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Abstract 

This study analyses performance of digital communication system having baseband binary phase shift 
keying modulation under asymmetric non-Gaussian noise. Correspondingly, the problem is 
characterised as antipodal signal detection where skewed α −stable distribution is used as asymmetric 
non-Gaussian noise exhibiting impulsive behaviour. The performance of the communication system is 
expressed as a function of error probability with respect to noise parameters. It is shown that the 
skewness of the channel noise results in degradation of error probability at low signal to noise ratio. Also, 
the effect of skewness is more apparent when the impulsiveness of the noise increased. As the 
contribution, any receiver design to compensate the asymmetric behaviour of the channel noise can be 
used to enhance the detection accuracy since the error performance gets worse while departing from 
symmetric behaviour of the noise under the same impulsiveness. Additionally, the detection 
performance is analysed in terms of receiver operating characteristic under the skewed α −stable noise 
environment. According to findings, probability of detection can be tuned and locally increased with 
respect to the false alarm probability depending on the sign of the skewness. 

Keyword: Skewed alpha-stable noise, signal detection,. probability of error 

 

Öz 

Bu çalışma, asimetrik Gauss olmayan gürültü altında temel band ikili faz kaydırmalı anahtarlamaya 
sahip sayısal haberleşme sisteminin başarımını analiz etmektedir. Buna karşılık olarak, problem 
asimetrik 𝛼 −kararlı gürültünün asimetrik Gauss olmayan gürültü olarak kullanıldığı zıt kutuplu 
işaret tespiti olarak karekterize edilmektedir. Haberleşme sisteminin başarımı hata olasılığının 
gürültü parametreleri cinsinden fonksiyonu olarak ifade edilmektedir. Düşük işaret gürültü oranında 
kanal gürültüsündeki asimetrinin hata olasılığında kötüleşmeyle sonuçlandığı gösterilmektedir. Ek 
olarak, asimetrinin etkisi kanal gürültüsünün  dürtüselliği artırıldığında daha görünür olmaktadır. 
Katkı olarak, kanal gürültüsünün asimetrik davranışını telafi edecek herhangi bir alıcı tasarımı, hata 
olasılığının aynı dürtüsellikte iken simetrik davranıştan uzaklaştıkça kötüleşmesinden dolayı  tespit 
doğruluğunu iyileştirmede kullanılabilir. Buna ek olarak, tespit başarımı asimetrik 𝛼 −kararlı gürültü 
ortamında alıcı işletim karakteristiği ile analiz edilmektedir. Bulgulara göre, tespit olasılığı asimetrinin 
işaretine bağlı olan yanlış alarm olasılığı ile ayarlanıp lokal olarak artırılabilir.     
Anahtar Kelimeler : Asimetrik alfa-kararlı gürültü, işaret tespiti, hata olasılığı 
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1. Introduction 

In most of the statistical signal processing 
applications based on digital communication, 
the additive noise is generally modelled as 
white Gaussian noise. However, it is proposed 
in [1] that the noise may exhibit non-Gaussian 
impulsive behaviour which is reported to have 
symmetric α-stable (SαS) distribution. 
Deterministic signal detection problem and 
developing detectors in SαS noise are 
described and analysed in [2,3]. Subsequently, 
the probability of error is reported by [4] to be 
degraded with respect to increasing 
impulsiveness in binary signal classification 
problem. To improve the receiver 
performance, several detectors are 
introduced. In [5], the signal detection is 
performed via correntropy function under 
Gaussian mixture or SαS distributed noise. 
Another study utilizes suboptimal detectors 
such as linear, soft limiter and Cauchy 
detectors to determine error probability 
under SαS noise [6]. Alternatively, the 
elimination of the impulsive channel noise at 
the receiver was realized by proposing 
suboptimal detectors such as myriad, Cauchy 
and soft limiter to detect antipodal signals 
under SαS noise [7]. Rather than modelling the 
channel noise by only SαS distribution, it is 
formulated as mixture of both Gaussian and 
SαS noise in digital communication where the 
likelihood estimation is proposed via an 
approximate analytical density function of SαS 
noise [8]. Another similar approach given by 
[9] is to design a receiver in presence of both 
Gaussian and SαS distributed noise using 
maximum likelihood detector. A 
comprehensive study on detection of 
antipodal symbols in both SαS  and Gaussian 
noise interference is given in [10] proposing a 
receiver and compares the performance with 
other conventional detector types such as 
linear, Cauchy, maximum likelihood and soft 
limiter detectors. Instead of baseband 
information bearing signals, the receiver 
design and the probability of error 
performance of several digital communication 
systems including different modulation types 
under SαS noise are given together with 
approximate analytical expression in [11] and 
more comprehensively in [12]. In a more 
recent study, probability density function 
(PDF) approach is used to detect the 
statistically dependent symmetric heavy-
tailed signals [13].  

The common assumption contained by the 
literature is that the α −stable distribution 
representing the channel noise is considered to 
be symmetric. However, this assumption is 
restrictive and the noise may practically exhibit 
asymmetric behaviour where the detectors 
under symmetric channel noise may yield 
misleading results for this case. Therefore, the 
error probability should be investigated by 
taking into account the noise characterization 
for both impulsive and asymmetric cases.   

Differing from the previous studies, this paper 
extends the analysis of signal detection 
problem involving skewed α −stable 
distribution in order to extract the effect of 
asymmetric behaviour of impulsive channel 
noise.  By constructing the binary hypothesis 
testing problem under the proposed noise 
model, the error probability is formulated and 
expressed analytically. Since the closed form 
expression of probability density function does 
not exist, error probability can be obtained 
numerically. The variation of error probability 
is expressed in terms of skewness parameter 
and generalized signal to noise ratio (GSNR) 
due to the infinite variance property of 
α −stable noise. Furthermore, the receiver 
operating characteristics (ROC) are 
investigated in order to expose the variation of 
detection probability with respect to GSNR and 
noise parameters, especially skewness 
parameter.   

The paper is organized as follows. The 
antipodal signal detection problem is 
described after α −stable distribution is 
defined in the next section. An approximate 
analytic expression is given in terms of 
probability of error with respect to variation of 
skewness. At the last section, receiver 
operating characteristics and dependence on 
noise parameters are discussed. 

2. Material and Method 

2.1. 𝜶 −Stable distributions 

One dimensional α −stable distribution is 
described by its characteristic function as 
given below [14]  

𝜑(𝜔) =

{
exp {−𝜎𝛼|𝜔|𝛼 (1 − 𝑗𝛽sgn(𝜔) tan (

𝜋𝛼

2
) + 𝑗𝜇𝜔)}       if α ≠ 1

exp {−𝜎|𝜔| (1 + 𝑗𝛽
2

𝜋
sgn(𝜔) ln|𝜔|) + 𝑗𝜇𝜔}              if α = 1

      (1) 
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where  

sgn(𝜔) = {
1     if 𝜔 > 0
0    if 𝜔 = 0
−1  if 𝜔 < 0

 

The noise parameters characteristic 
exponent 𝛼, skewness 𝛽, scale 𝜎 and the shift 
parameter 𝜇, tune the impulsiveness, amount 
of  asymmetry, intensity and the location, 
respectively. An alternative expression for 
intensity of the noise is dispersion 𝛾, 𝛾 = 𝜎𝛼 
[4]. If 𝛽 = 0 and 𝜇 = 0 the distribution is said 
to be symmetric. Since the shift on the 
location is not under consideration in this 
study, it is assumed 𝜇 = 0. 

The probability density function can be 
obtained by the relation [15] 

𝑓(𝑧) =
1

2π
∫ 𝜑(𝜔)e−𝑗𝜔𝑧𝑑𝜔

∞

−∞
     (2) 

The closed form expression of the stable 
distributions does not exist except for the 
cases Gaussian (𝛼 = 2), Cauchy (𝛼 = 1), and 
Levy distributions (𝛼 = 1 2⁄ , 𝛽 = 1) [15]. 
One of the distinctive properties of α −stable 
distributions is that fractional moments 
lower than characteristic exponent α  are 
finite.  It can be expressed in terms of a 
random variable 𝑍 having α −stable 
distribution as [14]  

E|𝑍|p <  ∞      𝑝 < 𝛼

E|𝑍|p =  ∞      𝑝 ≥ 𝛼
         (3) 

where E is the expectation operator. 
According to this property, variance is finite 
only for Gaussian noise case. This results in 
modifying the signal to noise ratio in terms of 
scale parameter, which is given in the next 
subsection. In the sequel, the antipodal signal 
detection problem is formulated by density 
functions under binary hypothesis testing. 

2.2. Signal detection problem 

In digital communication, antipodal 
signalling corresponds to baseband binary 
phase shift keying (BPSK) modulation. 
Considering the received signal carrying 
digital information in discrete time, the 
binary signal detection problem is given as 

ℋ1: 𝑥 =    𝐴 + 𝑤
ℋ0: 𝑥 = −𝐴 + 𝑤

           (4) 

where the channel noise is generated from 
the density 𝑤~𝑓(𝑧). An illustration of the 
PDF for both hypotheses is given in Figure 1. 
Differing from conventional Gaussian 

illustration in the literature, asymmetric 
behaviour is more apparent.  

 

Figure. 1. Binary hypothesis testing under 
skewed α −stable noise with 𝐴 = 1 and 𝛼 =
1.5, 𝛽 = 1, 𝜎 = 1, solid - ℋ1, dashed - ℋ0 
hypotheses 

The error probability is given by (5)  

Pe = P(ℋ0|ℋ1)P(ℋ1) + P(ℋ1|ℋ0)P(ℋ0).  (5) 

Since the message bits are assumed to be 
equally likely, P(ℋ0) = P(ℋ1) = 1 2⁄ . 
However, the conditional probabilities are 
not identical due to asymmetric behaviour of 
the noise. The general closed form 
expression of the density function cannot be 
obtained by characteristic function for an 
arbitrary characteristic exponent α. The 
probability of error can be approximated by 
substituting (2) and (4) in (5) as follows 

Pe =
1

4𝜋
[∫ ∫ 𝜑(𝜔)e−𝑗𝜔(𝑥−𝐴)𝑑𝜔𝑑𝑥

∞

−∞
+

0

−∞

∫ ∫ 𝜑(𝜔)e−𝑗𝜔(𝑥+𝐴)𝑑𝜔𝑑𝑥
∞

−∞

∞

0
 ].      

 (6) 

Although the error probability is a function of 
noise intensity, it is more convenient to 
express variation of error with respect to 
signal to noise ratio. Since the α −stable 
noise has infinite variance for 𝛼 < 2, the term 
generalized signal to noise ratio (GSNR) [10] 
is defined by (7) 

GSNR = 10 log
𝐴2

𝜎𝛼
          (7) 

For sake of simplicity, the noise intensity is 
set 𝜎 = 1 and so that GSNR is reduced to tune 

the signal amplitude 𝐴 as 𝐴 = √10
GSNR

10 . Then 

the error probability can be redefined as 

 

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal Range

P
ro

b
a

b
il
it
y
 D

e
n

s
it
y
 F

u
n

c
ti
o

n

 

 



DEU FMD 21(62), 525-531, 2019 

 
528 

Pe(GSNR) =
1

4π

[
 
 
 

∫ ∫ e
−|ω|α(1−jβsgn(ω) tan(

πα
2

))
e
−jω(x−

√
10

GSNR
10 )

dωdx

∞

−∞

+ ∫ ∫ e
−|ω|α(1−jβsgn(ω) tan(

πα
2

))
e
−jω(x+

√
10

GSNR
10 )

dωdx

∞

−∞

∞

0

 

0

−∞
]
 
 
 

 

(8) 

where the impulsiveness and the skewness 
are assumed to lie within the intervals 0 <
𝛼 ≤ 2 and  −1 ≤ 𝛽 ≤ 1, respectively. In the 
next section, numerical simulations are given 
with respect to GSNR which illustrates the 
effect of noise parameters to error 
probability. 

 2.3. Error simulation 

The simulations are performed in order to 
exhibit the effect of the parameters of the 
stable noise. The numerical integration in 
MATLAB environment is evaluated using 
Riemann sum method having step size 0.01 
which corresponds to area under PDF 0.9964 
for α = 0.8 and 0.9989 for 𝛼 = 1.5. In Figure 
2, the probability of error for antipodal 
signalling under symmetric α −stable (SαS) 
distribution is illustrated with respect to 
various characteristic exponents. Note that 
the error curve for 𝛼 = 2 corresponds to 
Gaussian noise case. It is significant to 
observe that the error probability becomes 
apparently poorer when the noise 
characteristic is even slightly impulsive. 
Moreover, the error performance becomes 
dramatically worse especially for decreasing 
characteristic exponent 𝛼, i.e., increasing 
impulsiveness. 

 

Figure 2.  Probability of error under 
symmetric α −stable noise. 

The effect of skewness on probability of error 
are investigated by tuning skewness for fixed 
characteristic exponent and tuning 
characteristic exponent for fixed skewness 
shown in Figure3a and Figure3b, 
respectively. It is quite apparent that, 

probability of error increases when the 
stable noise becomes more skewed for fixed 
characteristic exponent and more impulsive 
for fixed skewness.  

 

Figure 3.  Effect of skewness and 
impulsiveness on error probability, a) 
Characteristic exponent 𝛼 = 0.8, b) Skewness 
parameter 𝛽 = 1 

On the other hand, the error probability is 
illustrated with respect to both skewness 
parameter 𝛽 and GSNR in Figure 4a-c. It is 
seen that the error probability obviously 
decreases with respect to GSNR. However, 
the error exhibits a valley with respect to 𝛽 
and the lowest amount of error is obtained 
for 𝛽 = 0, i.e., the noise is symmetric when 
GSNR is fixed. The valley becomes more 
apparent when the impulsiveness increases, 
i.e, the characteristic exponent decreases 
while the error performance in terms of 
GSNR become poorer at the same time. 
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Figure 4.  Probability of error with respect to 
both skewness parameter 𝛽 and GSNR. 
 a) 𝛼 = 0.8,  b) 𝛼 = 1.2,  c) 𝛼 = 1.5 
 

In addition to the contribution on error 
probability, the receiver operating 
characteristics gives a clue about how the 
skewness has effect on detection probability 
versus false alarm probability, in the next 
section.    

3. Receiver operating characteristics  

The variation of probability of detection PD 
with respect to probability of false alarm PFA 
is essential to be analysed in order to exhibit 
the effect of both skewness and 
impulsiveness of the noise together. Noting 
from [16] that the test statistic T for 
antipodal signal detection problem can be 
tuned as T ≷ 0 within the binary hypothesis 
testing problem. An approximate analytical 

expression for false alarm and detection 
probabilities are given in (9) and (10) as  

PFA = Pr{T > 0; ℋ0} =
1

2π
[∫ ∫ 𝜑(𝜔)e−𝑗𝜔(𝑥+𝐴)𝑑𝜔𝑑𝑥

∞

−∞
 

∞

0
].     

 (9) 

 

PD = Pr{T > 0; ℋ1} =
1

2π
[∫ ∫ 𝜑(𝜔)e−𝑗𝜔(𝑥−𝐴)𝑑𝜔𝑑𝑥

∞

−∞
 

∞

0
].     

 (10) 

Before analysing the effect of skewness, the 
channel noise is fixed to be symmetric. 
Figure5a and Figure5b illustrate the ROC 
curve with respect to decreasing 
characteristic exponents, respectively. It can 
be said that the ROC performance is 
improved when GSNR increases, as expected. 
If the ROC performances are compared for 
fixed GSNR, it can be noticed that lower 
characteristic exponent results in poor ROC 
performance. 

 

Figure 5.  Variation of ROC curves with 
respect to different characteristic exponent 
of SαS noise. a) 𝛼 = 1.5, b) 𝛼 = 0.8 

a

b

c
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The effect of skewness on ROC curves is 
shown in Figure6a and Figure6b for different 
GSNR values.   

 

 

 Figure 6.  Variation of ROC curves with 
respect to different skewness for 𝛼 = 1.5,  a) 
GSNR = 3dB, b) GSNR = −3dB 

It appears that the higher probability of 
detection can be achieved than symmetrical 
case if the skewness of the channel noise is 
negative for small false alarm probability. 
However, this behaviour becomes reversed 
after a certain value of false alarm rate. The 
opposite comment is current for positive 
skewness. The detection probability is 
observed to be higher than SαS noise case for 
increasing false alarm rate while it is lower 
for small false alarm probabilities. 

4. Discussion and Conclusion 

This paper analyses the baseband digital 
communication problem using antipodal 

signals in skewed α −stable distributions. 
The findings can be treated with respect to 
the each noise parameter individually and 
generalized signal to noise ratio together. 
When the characteristic exponent is fixed, it 
is illustrated that the probability of error 
increases when the amount of positive or 
negative skewness of the α −stable noise 
increases. This behaviour becomes more 
apparent when the characteristic exponent 
decreases, corresponding to increasing 
impulsiveness.  The error performance 
decreases when GSNR decreases, as 
expected. 

The main contribution is concentrated on the 
effect of the skewness of the noise when the 
impulsiveness and GSNR are both fixed. It is 
exhibited that, the error probability has the 
lowest value when the noise has symmetrical 
behaviour corresponding to zero skewness 
(𝛽 = 0). According to this finding, it can be 
claimed that the error performance can be 
improved at the receiver if the channel noise 
is manipulated to exhibit resultant 
symmetric noise behaviour once the  
impulsiveness of the channel is known in 
advance. However it should be taken into 
account that this manipulation may result in 
increased total noise intensity at the receiver. 
Moreover, error performance may be 
observed to get worse if the characteristic 
exponent of the noise is decreased, which can 
be considered as more impulsive noise 
behaviour, consistent with earlier studies.  

According to the ROC curves, higher 
detection probability can be achieved for a 
certain range of false alarm probability when 
the skewness is negative, and the opposite 
behaviour is observed for positive skewness.  
Finally, it is observed that detection 
performance can be tuned with respect to the 
selection of skewness and false alarm rate.  

As a result, the present study generalizes the 
signal detection problem under non-
Gaussian noise involving asymmetric 
distribution and is considered to give an 
insight for the investigation of antipodal 
signal detection problem under skewed 
α −stable noise for various modulation types 
in digital communication as the future work. 
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