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1. Introduction

Differential equations of fractional-order have been proved to be valuable tools in the
modelling of many phenomena in various fields of engineering, environmental, physics and
economics. In the current years, fractional calculus and fractional differential equations
have undergone expanded study as a considerable interest both in mathematics and in
applications. One of the recently influential works on the subject of fractional differential
equation is the monograph of Kilbas et al. [7], Lakshmikantham et al. [9], Miller et al.
[13] and the papers of Bayour et al. [1], Mei et al. [12], Zou et al. [20].

Random differential equations and random integral equations were introduced as good
models in various branches of science and engineering since random coeflicients and un-
certainties have been taken into consideration (see [2,8,15,16]). Recently, the issue of
fractional calculus and random differential equation has emerged as the significant subject
and this new theory becomes very attractive to many scientists. Therefore, this theory
has been developed in theoretical directions, and a wide number of applications of this
theory have been considered (see [10,11,14,19]). Lupulescu et al. [10,11] proved the ex-
istence and uniqueness of solutions for random fractional differential equations (RFDEs)
under Carathéodory condition, and the existence results of extremal random solutions of
the RFDEs are studied. In [17,18], Vu et al. discussed the existence and uniqueness of
solutions of RFDEs with delay. Zhang and Sun [14] proved the existence and uniqueness
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of solution for random impulsive differential equations by applying random Banach fixed
point theorem and Schaefer’s type random fixed point theorem. Yang and Wang [19]
established a framework to study impulsive fractional sample path associated with impul-
sive fractional LP-problem, and the existence, Ulam-Hyers-Rassias stability of solution of
a class of non-instantaneous impulsive fractional-order implicit differential equations with
random effects were investigated.

Hafiz et al. [5,6] considered the stochastic Abel integral equations of the first and second
kind using a concept of the stochastic m.s. fractional integration for mean square ( m.s.)
continuous second-order stochastic processes, and authors also studied the m.s. Riemann-
Liouville fractional integration of m.s. integrable stochastic processes, the m.s. fractional
derivative in the sense of Riemann-Liouville and Caputo. El-Sayed [4] defined the Caputo-
via Riemann-Liouville fractional-order operator for the second order stochastic processes,
studied some equivalent properties for these fractional-order operators and some equivalent
Cauchy type problems. The existence of mild solution of the nonlinear fractional-order
stochastic differential equations also is proved.

Based on the motivation stated in the work of Hafiz et al. [5,6] and El-Sayed [4]. In this
paper, we study the existence and uniqueness of solution for random fractional differential
equation with impulses via Banach fixed point theorem and Schauder fixed point theorem.
The continuous dependence of the solution on the initial data also is investigated.

The rest of the paper is organized as follows: In Section 2, we give some basic theorems,
definitions and notations which are used throughout this paper . In Section 3, we inves-
tigate the existence and uniqueness of solution for random fractional differential equation
with impulses and the continuous dependence of the solution on the initial data.

2. Preliminaries

In this section, we introduce some basic theorems, definitions and notations which are
used throughout this paper. These results can be found in the papers [3—6].

Let (Q, F,P) be complete probability space. Let X (¢t,w) = {X(t),t € J =[0,T],w € Q},
T > 0, be a second-order stochastic process, i.e., BE(X2(t)) := [, X?dP < co. Let Lo(2)
is the Banach space of random variables X : Q@ — R such that E(X?%(t)) < oo. Let
C = C(J,L2(f2)) be the class of all second-order stochastic processes which are m.s.
Riemann integrable on J, i.e.,

/ B(X2(1))dt < oo.
J

In C(J, L2(R2)), we denote the Banach space of all continuous functions from J x € into
R with the norm

1 Xlle = max | X (D]l2, where [|X(1)]l2 = (E(X*(1))""

Theorem 2.1 (see [5,6]). Let a € (0,1] and X € C(J,L2(Q)). The stochastic m.s.
fractional integral I X (t) is defined by

18X (1) = F(la) /Ot(t ) LX (s)ds.

Theorem 2.2 (see [5,6]). Let o, 8 € (0,1]. If X € C(J,L2(Q)), then I X (t) exists in
m.s. sense as a second-order m.s. continuous second-order process 1§, X (t) € C(J, L2(£2))
with the following properties
i) Ig: : O(J, L2(Q2)) = C(J, L2(2));
i) 18I0 X (1) = I 18 X (1) = ISP X (t);
iii) lim I8 X (1) = I, X (t) = X (¢).
o—
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Let C1(J, L2(2)) be a second-order stochastic process which is m.s. differentiable with

m.s. continuous derivative.
Definition 2.3 (see [15]). A second-order stochastic processes X (t), t € J, has a mean

square derivative or m.s. derivative %X (t) at t € J if

X — X (t
fim [XEER =X d o] g,
h—0 h dt 9
Definition 2.4 (see [5,6]). The Caputo fractional derivative of order av € (0, 1] of the
stochastic process X, denoted by D, X (t) is defined by
DY X(t) =1 - d
e 7
d . L
where %X (t) denotes the m.s. differentiation of X (t).
If X is m.s. differentiable with m.s integrable

Theorem 2.5 (see [5,6]). Let a € (0,1]

second-order derivative, then

d
— X (t):
=X ();

i) limg—1 DF X (t) =
; limg 0 Dgy X (1) = X(t) — X(0);
)

ii
ii) I§ D X
iv) Dy i X

(t) = X(t) — X(0);
(t) = X(1).

3. Main results
We consider the following random fractional-order differential equation with impulses

(RFDEIs):
d
aX(t) =F(t,X(t),D*X(t)), te J,
AX (t) = (X (t)), k=1,2,...,m (3.1)
X (0) = X,
where D is m.s. Caputo fractional derivative of order a € (0, 1], J' = [0, t1]U (1, t2]U. ..U
<t <tmy1 =T, F € C(J x La( ) ><L2( ),L (Q)), XO is

(tm,T],O—t0<t1<t2<...

a random variable with F(X()? < oo, I € C(La(2), L2(Q)) and AX (t,) =

X(ty)= lim X(tx+h), X(tf)= lim X(t,+h
(ty) = lim X(tx +h), X(t)= lm X(tx+h)

represent the right and left limits of X (¢) at ¢ = t;, respectively, and they satisfy X (¢, )
{X J = La(Q)| X € C(J', Lo(2)), X () and X (t;,) exist

X(tg) for k=1,.
Now, we denote PC’( )=
and X (¢, ) = X(tx), k=1,...,m}.
d
Let pr X (t) =Y(t) for any t € J'. Consider the following random impulsive differential
equation:

LX) =y @),
(3.2)

dt
AX () = I(X(t)), k=1,2,...,m,
X(0) = Xo.
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Lemma 3.1. Assume that Y € C(J, L2(Q)). A function X € PC(J) is a solution of the
problem (3.2) if and only if X satisfies the following impulsive integral equation (IIE)

Xo + [3Y (s)ds, ift €0,t1],
X(t) = : . . (3.3)
X+ gl S Y(s)ds + [} Y (s)ds + 2;1 L(X(t:), ifte (tr,tryl],
where k =1,2,...,m

Proof. Assume that X satisfies the problem (3.2). For ¢ € [0, ¢;] and using Theorem 5.1.1
(see [15, pp. 118]), we have
t
0) + / Y (s)ds
0

In view of X (¢]) = I1(X(t1)) + X (t] ), we obtain
t1

X)) = L(X(t1)) + Xo + ; Y (s)ds.

For ¢ € (t1,t2], we get
t
Xt)=X{t)+ [ Y(s)ds

t1
t1 t
=0L(X(t1)) + Xo+ Y(s)ds+ | Y(s)ds.
0 11
Similary, from X (t5) = Io(X (t2)) + X (t;), we get for t € (2, t3]
t
Xt)=X(t3)+ [ Y(s)ds

[2)

=1 (X(tl)) + IQ(X(tQ)) + Xo + / dS + " Y(S)dS + tY(S)dS.

t1 t2

Repeating the above process, for t € (tx,tg+1], £ = 1,2,...,m we infer that

koot
:XU+Z/t Y (s)ds + Y ds+ZI
i=1"t-1

Conversely, assume that X satisfies the problem (3.3). Then, we use Theorem 5.1.1 (see
[15, pp. 118]) to the subintervals t € (tg,tg+1], K = 1,2,...,m to complete the proof. O

Remark 3.2. In view of %X(t) =Y(t) for any t € J', we have

Y(t) = F(t, X(t), DX (t)) = F(t, X(t),[l_o‘%X(t)) =F(t, X (1), 'Y (t))
and from IIE (3.2), we obtain
F(t Xo+ [y ¥ (s)ds, 'Y (1)), if t € [0, 1],
Y= F(t,Xﬁé S Y (s)ds + [, Y(s)ds+i:lIi(X(ti)),Il_"Y(t)), it t € (tg, trynl,
(3.4)
where k =1,2,...,m

Remark 3.3. The solution X of the problem (3.1) can be represented by IIE (3.3), where
Y is the solution of the IIE (3.4).
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Assume that F € C(J" x La(Q) x L2(Q),Lo()) and I, € C(La(Q), L2(N)),k =
1,2,...,m satisfy the following assumptions:

(A1) there exist Ly, Ly > 0 such that
[t X1, Y1) = F(t, Xo, Vo)l < Ln [ X1 = Xofly + L2 [V1 = Y2 5,

for t € J and Xl,XQ,Yl,YQ S LQ(Q);
(A2) there exists Ls > 0 satisfied mL3z € (0, 1) such that

k(X)) = Le(Y)lly < Lz [[X =Yy,

for k=1,2,...,mand X,Y € Ly(Q).

First, we prove the existence and uniqueness of solution for the problem (3.1) based on
Banach fixed point theorem.

Theorem 3.4. Assume that the assumptions (A1)-(A2) hold and Xo € Lo(2). If

mLs LoT1—@

24— N[ T4 2
QT tTre—a

<1,

then the RFDEI (3.1) has a unique solution on J.

Proof. Let Xo € L2(Q2). Define an operator @@ on PC(J) by

(QY)(®)
F(t, Xo + J3 Y (s)ds, [7=2Y (1)), if ¢ € [0, 4],
TN E(EXo+ X Y(s)s+ LY (s)ds+ S (X (), OV (1)), it € (th b,
0<tp <t 0<trp<t

where k= 1,2,...,m. Then it is clear that @ : PC(J) — PC(J). Now, we show that the
operator () is contraction. Using the assumptions (A1)-(A2) and Y, Y € Lo(2), we have
for t € [O, tl]

1QY)(®) — (@Y)(B)]l,

_ HF(t,X0+/OtY(s)ds,11aY(t)) —F(t,Xo+/0t}7(s)ds,Ilaf”(t))

2

t t
< L1 || Xo —I—/ Y (s)ds — Xo — / Y (s)ds
0 0

£ Lo Py () - 10T o)
2

< Iy /Ot 1Y (s) — 17(3)H2d8 + F(lLia) /Ot [(t—s)"||Y (s) — ?(s)Hst

L2T17a

< (LT + TG —a)

MY =Yl <Y =¥l
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Similary, using the assumptions (A1)-(A2) and for ¢ € (tg,tgs1], £k = 1,2,...,m, Y,Y €
L2(Q2), we obtain

1(QY)(t) - (@Y)(®)],

Z " yis ds+/ ds+§:lk(X(tk))—§:/tk V(s)ds
te—1 k=1 k=1"tk-1

/Ydsz tk

<L

+L2||11‘“Y() =y (),

SMEZlHWﬁ—?@mw+Lg[ng—?@mw

+LIZ 1Zk(X (t)) = (X (t)]|, + Lol T =0V (8) = 'V (1),

m
L1 (b — te—a)||Y — Y||C+L1(t—tm |y — YHC

k=1
Tﬂ%ﬂw o+ pa sl = e
L LoTi=«
< (e 2T+ )W’Y%
LoT~

Since the condition (2 4+ &)L, T +

ks < 1, we get [|QY - QY)||, < [¥ -

INOES a)
Y| o VY,Y € Ly(). Therefore, the operator Q is contraction. As a consequence the
Banach fixed point theorem, we conclude that there exists a unique fixed point which is a
unique solution of IIE (3.4) on J. Using Remark 3.3, then the RFDEI (3.1) has a unique
solution on J.The proof is completed. O

Remark 3.5. From the assumption (A1), we have for t € J and X,Y € Lyo(9)
||F(t’X>Y)”2 < ”F(ta Xa Y) - F(t70>0)”2 + ||F(t7070)||2
< Ly Xy + La Y]l + [1F(E,0,0)[l; < LA+ [ Xl + Y]l )

where L = max { L1, Lo, sup,c | F(£,0,0)|, }. Moverover, from the assumption (A2), we
obtain

Ik (X)lly < [1Hk(X) = k(0| + [k (0)lz < Ls [ X[lo + [k (0)]l; < CA+[1X]l0 ),
where C' = max {Ls, | X(0)||, } for £k =1,2,... and X € Ly(Q).

In the sequel, we show the existence of solution of IIE (3.4) via Schauder fixed point
theorem. To this purpose, let B(Xy, p) be a closed ball with center X and radius p, i.e.,
B(Xo,p) = {X € PC(J, L2()) | ||X — Xoll2 < p}

Theorem 3.6. Assume that the assumptions (A1)-(A2) hold and Xy € Lo(R2). If

L
P (1 +mC + || Xol|,

Tl—a
O X+ DTV, + [Vl ) <1

then the RFDEI (3.1) has a unique solution on J.

Proof. We prove that the operator () satisfies the conditions of Schauder’s fixed point
theorem. To this purpose, we consider the operator @ : B(Xo, p) — B(Xo, p) defined as
in the proof of Theorem 3.4. The proof is given in three steps as follows.
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Step 1. The operator @ is a m.s. continuous on PC(J). Indeed, let {Y,,} be a sequences
such that Y;, = Y as n — oo, respectively. For t € [0, 1], we obtain

[(@Y2)(®) — (QY)(®)],

_ HF(t X0+/0t Yo(s)ds, I, (1)) —F(t,X0+/OtY(s)ds,IlC“Y(t))

2

t t
< L[| Xo +/ Y, (s)ds — Xo — / Y (s)ds
0 0

<I /Ot [Ya(s) = Y (s)|,ds + F(lLia) /Ot(t —5) || Yu(s) = Y(s)||,ds

+ Lo 1Y, (1) = Ty (1)
2

L2T1 «
<|\LiTH—/—"—)|Yn-Y 3.5
< (LT + 15— )W =Yl 35)
Similarly, for ¢ € (tg,trx+1], K =1,2,...,m, we have

@0 - @O,
<Y [ ) Y Olds Ly [ 100 =Y )l

+L12HIk — (X (t8))]|, + Lol T Yn(t) — IV (1),

<ny /tk_l V(o) = ¥ ($) s + L | [¥als) =Y ()]

L Y Xl - X(0)], + mL_?a) [ 1=t - )]s

k=1
leLgT L2T1 « )
< (2L4T Y,—-Y 3.6
Since F' and Ij are m.s. continuous on PC(p) for k =1,2,...,m, we infer that

QY — QY|, = 0 as n — oco.

Step 2. The operator Q(B(Xo, p)) is m.s. bounded. Indeed, for ¢ € [0,1], X € PC(J)
and using Remark 3.5, we have

(QY)(®)ll, = H (t Xo+/ 5)ds, I'°Y (1))

2

< L(l + HXO —I-/ Y(s)ds
0

l—a
v l,)

<214l + [ VOt s [ = 9o as)

< L{1 Xl + TIY e+ =g V) < 7
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Similarly, using Remark 3.5, for X € PC(J) and t € (tx, tx+1], K = 1,2,...,m, one obtain
QY ()],
m th n m
<L(1%oll, + 30 [ IV Glds+ [ IV (6) s+ X IR @D, + oY@, )
k=1"tk—1 m k=1

m Tl—a
< L(1+ X0l + Yot = i) [V + = ) [Vl + mCL+ X o) + =¥
k=1
Tl-«
< L<1 +mC + | Xo|| o +mC|| X| o + (m + DTV . + MHYHC) <p (38
Combining the inequalities (3.7) and (3.8), we infer that ||QY|, < p.

Step 3. The operator @ is m.s. equicontinuous. Let Y € PC(J) and for 7,70 €
[0, 1], T1 < T2, we have

I(QY)(m2) = (QY)(m)
HF 72,X0+/ Y(s)ds, 'Y ()], ) - F(Tl,X0+/ Y (s)ds, I'"Y (8)] _,, )

‘2
‘2

H 7'2,X0+/ ds - aY( )’ 7_1) Tl,XQ—I—/ dS - aY ‘t 7'1)

‘ 2

+‘F(72,Xo+/ Y(s)ds, I'"*Y (¢ |”) F(TQ,X0+/ Y (s)ds, 'Y (t)],_ n)

H TQ,X0+/ s)ds, 'Y (1)), ) — F(TQ,X0+/ Y (s)ds, 1"V (1)],_, )

L

L
L

L

< HF TQ,X0+/ Y (s)ds, 'Y ()],_ ) - F(rg,X0+/ Y (s)ds, 1Y ()] _. )

+’F<T27XO+/ Y(s)ds, I'"*Y (¢ |t7) F(n,Xo+/ Y(s)ds, 'Y (t)],_ 7'1)

+L2||IlfaY(t)y — Iy (¢

T1
<L ‘XOJF/ Y(s)ds—Xo—/ Y (s)ds (3] S
0

+’ TQ,X0+/ s)ds, I'~Y (t)|,_ T) ﬁ,X0+/ s)ds, 'Y (t)],_ n>

§L1/ ]|Y(s)||2ds+iH/TZ)(Tg—S)_O‘Y(s)dS—/ (71 — )Y (s)ds

2

+HF(72,X0+/ Y (s)ds, I'®Y (¢ |”) F(Tl,Xo+/ Y (s)ds, I'®Y (t \tT)H
2

§L1||YHC(T2—7'1)—|—ia)HYHC‘/OTz(TQ—s)ads—/ (T1—5)*ad8

H 72,X0+/ s)ds, 'Y (1), ) — n,XO+/ s)ds, I' =Y (¢)],_ n)’
2
Lo|ly
<L1||YHC(T2—71)+F(21H_HCS/ — ads—l—/ (g —8)"“ — (11 — 8)"*]ds
+HF(72,X0+/ Y (s)ds, I'Y (1)],_, ) - F(Tl,X0+/ Y (s)ds, 'Y (1)],_ n>'
2
Lo

1- 1— —
< LlHYHC(TQ —71)+ m(Q(TZ - 7'1) “+ T = 7-11 a) HYHC
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H 72,X0+/ $)ds, 1Y (1)],_ ) — ﬁ,XO+/ s)ds, 'Y (1)],_,. )

'2.

Performing the same calculations as above, for 71,70 € (t, tky1], 71 < 72, k=1,2,...,m
and X € PC(J), we obtain

(QY)(72) = (QY)(m)],

ty
:HF(TQ,XO+ 3 Y (s d.s+/ Y(s)ds+ > I(X(t), I'°Y(®)_,)
0<trp<To tk—1 0<trp<to
~F(m, X0+ Y " (st [ V(s)ds + o (X (), 1Y ()] = T)’
O<tp<r * k-1 tk 0<tp<T1 2
t
> /k Y (s ds+/ sds+ > I(X - > /
0<tk<72 ¢ 0<tr<m2 0<trp<t1 -
ARV o LT s
te 0<tp <71
tg
+HF(TQ,XO+ > Y (s ds+/ Y(s)ds+ > I(X(t), 'Y (t)],_,
O<tp<r k-1 0<tr<m1
~F(m, Xo+ Y / ds+/ Y(s)ds+ > L(X(t)), 'Y (1), n))H
0<tr <71 tk—1 0<tr <71 2
tr tr T2 T1
<Ly > s)ds — Y Y (s)ds| + Ly Y(s)ds — | Y(s)ds
0<tp<r * th—1 0<tp<r k-1 2 b b 2
L Y LX) - Y. In(X(t) +L2|{Il Y1), —I'7Y (1)), _ s
0<tr<To 0<trp <71
tr
+HF<TQ,X0+ > Y (s ds+/ Yi(s)ds+ Y L(X(t), 'Y (t ®),_,,
O<tp<r k-1 0<tp<m1
~F(m, Xo+ Y / ds+/ s)ds+ Y L(X(t), IOV (¢ |tn))H
0<trp<m1 0<tr <71 2

<hflYlley > G-te)+ LYo —m)+ L >0 [IX )],

O0<trp<m2—T1 0<tp<m2—T1

L2 et 1—
+m(2(72—71) Ty T )HYHC

Hemons X[ v [vis X necw vl

0<tp<r 0<te <1
ti
r(ndor 3 [ viodr [Ty 3RO, )]
O<tp<Ti t_1 0<tr<T1

so [[(QY)(12) — (QY)(71)||, = 0 as 79 — 7y for any Y € Lp(2). Applying the Arzeld-
Ascoli theorem together with the results of Steps 1 to 3, we conclude the operator @ is
m.s. equicontinuous on PC(J).

As a consequence of Schauder’s fixed point theorem, we deduce that the operator ) has
a fixed point which is a solution of IIE (3.4). Using Remark 3.3, the RFDEI (3.1) has a
solution on J. The proof is complete. ]
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In the sequel, we prove the continuous dependence of solution with respect to initial
condition of the problem (3.1). Consider the following two problems.

th(t) F(t, X (t), DX (1)), t € J',

AX(t) = I(X(t), k=1,2,...,m, (3.9)
X(0) = X
and
dX( t) = F(t, X(t), DX(t)), t € J,
dt
AX () = L(X(t)), k=1,2,...,m, (3.10)

X(0) = Xo.

Definition 3.7. The solution of the problem (3.1) is said to depend continuously on the
initial conditions Xy if for all € > 0, there exists §(e) > 0 such that || Xo — Xoll2 < d(e)
implies that || X — X||¢ < e.

Theorem 3.8. Assume that the conditions in Theorem 8.4 are satisfied. Then, the solu-
tion of the problem (3.1) depends continuously on the initial data.

Proof. From Lemma 3.1 and 3.3, then the problems (3.9) and (3.10) are transformed to
the following IIEs:

Xo + [{ Y (s)ds, if t € [0, 4],
X(t) = : ) . (3.11)
X0+ ; Ji Y(s)ds + [, Y(s)ds + ; L(X(t)), ifte (tp1,ty],
where Y is the solution of the IIE
F(t, Xo +fg (s)ds, Il—ay(t)), if ¢t € 0, 1],

Y(t) =
() F(t Xo + th 1 dS—Fft s)ds + ZI( (t ')),Il_O‘Y(t)), ift € (ti—1,tkl,

Xo + [LY (s)ds, if t € [0,1],
X(t)={ ° (3.12)
X0+th 1 dS—}—ft d5—|— ZI( ( )), iftE(tk_l,tk],

where Y is the solution of the ITE
F(t, Xo+ J§ ¥ (s)ds, 'Y (1)), if ¢ € [0, 4],
Y(t)= - k - . k - -
F(tXo+ X Jf Y(s)ds + [} V(s)ds + X L(X(8)), [0V (), if t € (t 1, ti).
i=1 i=1
For t € [0,;] and Y, Y € Ly(2), we have

Y () - Y@, = HF(t,Xo + /UtY(s)ds,Il_aY(t)) ~ Pt Xo+ /Otf/(s)ds,ll—a?(t))

2

< L1||X0 - XOHQ + Ly /Ot Hy(s) - ?(S)Hst 4 F(lLEoz) /0’5 ’(t — s)*a‘HY(s) — ?(S)Hst

- T - -
< L[| X0 — Xol|, + (LlT L2 )H ~Y|,. (3.13)



292 H. Vu, H'V. Ngo

Similarly, for t € (tg, tg41] and Y, Y € Ly(Q), we obtain

V() =Y (), = H tX0+Z/ Y (s ds+/ ds—i—ZI ), 1Y (1))

k N Lo ¢ ) B
+L1Z||I¢(X(t7;))—L;(X(tz’))HQJrF(l_a)/ (t— )Y (5) = Y (5)] ,ds

~ mlqLsT LQT_
< LallXo = Koll, + (27 + T2+ )Y P

then
mlqLsT LQT a
<1—2L1T— iy T2 )HY Yo < L] Xo — Xof,
or
¥ = Pl < KXo - Xl (314
. mlqLsT LQTlia -1
where K—L1(1—2L1T— 1 —mL3 — F(2—a))
For t € [0,t1] and from inequality (3.13), we get the following estimate:
1 = X[l < X0 = Xoll, + T[[Y = Y|,
< (1+TK)||Xo — Xo||, <6(1 + TK) < e, (3.15)

where ¢; = (1 + TK).
Similarly, for ¢ € (tg,tg+1], & = 1,2,...,m, and from inequality (3.14), we have the
following estimate

k t; ~
X0 = K@), < %0 = Koll, + 3 [ ¥ (5) = ¥ ()]s
i=1"ti-1
t _ k -
+ [ V) = Follds + X IEX 0) - LE@)],
k =1

< || X0 - 5('0||2 +27|Y - f/HC +mLs|| X — XHC.

From the inequality above, we infer that

~ 1+2TK 1+2TK
X - X[, < 1_7HX0 oll, < T mLs < €2,
1+2TK
where €9 = T
- 3

Choosing € = max{ej, €2} and by Definition 3.7, we conclude that the solution of the
problem (3.1) depends continuously on the initial data Xy. The proof is completed. I
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