. The domain decomposition method used here does not seem to be
appropriate for the space LF, (Q)) when p # 2.
2. The conical domain () may be replaced by a twisted-conical domain, i.e., the function
¢ may also depend on an angle 6 € (0, 27)
2 2 2
0 < oy + ooy + o+ o2l < 1
= R2(1)2(t,0 2(t,0 (1,0 ’
Q= (t 21,79, zy) € RVFL ®)e2(t.0) * 9*(t,0) ©*(t,0) ’
0<t<T

where ¢ is a Lipschitz continuous real-valued function on [0,7] x [0, 27| satisfying the
conditions ¢ (0,0) =0 for 0 < 6 < 27 and ¢ (¢,0) = ¢ (¢,27).
These questions will be developed in forthcoming works.
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