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Abstract

In this paper, some special nonlightlike curves are investigated depending on characterizations of their Serret-Frenet frames in Minkowski
space-time. Firstly, a great survey of nonlightlike curves in Minkowski space-time is stated. To generalize the results, the nonlightlike
curves with the character of Serret-Frenet frame (ε1,ε2,ε3,ε4) are considered. So that, the necessary or/and sufficient conditions of a given
nonlightlike curve to be a straight line, plane curve, helix and to lie on pseudohyperbolical space H3

0 (r) and Lorentzian hypersphere S3
0(r)

are stated both depending on curvature functions and character of Serret-Frenet frame of the curve, respectively.
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1. Introduction

In Euclidean space, Frenet frame is a moving reference frame of orthonormal vectors which are used to describe a curve locally at each
point. It is the main tool in the differential geometric treatment of curves as it is far easier and more natural to describe local properties
(e.g. curvature, torsion) in terms of a local reference system than using a global one like the Euclidean coordinates. For a regular curve
γ : I ⊂ R→ E4 with arclength parameter s and the Frenet vectors {T,N1,N2,N3}, Frenet–Serret formulas can be given as

d
ds


T
N1
N2
N3

=


0 κ 0 0
−κ 0 τ 0
0 −τ 0 σ

0 0 −σ 0




T
N1
N2
N3


where the functions κ, τ and σ are called the curvature, first and second torsion of the curve, [1], [2], [3]. Frenet-Serret formulas play an
important role to describe the kinematic properties of a particle moving along on a regular curve or the geometric properties of the curve
itself. Some special curves can be characterized as follows:

• κ = 0 if and only if γ is a straight line;
• τ = 0 if and only if γ is a plane curve;
• σ = 0 if and only if γ lies in a three dimensional subspace of E4;
• τ = 0 and κ =constant> 0 if and only if γ is a circle;
• σ = 0 and τ = c2, κ = c1 where c1,c2 ∈ R0 if and only if γ is a circular helix;
• σ = c3, τ = c2 and κ = c1 where c1,c2,c3 ∈ R0 if and only if

γ(s) =
1
α

sin(αs)V1−
1
α

cos(αs)V2 +
1
β

sin(β s)V3−
1
β

cos(β s)V4

where α2 =
κ2+τ2+σ 2−

√
(κ2+τ2+σ 2)2−4κ2σ 2

2 , β 2 =
κ2+τ2+σ 2+

√
(κ2+τ2+σ 2)2−4κ2σ 2

2 , Vi are orthogonal constant vectors satisfying

〈V1,V1〉= 〈V2,V2〉 and 〈V3,V3〉= 〈V4,V4〉 .

The curve γ lies on a sphere with radius 1
|σ | , [4].

The motion of the particle in Minkowski spaces is an another developing research area especially in physics and mathematics. This makes
the curve theory in Minkowski spaces an interesting topic which helps to describe some kinematic properties of a moving particle. In the
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study [5], spacelike curves with nonnull frame vectors are investigated and a method to calculate Frenet apparatus of these curves is stated
with a definition of vector product in Minkowski space-time. Then, the characterizations of curves lying on the pseudohyperbolic space H3

0
are given and it is proved that there is no timelike or null curves lying on the pseudohyperbolic space H3

0 in [6]. Then, the necessary and
sufficient condition of a unit speed spacelike curve with nonzero curvature and torsion functions to lie on H3

0 is stated in [7]. Finally, the
parallel frames of nonlightlike curves is investigated in [8] by using the relations between Frenet-Serret frame of a given curve. Additionally,
the parallel frames of nonlightlike curves for higher dimensions are discussed in [9].

The present article is concern with the characterization of some special nonlightlike curves in Minkowski space-time. Firstly, a brief summary
of Frenet frame of nonlightlike curves in Minkowski space-time. In addition, the necessary or/and sufficient conditions of nonlightlike curves
to be a straight line and plane curve are given, respectively. Then the nonlightlike curves lying on a pseudohyperbolical space H3

0 (r) and
Lorentzian sphere S3

0(r) are investigated. Moreover, a way of finding the center and radius of the pseudohyperbolical space and Lorentzian
sphere in terms of Frenet apparatus of the curve lying on H3

0 (r) and S3
0(r), respectively. Furthermore, an example is given to show how this

method works. Finally, Lorentzain circles and helices are came up for review.

2. Preliminaries

The Minkowski space-time is four dimensional Euclidean space provided with the Lorentzian inner product

〈u,v〉L =−u1v1 +u2v2 +u3v3 +u4v4

where u = (u1,u1 ,u3,u4), v = (v1,v2,v3,v4) and denoted by E4
1. Any vector u in E4

1 can be characterized as follows: the vector u is called
spacelike, lightlike or timelike if 〈u,u〉L > 0, 〈u,u〉L = 0 or 〈u,u〉L < 0, respectively. The norm of the vector u ∈ E4

1 is defined by

‖u‖=
√
|〈u,u〉L|.

A definition of a vector product in Minkowski space-time is introduced in [5] as follows:

Definition 2.1. Let u = (u1,u2,u3,u4), v = (v1,v2,v3,v4) and w = (w1,w2,w3,w4) be vectors in E4
1. The vector product in Minkowski

space-time is defined with the determinant

u× v×w =

∣∣∣∣∣∣∣∣
−e1 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣
where {e1,e2,e3,e4} is the orthogonal basis of Minkowski space-time.

An arbitrary curve γ : I→ E4
1 is called spacelike, timelike or lightlike (null), if all of its velocity vectors γ ′ (s) are spacelike, timelike or

lightlike (null) for all s ∈ I, respectively. If ‖γ ′(s)‖ = 1, then γ is called unit speed curve. For any unit speed nonlightlike curve γ with
Frenet-Serret frame {T,N1,N2,N3}, Frenet-Serret formulas of the curve γ can be given as:

T ′

N′1
N′2
N′3

=


0 ε2κ 0 0
−ε1κ 0 ε3τ 0

0 −ε2τ 0 ε4σ

0 0 −ε3σ 0




T
N1
N2
N3

 (2.1)

where ε1 =< T,T >L and εi =< Ni−1,Ni−1 >L for i = 2,3,4. Here, we call the value of (ε1,ε2,ε3,ε4) as the character of Frenet-Serret
frame of the curve γ and κ, τ and σ as curvature, first and second torsion functions of the curve γ , respectively. Then the first vector field is
defined by

T (s) = γ
′(s).

The second vector field N1 of the curve γ is defined as

N1(s) =
1

κ(s)
T ′(s)

where

κ(s) =
√
|< γ ′′(s),γ ′′(s)>L|> 0

is a real valued function and called the curvature function of the curve γ. The third vector field N2 of the curve γ is defined by

N2(s) =
1∥∥N′1(s)+ ε1κ(s)T (s)

∥∥N′1(s)+ ε1κ(s)T (s).

The first torsion function τ of the curve is defined by

τ(s) =
∥∥N′1(s)+ ε1κ(s)T (s)

∥∥ .
Consider the vector product T ×N1×N2, the fourth unit vector field is defined by

N3(s) = ηT (s)×N1(s)×N2(s)

where η is taken as −1 or +1 to make the determinant of the matrix [T,N1,N2,N3] as 1. The second torsion function σ of the curve is
defined by

σ(s) =
∥∥N′2(s)+ ε2τ(s)N1(s)

∥∥ .
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3. Some Special Nonlightlike Curves in Minkowski Space-time

Theorem 3.1. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve. Then γ is a straight line if and only if the curvature κ of the curve γ is

zero.

Proof. Suppose that γ is a straight line. Then we can write

γ(s) = u+ sv

where u,v ∈ E4
1 such that < v,v >L= ε1. Since κ(s) =

√
|< γ ′′(s),γ ′′(s)>L|, we get κ = 0. Conversely, suppose that γ is a unit speed

nonlightlike curve with κ = 0. Then we get

T ′ = ε2κN1 = 0.

This implies that the tangent vector field T of the curve γ is constant at all points. Thus γ is a straight line.

Theorem 3.2. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with κ > 0. If γ is a plane curve then the first torsion τ or second

torsion σ of the curve γ is zero.

Proof. Suppose that γ : I ⊂ R→ E4
1 is a unit speed nonlightlike plane curve with κ > 0. Then there exists a nonzero parallel vector field n

such that

〈γ(s)− γ(s0),n〉L = 0

for any arbitrary s0 ∈ I and for all s. Differentiation yields〈
γ
′,n
〉
L = 0

for all s. Thus we have

〈T,n〉L = 0.

Differentiating again

〈ε2κN1,n〉L = 0

by using the Frenet-Serret formulas in 2.1. Thus, n is orthogonal to both the vector fields T and N1. We may write

n = f N2 +gN3

where f and g are functions of real parameter s. Since n is a parallel vector field by assumption, then we have

n′ = (−ε2 f τ)N1 +( f ′− ε3gσ)N2 +(g′+ ε4σ)N3 = 0

with the use of Frenet-Serret formulas in 2.1. This implies that

f τ = 0,

ε3 f ′−gσ = 0,

ε4g′+σ = 0.

By the first equation above, we obtain two different cases: τ = 0 and f = 0. The first case τ = 0 is the one of desired results. For the other
case f = 0, we see that

gσ = 0

by substituting f = 0 to the second equation above. Since n is a nonzero parallel vector field, then the function g should be nonzero which
means σ = 0. This is the other desired result.

Theorem 3.3. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with κ(s)> 0, σ =constant. If first torsion τ of the curve γ is zero,

then γ is a plane curve.

Proof. Suppose that γ is a unit speed nonlightlike curve with κ(s)> 0, σ =constant and τ = 0. We will give the proof in three different
cases depending on the character of Frenet vector fields N2 and N3 of the curve γ.
Case 1: If both the vector fields N2 and N3 are spacelike, then we will consider the vector field

n = (c1 sin(σs)− c2 cos(σs))N2 +(c1 cos(σs)+ c2 sin(σs))N3

where c1 and c2 are arbitrary real constants. By using Frenet-Serret formulas in 2.1, differentiation yields

n′ = (c1σ cos(σs)+ c2σ sin(σs))N2 +(c1 sin(σs)− c2 cos(σs))σN3

+(−c1σ sin(σs)+ c2σ cos(σs))N3− (c1 cos(σs)+ c2 sin(σs))σN2

= 0.
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This implies that n is a parallel vector field. We assert that γ lies on the plane through γ(s0) orthogonal to the parallel vector field n for
arbitrary s0 ∈ I and for all s. To prove this, consider the real valued function

f (s) = 〈γ(s)− γ(s0),n〉L

for all s. Then we get

f ′(s) =
〈
γ
′(s),n

〉
L = 〈T,n〉L = 0.

But obviously, f (s0) = 0. So that f = 0 which shows that γ lies entirely in the plane orthogonal to the parallel vector field n. Other two cases
can be proved similarly by different choice of the vector field n.
Case 2: If the vector field N2 is timelike, then we will consider the vector field

n = (−c1eσs + c2e−σs)N2 +(c1eσs + c2e−σs)N3

where c1 and c2 are arbitrary real constants.
Case 3: If the vector field N3 is timelike, then we will consider the vector field

n = (c1eσs− c2e−σs)N2 +(c1eσs + c2e−σs)N3

where c1 and c2 are arbitrary real constants.

Theorem 3.4. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with κ > 0. If second torsion σ of the curve γ is zero, then γ is a plane

curve.

Proof. Assume that γ is a nonlighlike plane curve with κ > 0 and σ = 0. That is

N′3 =−ε3σN2 = 0.

This means that the vector field N3 of the curve γ is constant at all points. The proof can be done similar to the proof of above theorem by
choosing n = N3 and considering the real valued function

f (s) = 〈γ(s)− γ(s0),N3(s)〉L

for all s.

Definition 3.5. The pseudohyperbolic space with center P0 and radius r ∈ R+ is the hyperquadratic

H3
0 (r) = {x ∈ E4

1 : 〈x−P0,x−P0〉L =−r2}.

The Lorentzian hypersphere with center P0 and radius r ∈ R+ is the hyperquadratic

S3
0(r) = {x ∈ E4

1 : 〈x−P0,x−P0〉L = r2}.

In the study [6], it is proved that there is no timelike or null curves lying on the pseudohyperbolical space H3
0 (r). Only spacelike curves exist

that lie on the pseudohyperbolical space H3
0 (r).

Theorem 3.6. [6] Let γ : I ⊂ R→ E4
1 be a unit speed spacelike curve with the character of Frenet-Serret frame (1,1,1,−1) with nonzero

curvature and torsion functions. The curve γ lies on a H3
0 (r) if and only if the following equality is satisfied

1
κ2 +(

1
τ
(

1
κ
)′)2− 1

σ2 [(
1
τ
(

1
κ
)′)′− τ

κ
]2 =−r2

for some r ∈ R+.

The following theorem gives the necessary and sufficient condition of a unit speed spacelike curve to lie on H3
0 (r) with the character of

Frenet-Serret frame (1,ε2,ε3,ε4).

Theorem 3.7. Let γ : I ⊂ R→ E4
1 be a unit speed spacelike curve with the character of Frenet-Serret frame (1,ε2,ε3,ε4) and nonzero

curvature, torsion functions. The curve γ lies on a H3
0 (r) if and only if then the following equality is satisfied

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− τ

κ
]2 =−r2

for some constant r ∈ R+.

Proof. Suppose that {T,N1,N2,N3} is the Serret-Frenet frame field of the unit speed spacelike curve γ with the character of (1,ε2,ε3,ε4)
and nonzero curvature and torsion functions. Suppose that the curve γ lies on H3

0 (r) with center P0. Then we have

〈γ−P0,γ−P0〉L =−r2.

By differentiating this relation, we get

〈T,γ−P0〉L = 0. (3.1)
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Thus, we may write

γ−P0 = aN1 +bN2 + cN3

for some a, b and c such that

−r2 = ε2a2 + ε3b2 + ε4c2.

If we differentiate the Equation 3.1, then we get〈
T ′,γ−P0

〉
L+ 〈T,T 〉L = 0.

By using the Frenet-Serret formulas in 2.1, we see that

〈N1,γ−P0〉L =−ε2
1
κ
. (3.2)

Thus, we get

a = ε2 〈γ−P0,N1〉L =− 1
κ
.

Similarly, if we differentiate the Equation 3.2, then we get

b = ε3 〈γ−P0,N2〉L =−ε2
1
τ
(

1
κ
)′.

By differentiating the equation

〈γ−P0,N2〉L = ε4
1
τ
(

1
κ
)′,

we obtain

c = ε4 〈γ−P0,N3〉L =
1
σ
[ε4(

1
τ
(

1
κ
)′)′− τ

κ
].

That is

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− τ

κ
]2 =−r2.

Theorem 3.8. Let γ : I ⊂ R→ E4
1 be a unit speed spacelike curve with the character of Frenet-Serret frame (1,ε2,ε3,ε4) and nonzero

constant curvature, torsion functions. If the inequality

ε2
1

κ2 + ε4
τ2

κ2σ2 < 0

is satisfied then the curve γ lies on H3
0 (r) with center

P0 = γ +
1
κ

N1 +
τ

κσ
N3.

Proof. Suppose that γ is a given unit speed spacelike curve character of Frenet-Serret frame (1,ε2,ε3,ε4) and nonzero constant curvature,
torsion functions such that

ε2
1

κ2 + ε4
τ2

κ2σ2 < 0.

Then we get

〈γ−P0,γ−P0〉L =

〈
− 1

κ
N1−

τ

κσ
N3,−

1
κ

N1−
τ

κσ
N3

〉
L

= ε2
1

κ2 + ε4
τ2

κ2σ2

which is equal to a negative constant. Thus, there exists r ∈ R+ such that

〈γ−P0,γ−P0〉L =−r2.

If the center of pseudohyperbolical space P0 is taken as

P0 = γ +
1
κ

N1 +
τ

κσ
N3
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then we get

P′0 = T +
1
κ
(−κT + ε3τN2)+

τ

κσ
(−ε3σN2)

= T −T + ε3
τ

κ
N2− ε3

τ

κ
N2 = 0.

So that the center P0 is a constant.

〈γ−P0,γ−P0〉L =

〈
−ε1

1
κ

N1− ε1
τ

κσ
N3,−ε1

1
κ

N1− ε1
τ

κσ
N3

〉
L

= ε2
1

κ2 + ε4
τ2

κ2σ2

is also a constant. This means that the curve γ lies on pseudohyperbolical space.

Theorem 3.9. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with the character of Frenet-Serret frame (ε1,ε2,ε3,ε4) and nonzero

curvature, torsion functions. The curve γ lies on Lorentzian hypersphere S3
0(r) if and only if then the following equality is satisfied

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− ε1

τ

κ
]2 = r2

for some constant r ∈ R+.

Proof. Suppose that {T,N1,N2,N3} is the Serret-Frenet frame field of the unit speed spacelike curve γ with the character of (ε1,ε2,ε3,ε4)
and nonzero curvature and torsion functions. Assume that the curve γ lies on S3

0(r) with center P0. Then we obtain

〈γ−P0,γ−P0〉L = r2.

If we differentiate this relation, then we get

〈T,γ−P0〉L = 0. (3.3)

Thus, we may write

γ−P0 = aN1 +bN2 + cN3

for some a, b and c such that

r2 = ε2a2 + ε3b2 + ε4c2.

Similar to the proof of Theorem 3.7, we obtain

a =−ε1
1
κ
, b = ε3ε4

1
τ
(

1
κ
)′ and c =

1
σ
[ε4(

1
τ
(

1
κ
)′)′− ε1

τ

κ
].

Thus, we get

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− ε1

τ

κ
]2 = r2.

Theorem 3.10. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with the character of Frenet-Serret frame (ε1,ε2,ε3,ε4) and nonzero

constant curvature, torsion functions. If the inequality

ε2
1

κ2 + ε4
τ2

κ2σ2 > 0

is satisfied then the curve γ lies on S3
0(r) with center

P0 = γ + ε1
1
κ

N1 + ε1
τ

κσ
N3.

Example 3.11. Consider the unit speed timelike curve

γ(s) = (
√

2sinhs,
√

2coshs,sins,coss).

Let {T,N1,N2,N3} denote the Frenet frame of the curve γ. We find the Frenet apparatus of the curve γ as follows:

T = (
√

2coshs,
√

2sinhs,coss,−sins),

N1 = (
√

2√
3

sinhs,
√

2√
3

coshs,− 1√
3

sins,− 1√
3

coss),

N2 = (−coshs,−sinhs,−
√

2coss,
√

2sins),

N3 = (− 1√
3

sinhs,− 1√
3

coshs,−
√

2√
3

sins,−
√

2√
3

coss),
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and

κ =
√

3, τ =
2
√

2√
3

, σ =− 1√
3
.

By above corollary, this curve lies on a Lorentzian sphere with the center

P0 = γ− 1
κ

N1−
τ

κσ
N3

= (
√

2sinhs,
√

2coshs,sins,coss)− 1√
3
(
√

2√
3

sinhs,
√

2√
3

coshs,− 1√
3

sins,− 1√
3

coss)

+
2
√

2√
3
(− 1√

3
sinhs,− 1√

3
coshs,−

√
2√
3

sins,−
√

2√
3

coss)

= (0,0,0,0)

and radius

r =

√
1

κ2 +
τ2

κ2σ2 =
√

3.

Theorem 3.12. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with nonzero constant curvature function κ , first torsion function σ

and the character of Frenet-Serret frame (ε1,1,ε3,ε4). If the first torsion τ is zero, then the curve γ is a part of a Lorentzian circle with
radius 1

κ
.

Proof. Assume that γ is a unit speed nonlightlike curve with nonzero constant κ, σ and τ = 0. As a result of Theorem 3.3, γ is a plane curve.
If the center of the Lorentzian circle P0 is taken as

P0 = γ + ε1
1
κ

N1

then we get

P′0 = T + ε1
1
κ
(−ε1κT ) = T −T = 0.

Hence, the center P0 of the circle is a constant. Moreover, we have

〈γ−P0,γ−P0〉L =

〈
−ε1

1
κ

N1,−ε1
1
κ

N1

〉
L
=

1
κ2 .

In the study [10], it is stated that a regular unit speed curve in Euclidean four space E4 with nonzero curvature and torsion functions is a helix
if and only if

κ2

τ2 +[
1
σ
(

κ

τ
)′]2

is a constant. On the other hand, spacelike helices are investigated in Minkowski space-time in [11]. Moreover, the differential equations of
characterizations of spacelike helices are also found in [11]. Now, the following theorem gives the necessary and sufficient condition of unit
speed nonlightlike curve with nonzero curvature, torsion functions and the character of Frenet-Serret frame (ε1,ε2,ε3,ε4) to be a helix in
Minkowski space-time.

Theorem 3.13. Let γ : I ⊂ R→ E4
1 be a unit speed nonlightlike curve with nonzero curvature, torsion functions and the character of

Frenet-Serret frame (ε1,ε2,ε3,ε4). The curve γ is a helix if and only if

(
κ

τ
)′(1− ε2ε3) = 0,

ε4
κσ

τ
+ ε3(

1
σ
(

κ

τ
)′)′ = 0.

Proof. Suppose that γ : I ⊂ R→ E4
1 is a given unit speed nonlightlike curve with nonzero curvature, torsion functions and the character of

Frenet-Serret frame (ε1,ε2,ε3,ε4). Assume that γ is a helix. Then there exists a constant vector U such that

〈T,U〉L = c (3.4)

where c is a real constant 〈U,U〉L = ε. Here, we may choose ε as 1, −1 or 0. Differentiating the Equation 3.4 with respect to s and using the
Frenet-Serret formula in 2.1, we get

〈N1,U〉L = 0. (3.5)

Therefore U is in the subspace Span{T,N2,N3} and can be written as follows:

U = ε1cT +gN2 +hN3.
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Differentiating Equation 3.5 gives that

g = ε3 〈N2,U〉L = ε1c
κ

τ
. (3.6)

If we differentiate Equation 3.6, then we obtain

h = ε4 〈N3,U〉L = ε1ε2
c
σ
(

κ

τ
)′.

That is

U = ε1c(T +
κ

τ
N2 + ε2

1
σ
(

κ

τ
)′N3).

Since U is a constant vector field, then we obtain

U ′ = ε1c[(
κ

τ
)′(1− ε2ε3)N2 +(ε4

κσ

τ
+ ε3(

1
σ
(

κ

τ
)′)′)N3] = 0

This implies

(
κ

τ
)′(1− ε2ε3) = 0,

ε4
κσ

τ
+ ε3(

1
σ
(

κ

τ
)′)′ = 0.

Conversely, suppose that above relations are satisfied. If we chose vector U as

U = ε1c(T +
κ

τ
N2 + ε2

1
σ
(

κ

τ
)′N3)

where c is an arbitrary real constant, then we see that

〈T,U〉L = c and U ′ = 0

which means that γ is a helix.

Theorem 3.14. Let γ : I ⊂ R→ E4
1 be a unit speed timelike curve with nonzero curvature, torsion functions. The curve γ is a helix if and

only if

κσ

τ
+(

1
σ
(

κ

τ
)′)′ = 0.

4. Conclusion

For a unit speed nonlightlike curve γ : I ⊂ R→ E4
1 with the Frenet vectors {T,N1,N2,N3} and the character of Frenet-Serret frame

(ε1,ε2,ε3,ε4), Frenet–Serret formulas can be given as
T ′

N′1
N′2
N′3

=


0 ε2κ 0 0
−ε1κ 0 ε3τ 0

0 −ε2τ 0 ε4σ

0 0 −ε3σ 0




T
N1
N2
N3


where the functions κ, τ and σ are the curvature, first and second torsion of the curve, respectively. Some special curves can be characterized
as follows:

• κ = 0 if and only if γ is a straight line;
• If γ is a plane curve with κ > 0 then τ = 0 or σ = 0;
• If κ > 0, σ =constant and τ = 0 then γ is a plane curve;
• If κ > 0, σ = 0 then γ is a plane curve;
• The spacelike curve γ with nonzero κ, τ and σ is lying on H3

0 (r) if and only if

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− τ

κ
]2 =−r2

for some constant r ∈ R+;
• If κ = c1, τ = c2, σ = c3 where c1,c2,c3 ∈ R0 and

ε2
1

κ2 + ε4
τ2

κ2σ2 < 0

then spacelike curve γ lies on a pseudohyperbolical space with center

P0 = γ +
1
κ

N1 +
τ

κσ
N3;
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• The curve γ with nonzero κ, τ and σ is lying on S3
0(r) if and only if

ε2
1

κ2 + ε3(
1
τ
(

1
κ
)′)2 + ε4

1
σ2 [ε4(

1
τ
(

1
κ
)′)′− ε1

τ

κ
]2 = r2

for some constant r ∈ R+;
• If κ = c1, τ = c2, σ = c3 where c1,c2,c3 ∈ R0 and

ε2
1

κ2 + ε4
τ2

κ2σ2 > 0

then γ lies on a Lorentzian sphere with center

P0 = γ + ε1
1
κ

N1 + ε1
τ

κσ
N3;

• If κ = c1, τ = 0, σ = c2 where c1,c2 ∈ R0, then γ is a part of circle with center

P0 = γ + ε1
1
κ

N1

and radius

r =
1
κ

;

• Let κ 6= 0, τ 6= 0 and σ 6= 0. γ is a helix if and only if the followings are satisfied

(
κ

τ
)′(1− ε2ε3) = 0,

ε4
κσ

τ
+ ε3(

1
σ
(

κ

τ
)′)′ = 0.
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