
Konuralp Journal of Mathematics, 7 (1) (2019) 140-145

Konuralp Journal of Mathematics
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath

e-ISSN: 2147-625X

Contact Cr-Warped Product Submanifolds of Nearly
Quasi-Sasakian Manifold

Shamsur Rahman1*, Mohd Sadiq Khan2 and Aboo Horaira2

1Department of Mathematics, Maulana Azad National Urdu University, Polytechnic Satellite Campus Darbhanga, Bihar 846001, India
2Department of Mathematics, Shibli National P.G. College, Azamgarh U. P. 276001 India

*Corresponding author E-mail: shamsur@rediffmail.com

Abstract

In the present paper, we construct contact CR-warped product submanifolds of nearly quasi Sasakian manifold. We have obtained results
on the existence of warped product CR Submanifolds of nearly quasi Sasakian manifold and discuss the characterization result. We also
construct the inequality ||h||2 ≥ 2As+2s||∇ ln f ||2 for contact CR warped products of nearly quasi Sasakian manifolds. The equality cases
are also discussed.
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1. Introduction

Bishop and Neill [13] defined and studied warped products with differential point of view. B.Y Chen [5] extended the work of Bishop
and Neill and studied the warped product CR-submanifold of Kaehler manifolds and many more [6, 12]. Since then a number of authors
extensively studied these results. Quasi Sasakian structure was initiated by Blair [8]. Since then several papers on quasi-Sasakian manifolds
have studied by Tanno [24], Kanemaki [15, 16], Oubina [10], Gonzalez and Chinea [11], and the author and et al., [17-23]. CR-submanifold
of a Kahlerian manifold has been studied by A. Bejancu [1]. Then A. Bejancu, N. Papaghiue [2] introduced the idea of semi-invariant
submanifold of a Sasakian manifold and they obtained several results on this manifolds. Kim [3] extensively studied quasi-Sasakian
manifolds and proved that fibred Riemannian spaces with invariant fibres normal to the structure vector field do not admit nearly Sasakian or
contact structure but a quasi-Sasakian or cosympletic structure.

2. Preliminaries

Let M̄ be a real 2n+1 dimensional differentiable manifold, endowed with an almost contact metric structure (ϕ,ξ ,η ,g). Then we have
from [7]

ϕ
2 =−I +η⊗ξ , η(ξ ) = 1, ϕξ = 0, ηoϕ = 0, η(X) = g(X ,ξ ) (2.1)

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ), g(ϕX ,Y ) =−g(X ,ϕY )

for any vector field X , Y tangent to M̄ , where I is the identity on the tangent bundle ΓM̄ of M̄. An almost contact metric structure (ϕ,ξ ,η ,g)
on M̄ is called quasi-Sasakian manifold if

(∇̄X ϕ)Y = η(Y )AX−g(AX ,Y )ξ , ϕAX = AϕX

where A a symmetric linear transformation field, ∇̄ denotes the Riemannian connection of g on M̄. On a quasi-Sasakian manifold M̄, we have

∇̄X ξ = ϕAX

Further, an almost contact metric manifold M̄ on (ϕ,ξ ,η ,g) is called nearly quasi-Sasakian manifold if

(∇̄X ϕ)Y +(∇̄Y ϕ)X = η(Y )AX +η(X)AY −2g(AX ,Y )ξ (2.2)
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The covariant derivative of the tensor filed ϕ is defined as

(∇̄X ϕ)Y = ∇̄X ϕY −ϕ∇̄XY (2.3)

Now, let M be a submanifold immersed in M̄. The Riemannian metric induced on M is denoted by the same symbol g. Let T M and T⊥M be
the Lie algebras of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connection on M, then the
Gauss and Weingarten formulas for the nearly quasi-Sasakian manifold are given by

∇̄XY = ∇XY +h(X ,Y ) (2.4)

∇̄X N =−ANX +∇
⊥
X N (2.5)

for any X , Y εT M and NεT⊥M, where ∇⊥ is the connection on the normal bundle T⊥M, h is the second fundamental form and AN is the
Weingarten map associated with N as

g(ANX ,Y ) = g(h(X ,Y ),N) (2.6)

The notion of warped product manifolds was initiated by Bishop and O Neill [13].They defined as follows

Definition 2.1. Let (N1,g1) and (N2,g2) be two Riemannian manifolds and f be a positive differentiable function on N1. The warped product
of N1 and N2 is the Riemannian manifold N1× f N2 = (N1×N2,g), where

g = g1 + f 2g2 (2.7)

A warped product manifold N1× f N2 is said to be trivial if the warping function f is constant.

We recall

Lemma 2.2. Let M = N1× f N2 be a warped product manifold with the warping function f , then
(i)∇XY εΓ(T N1) is the lift of ∇XY on N1,
(ii)∇X Z = ∇ZX = (X ln f )Z,
(iii)∇Zω = ∇

N2
Z ω−g(Z,ω)∇ ln f

for each X ,Y εΓ(T N1) and Z,ωεΓ(T N1), where ∇ ln f is the gradient of ln f and ∇ and ∇N2 denote the Levi-Civita connections on M and
N2, respectively.

For a Riemannian manifold M of dimension n and a smooth function f on M , we recall ∇ f , the gradient of f which is defined by

g(∇ f ,X) = X( f ) (2.8)

for any XεΓ(T M). As a consequence, we have

||∇ f ||2 =
n

∑
i=1

(ei( f ))2 (2.9)

for an orthonormal frame {e1, ...,en} on M.

3. Contact CR-Warped product submanifolds

For submanifolds tangent to the structure vector field ξ , there are different classes of submanifolds. We mention the following:
(i) A submanifold M tangent to ξ is an invariant submanifold if ϕ preserves any tangent space of M, that is, ϕ(TpM)⊂ TpM, for every pεM.
(ii) A submanifold M tangent to ξ is an anti-invariant submanifold if ϕ maps any tangent space of M into the normal space, that is,
ϕ(TpM)⊂ T⊥p M, for every pεM.
Let M be a Riemannian manifold isometrically immersed in an almost contact metric manifold M̄, then for every pεM there exists a maximal
invariant subspace denoted by Dp of the tangent space TpM of M. If the dimension of Dp is same for all values of pεM, then Dp gives an
invariant distribution D on M.
A submanifold M of an almost contact manifold M̄ is said to be a contat CR submanifold if there exists on M a differentiable distribution D
whose orthogonal complementary distribution D⊥ is anti-invariant, that is;
(i) T M = D⊕D⊥⊕〈ξ 〉.
(ii) D is an invariant distribution, i.e., ϕD⊆ T M
(iii) D⊥ is an anti-invariant distribution, i.e., ϕD⊥ ⊆ T⊥M.
A contact CR-submanifold is anti-invariant if Dp = {0} and invariant if D⊥p = {0} respectively, for every pεM. It is a proper contact
CR-submanifold if neither Dp = {0} nor D⊥p = {0}, for each pεM.
If v is the ϕ-invariant subspace of the normal bundle T⊥M, then in case of contact CR-submanifold, the normal bundle T⊥M can be
decomposed as

T⊥M = ϕD⊥⊕ v (3.1)

where v is the ϕ -invariant normal subbundle of T⊥M.
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In this section, we investigate the warped products M = N⊥× f NT and M = NT× f N⊥ where NT and N⊥ are invariant and anti-invariant
submanifolds of a nearly quasi-Sasakian manifold M̄, respectively. First we discuss the warped products M = N⊥× f NT , here two possible
cases arise:
(i) ξ is tangent to NT ,
(ii) ξ is tangent to N⊥.
We start with the case (i).

Theorem 3.1. If M̄ be a nearly quasi-Sasakian manifold then there do not exist warped product submanifold M = N⊥× f NT such that NT is
an invariant submanifold tangent to ξ is anti invariant submanifold, unless M̄ is nearly Sasakian.

Proof. Consider ξ εΓ(T NT ) and ZεΓ(T N⊥), then by the structure equation of nearly quasi-Sasakian manifold, we have (∇̄Zϕ)ξ +(∇̄ξ ϕ)Z =

AZ. Using (2.4), we obtain −ϕ∇̄Zξ + ∇̄ξ ϕZ−ϕ∇̄ξ Z = AZ. Then from Lemma 2.1(ii) and (2.5), we derive

∇̄ξ ϕZ−2ϕh(Z,ξ ) = AZ (3.2)

Taking the inner product with ϕZ in (3.2) and then using (2.2) and the fact that ξ εΓ(T NT ), we get ||Z||2 = 0 hence we conclude that M is
invariant, which proves the theorem. Now, we will discuss the other case, when ξ is tangent to N⊥.

Theorem 3.2. If M̄ be a nearly quasi-Sasakian manifold then there do not exist warped product submanifolds M = N⊥× f NT such that N⊥
is an anti-invariant submanifold tangent to ξ and NT is an invariant submanifold of M̄, unless M̄ is nearly cosympletic.

Proof. Let ξ εΓ(T NT ) and ZεΓ(T N⊥), then we have (∇̄X ϕ)ξ +(∇̄ξ ϕ)X = AX . Using (2.4), we get

−ϕ∇̄X ξ + ∇̄ξ ϕX−ϕ∇̄ξ X = AX . (3.3)

Taking the inner product with X in (3.3) and using (2.2), (2.5), Lemma 2.1 (ii) and the fact that ξ is tangent to N⊥, we obtain ||X ||2 = 0, for
some smooth function on M̄. Thus, we conclude that M is anti-invariant submanifold of a nearly quasi-Sasakian manifold M̄ otherwise M̄ is
nearly cosympletic.
Now, we will discuss the warped product M = N⊥× f NT such that the structure vector field ξ is tangent to N⊥.

Theorem 3.3. If M̄ be a nearly quasi-Sasakian manifold then there do not exist warped product submanifolds M = N⊥× f NT such that N⊥
is an anti-invariant submanifold tangent to ξ and NT is an invariant submanifold of M̄.

Proof. If we consider XεΓ(T NT ) and the structure vector field ξ is tangent to N⊥, then by (2.3), we have (∇̄X ϕ)ξ +(∇̄ξ ϕ)X = AX . Using
(2.4), we obtain ∇̄ξ ϕX−ϕ∇̄X ξ −ϕ∇̄ξ X = AX . Then by (2.5) and Lemma 2.1 (ii), we derive

(ϕX ln f )ξ −2ϕh(X ,ξ )+h(ϕX ,ξ ) = AX (3.4)

Hence, the result is obtained by taking the inner product with ξ in (3.4).

If we consider the structure vector field ξ tangent to NT for the warped product M = N⊥× f NT , then we prove the following result for later
use.

Lemma 3.4. If M = N⊥× f NT be a contact CR-warped product submanifold of a nearly quasi-Sasakian manifold M̄ such that NT and N⊥
are invariant and anti-invariant submanifolds of M̄ , respectively, then
(i) ξ (ln f ) = 0
(ii) g(h(X ,Z),ϕω) = g(h(X ,ω),ϕZ)
(iii)g(h(X ,ω),ϕZ) = g(h(X ,Z),ϕω) = η(X)g(AZ,ω)− (ϕX ln f )g(Z,ω)}
(iv)g(h(ξ ,Z),ϕω) = g(AZ,ω)

Proof. If ξ is tangent to NT , then for any ZεΓ(T N⊥), we have (∇̄ξ ϕ)Z +(∇̄Zϕ)ξ = AZ . Then from (2.4), (2.5) and Lemma 2.1 (ii), we
obtain

2(ξ ln f )ϕZ +2ϕh(Z,ξ )− ∇̄ξ ϕZ = AZ (3.5)

Taking the inner product with φZ in (3.5) and using (2.2), we derive

2(ξ ln f )||Z||2−g(∇̄ξ ϕZ,ϕZ) = 0 (3.6)

On the other hand, by the property of Riemannian connection, we have ξ g(ϕZ,ϕZ) = 2g(∇̄ξ ϕZ,ϕZ). By (2.2) and the property of
Riemannian connection, we get

g(∇̄ξ Z,Z) = g(∇̄ξ ϕZ,ϕZ) (3.7)

Using this fact in (3.6) and then from (2.5) and Lemma 2.1 (ii), we deduce that ξ (ln f )||Z||2 = 0 for any ZεΓ(T N⊥) , which gives (i). For
the other parts of the lemma, we have (∇̄X ϕ)Z +(∇̄Zϕ)X = η(X)AZ, for any XεΓ(T NT ) and ZεΓ(T N⊥) . Using (2.4), (2.5) and (2.6), we
derive

η(X)AZ =−AϕZX +∇
⊥
X ϕZ−2(X ln f )ϕZ +(ϕX ln f )Z +h(ϕX ,Z)−2ϕh(X ,Z) (3.8)

Thus, the second part can be obtained by taking the inner product in (3.8) with Y , for any Y εΓ(T NT ). Again, taking the inner product in
(3.8) with W for any WεΓ(T N⊥), we get

η(X)g(AZ,ω) =−g(h(X ,ω),ϕZ)+(ϕX ln f )g(Z,ω)+2g(h(X ,Z),ϕω) (3.9)



Konuralp Journal of Mathematics 143

By polarization identity, we get

η(X)g(AZ,ω) =−g(h(X ,Z),ϕω)+(ϕX ln f )g(Z,ω)+2g(h(X ,ω),ϕZ) (3.10)

Then from (3.9) and (3.10), we obtain

g(h(X ,Z),ϕω) = g(h(X ,ω),ϕZ) (3.11)

which is the first equality of (iii). Using (3.11) either in (3.9) or in (3.10), we get the second equality of (iii). Now, for the last part, replacing
X by ξ in the third part of this lemma. This proves the lemma completely. Now, we have the following characterization theorem.

Theorem 3.5. If M be a contact CR-submanifold of a nearly quasi-Sasakian manifold M̄ with integrable invariant and anti-invariant
distribution D⊕〈ξ 〉 and D⊥ then M is locally a contact CR-warped product if and only if the shape operator of M satisfies

Aϕω X =−(ϕXµ)ω +η(X)Aω ∀XεΓ(D⊕〈ξ 〉), ωεΓ(D⊥) (3.12)

for some smooth function µ on M satisfying V (µ) = 0 for every V εΓ(D⊥).

Proof. Direct part follows from the Lemma 3.1 (iii). For the converse, suppose that M is contact CR-submanifold satisfying (3.12),
then we have g(h(X ,Y ),ϕω) = g(Aϕω X ,Y ) = 0 for any X ,Y εΓ(D⊕〈ξ 〉) and ωεΓ(D⊥). Using (2.2) and (2.5), we get g(∇̄XY,ϕω)X =
−g(ϕ∇̄XY,ω) = 0. Then from (2.4), we obtain

g((∇̄X ϕ)Y,ω) = g(∇̄X ϕY,ω) (3.13)

Similarly, we have

g((∇̄Y ϕ)X ,ω) = g(∇̄Y ϕX ,ω) (3.14)

Then from (3.13) and (3.14), we derive

g((∇̄X ϕ)Y +(∇̄Y ϕ)X ,ω) = g(∇̄X ϕY + ∇̄Y ϕX ,ω) (3.15)

Using (2.3) and the fact that ξ is tangent to NT , then by orthogonality of two distributions, we obtain

g(∇̄X ϕY + ∇̄Y ϕX ,ω) = 0 (3.16)

This means that ∇X ϕY +∇Y ϕXεΓ(D⊕〈ξ 〉), for any X ,Y εΓ(D⊕〈ξ 〉), that is D⊕〈ξ 〉 is integrable and its leaves are totally geodesic in M.
So far as the anti-invariant distribution D⊥ is concerned, it is integrable on M (cf. [16], Theorem 8.1). Let N⊥ be the leaf of D⊥ and h∗ be
the second fundamental form of N⊥ in M. Then for any XεΓ(D⊕〈ξ 〉), and Z,WεΓ(D⊥) , we have g(h∗(Z,ω),ϕX) = g(∇Zω,ϕX). Using
(2.2), (2.4) and (2.5), we obtain g(h∗(Z,ω),ϕX) = g((∇̄Zϕ)ω,X)−g(∇̄Zϕω,X). Then from (2.6) and (2.7), we get

g(h∗(Z,ω),ϕX) = g((∇̄Zϕ)ω,X)+g(Aϕω X ,Z) (3.17)

Using (3.12), we derive

g(h∗(Z,ω),ϕX) = g((∇̄Zϕ)ω,X)+{η(X)A− (ϕX)µ}g(Z,ω) (3.18)

Similarly, we obtain

g(h∗(Z,ω),ϕX) = g((∇̄ω ϕ)Z,X)+{η(X)A− (ϕX)µ}g(Z,ω) (3.19)

Then from (3.18) and (3.19), we get

2g(h∗(Z,ω),ϕX) = g((∇̄Zϕ)ω +(∇̄ω ϕ)Z,X)+2{η(X)A− (ϕX)µ}g(Z,ω) (3.20)

Using the structure equation of nearly quasi-Sasakian manifold and the fact that ξ is tangent to NT , we obtain

2g(h∗(Z,ω),ϕX) =−g(AZ,ω)g(ξ ,X)+2{η(X)A− (ϕX)µ}g(Z,ω) (3.21)

That is

g(h∗(Z,ω),ϕX) = (ϕX)µg(Z,ω) (3.22)

Using (2.9), we derive

g(h∗(Z,ω),ϕX) = g(∇µ,ϕX)g(Z,ω) (3.23)

From the last relation, we obtain that

h∗(Z,ω) = (∇µ)g(Z,ω) (3.24)

The above relation shows that the leaves of D⊥ are totally umbilical in M with mean curvature vector ∇µ . Moreover, the condition V µ = 0,
for any V εΓ(D⊥) implies that the leaves of D⊥ are extrinsic spheres in M, that is the integral manifold N⊥ of D⊥ is umbilical and its mean
curvature vector field is non zero and parallel along N⊥. Hence, by a result of [11] M is locally a warped product M = NT× f N⊥ , where NT

and N⊥ denote the integral manifolds of the distributions D⊕〈ξ 〉 and D⊥, respectively and f is the warping function.
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4. Inequality for Contact CR-Warped products

For contact CR-Warped products in nearly quasi-Sasakian manifold, we have the following,

Theorem 4.1. If M = NT× f N⊥ be a contact CR-warped product submanifold of a nearly quasi-Sasakian manifold M̄ such that NT is an
invariant submanifold tangent to ξ and N⊥ an anti-invariant submanifold of M̄, then
(i) The second fundamental form of M satisfies the inequality

||h||2 ≥ 2As+2s||∇ ln f ||2 (4.1)

where s is the dimension of N⊥ and ∇ ln f is the gradient of ln f .
(ii) If the equality sign of (4.1) holds identically, then NT is a totally geodesic submanifold and N⊥ is a totally umbilical submanifold of M̄ .
Moreover, M is a minimal submanifold in M̄.

Proof. Let M̄ be a (2n+1)-dimensional nearly quasi-Sasakian manifold and M = NT× f N⊥ be an m-dimensional contact CR-warped product
submanifolds of M̄ and dimNT = 2p+1 and dimN⊥ = s, then m = 2p+1+ s. Let {e1....,ep;φe1 = ep+1, ....,φep = e2p,e2p+1 = ξ} and
{e(2p+1)+1, ....,em} be the local orthonormal frames on NT and N⊥, respectively. Then the orthonormal frames in the normal bundle T⊥M
of φD⊥ and v are {φe(2p+1)+1, ....,φem} and {em+s+1, ....,e2n+1}, respectively. Then the length of second fundamental form h is defined as

||h||2 =
2n+1

∑
r=m+1

m

∑
i, j=1

g(h(ei,e j),er)
2 (4.2)

For the assumed frames, the above equation can be written as

||h||2 =
m+s

∑
r=m+1

m

∑
i, j=1

g(h(ei,e j),er)
2 +

2n+1

∑
r=m+s+1

m

∑
i, j=1

g(h(ei,e j),er)
2 (4.3)

The first term in the right hand side of the above equality is the φD⊥-component and the second term is v-component. If we equate only the
φD⊥-component, then we have

||h||2 ≥
m+s

∑
r=m+1

m

∑
i, j=1

g(h(ei,e j),er)
2 (4.4)

For the given frame of φD⊥, the above equation will be

||h||2 ≥
m

∑
k=(2p+1)+1

m

∑
i, j=1

g(h(ei,e j),φek)
2

Let us decompose the above equation in terms of the components of h(D,D),h(D,D⊥) and h(D⊥,D⊥), then we have

||h||2 ≥ ∑
m
k=2p+2 ∑

2p+1
i, j=1 g(h(ei,e j),φek)

2 +2∑
m
k=2p+2 ∑

2p+1
i=1 ∑

m
j=2p+2 g(h(ei,e j),φek)

2 (4.5)

+
m

∑
k=2p+2

m

∑
i, j=2p+2

g(h(ei,e j),φek)
2

By Lemma 3.1 (ii), the first term of the right hand side of (4.5) is identically zero and we shall compute the next term and will left the last
term

||h||2 ≥ 2
m

∑
k=2p+2

2p+1

∑
i=1

m

∑
j=2p+2

g(h(ei,e j),φek)
2

As j,k = 2p+2, ....,m then the above equation can be written for one summation as

||h||2 ≥ 2
2p+1

∑
i=1

m

∑
j,k=2p+2

g(h(ei,e j),φek)
2.

Making use of Lemma 3.1 (iii), the above inequality will be

||h||2 ≥ 2
2p+1

∑
i=1

m

∑
j,k=2p+2

[η(ei)g(Ae j,ek)− (ϕei ln f )g(e j,ek)]
2 (4.6)

The above expression can be written as

||h||2 ≥ 2
2p+1

∑
i=1

m

∑
j,k=2p+2

η(ei)
2g(Ae j,ek)

2 +2
2p+1

∑
i=1

m

∑
j,k=2p+2

(ϕei ln f )2g(e j,ek)
2 (4.7)

−4
2p+1

∑
i=1

m

∑
j,k=2p+2

η(ei)(ϕei ln f )g(e j,ek)g(Ae j,ek)



Konuralp Journal of Mathematics 145

The last term of (4.7) is identically zero for the given frames. Thus, the above relation gives

||h||2 ≥ 2
2p+1

∑
i=1

m

∑
j,k=2p+2

(φei ln f )2g(e j,ek)
2 +2s (4.8)

On the other hand, from (2.10), we have

||∇ ln f ||2 =
p

∑
i=1

(ei ln f )2 +
p

∑
i=1

(φei ln f )2 +(ξ ln f )2 (4.9)

Now, the equation (4.8) can be modified as

||h||2 ≥ 2As+2
2p+1

∑
i=1

m

∑
j,k=2p+2

(ϕei ln f )2g(e j,ek)
2

+2
m

∑
j,k=2p+1

(ξ ln f )2g(e j,ek)
2−2

m

∑
j,k=2p+1

(ξ ln f )2g(e j,ek)
2

or

||h||2 ≥ 2As−2
m

∑
j,k=2p+2

(ξ ln f )2g(e j,ek)
2 +2

m

∑
j,k=2p+2

(ξ ln f )2g(e j,ek)
2

+4
p

∑
i=1

m

∑
j,k=2p+2

(φei ln f )2g(e j,ek)
2

Therefore, using Lemma 3.1 (i) and (4.9), we arrive at

||h||2 ≥ 2As+2s||∇ ln f ||2

which is the inequality (4.1). Let h∗ be the second fundamental form of N⊥ in M, then from (3.24), we have

h∗(Z,ω) = g(Z,ω)∇ ln f (4.10)

for any Z,WεΓ(D⊥). Now, assume that the equality case of (4.1) holds identically. Then from (4.3), (4.5) and (4.7), we obtain

h(D,D) = 0, h(D⊥,D⊥) = 0, h(D,D⊥)⊂ φD⊥ (4.11)

Since NT is a totally geodesic submanifold in M (by Lemma 2.1 (i)), using this fact with the first condition in (4.11) implies that NT is totally
geodesic in M̄ . On the other hand, by direct calculations same as in the proof of Theorem 3.4, we deduce that N⊥ is totally umbilical in M.
Therefore, the second condition of (4.11) with (4.10) implies that N⊥ is totally umbilical in M̄. Moreover, all three conditions of (4.11) imply
that M is minimal submanifold of M̄. This completes the proof of the theorem.

Acknowledgement

The authors are thankful to the referee for providing constructive comments and valuable suggestions.

References

[1] A. Bejancu, CR-submanifolds of a Kahler manifold. I. Proc. Amer. Math. Soc. 1978, 69 (1), 135–142. doi:10.1090/S0002-9939-1978-0467630-0.
[2] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold. An St Univ Al I Cuza Iasi supl 1981; XVII 1 I-a : 163-170.
[3] B. H. Kim, Fibred Riemannian spaces with quasi-Sasakian structure, Hiroshima Math. J. 20, 477–513, 1990.
[4] B. Sahin, Nonexistence of warped products semi-slant submanifolds of Kaehler manifolds, Geometriae Dedicata. 117 (2006) 195-202.
[5] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, K. Monatsh. Math. 133(2001), 177-195.
[6] B. Y. Chen, Geometry of warped product CR-Submanifolds in Kaehler Manifolds II, Monatsh. Math. 134 (2001) 103-119.
[7] B. Y. Chen and M. I. Munteanu, Geometry of PR-warped products in para-Kaehler manifolds, Taiwan. J. Math., 16 (2012), 1293-1327.
[8] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geo. 1, 331-345, 1967.
[9] I. Hasegawa and I. Mihai, Contact CR-warped product submanifolds in Sasakian manifolds, Geom. Dedicata, 102 (2003), 143-150.

[10] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32, 187–193, 1985.
[11] J. C. Gonzalez, and D. Chinea, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105,

173–184, 1989.
[12] K. Arslan, R. Ezentas, I. Mihai and C. Murathan, Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc., 42 (2005),

1101-1110.
[13] R. L. Bishop and B. O. Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[14] S. Hiepko, Eine inner kennzeichungder verzerrten produkte, Math. Ann., 241 (1979), 209-215.
[15] S. Kanemaki, Quasi-Sasakian manifolds, Tohoku Math. J. 29, 227–233, 1977.
[16] S. Kanemaki, On quasi-Sasakian manifolds, Differential Geometry Banach Center Publications 12, 95–125, 1984.
[17] S. Rahman and Shafiullah, Geometry of Hypersurfaces of a Semi Symmetric Semi Metric Connection in a Quasi-Sasakian Manifold. Journal of

Purvanchal Academy of Sciences, Vol. 17 (2011) pp. 231-242.
[18] S. Rahman and A. Ahmad, On The Geometry of Hypersurfaces of a Certain Connection in a Quasi-Sasakian Manifold, International Journal Mathematical

Combinatorics Vol.3 (2011), pp. 23-33.
[19] S. Rahman, Some Properties of Hyperbolic contact Manifold in a Quasi Sasakian Manifold, Turkic World Mathematical Society Journal of Applied and

Engineering Mathematics Vol. 1 No. 1, (2011), pp. 41-48.
[20] S. Rahman, Geometry of Hypersurfaces of a semi symmetric metric connection in a quasi-Sasakian manifold, Journal-Proceedings of the Institute of

Applied Mathematics, Vol.3 No.2 (2014), pp.152-164.
[21] S. Rahman, Geometry of hypersurfaces of a quarter semi symmetric non metric connection in a quasi-Sasakian manifold. Carpathian Mathematical

Publications Vol. 7(2) (2015) pp. 226-235 doi:10.15330/cmp.7.2.226-235.
[22] S. Rahman and N. K. Agrawal, On the geometry of slant and pseudo-slant submanifolds in a quasi Sasakian manifolds, J. Modern Technology and

Engineering Vol. 2, No.1, 2017, pp.82-89.
[23] S. Rahman, Contact conformal connection on a geometry of hypersurfaces with certain connection in a quasi-Sasakian manifold, Bulletin of the

Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, Vol 10 (59), No. 1, 2017 pp.135-148.
[24] S. Tanno, Quasi-Sasakian structure of rank 2p + 1, J. Differential Geom. 5, 317–324, 1971.


	Introduction
	Preliminaries
	Contact CR-Warped product submanifolds
	Inequality for Contact CR-Warped products

