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Abstract
Let H ⊆ K be two subgroups of a finite group G and Aut(K) the automorphism group
of K. In this paper, we consider the generalized autocommuting probability of G relative
to its subgroups H and K, denoted by Prg(H,Aut(K)), which is the probability that
the autocommutator of a randomly chosen pair of elements, one from H and the other
from Aut(K), is equal to a given element g ∈ K. We study several properties as well as
obtain several computing formulae of this probability. As applications of the computing
formulae, we also obtain several bounds for Prg(H,Aut(K)) and characterizations of some
finite groups through Prg(H,Aut(K)).
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1. Introduction
Let G be a finite group acting on a set Ω. Let Pr(G,Ω) denotes the probability that a

randomly chosen element of Ω fixes a randomly chosen element of G. In 1975, Sherman
[13] initiated the study of Pr(G,Ω) considering G to be an abelian group and Ω = Aut(G),
the automorphism group of G. Note that

Pr(G,Aut(G)) = |{(x, α) ∈ G× Aut(G) : [x, α] = 1}|
|G|| Aut(G)|

where [x, α] is the autocommutator of x and α defined as x−1α(x). The ratio Pr(G,Aut(G))
is called autocommuting probability of G. The case when G is non-abelian is considered
in [1, 3, 12]. Few generalizations of Pr(G,Aut(G)) can also be found in [3, 4, 9, 12].

Let H and K be two subgroups of G such that H ⊆ K. We define

Prg(H,Aut(K)) = |{(x, α) ∈ H × Aut(K) : [x, α] = g}|
|H|| Aut(K)|

(1.1)

where g ∈ K. That is, Prg(H,Aut(K)) is the probability that the autocommutator of a
randomly chosen pair of elements, one from H and the other from Aut(K), is equal to
a given element g ∈ K. The ratio Prg(H,Aut(K)) is called generalized autocommuting
probability of G relative to its subgroups H and K. Clearly, if H = G and g = 1
then Prg(H,Aut(K)) = Pr(G,Aut(G)). Note that the cases when H = G and K = G
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are considered in [3] and [4], respectively. If we replace Aut(K) by Inn(K), the inner
automorphism group of K, in (1.1) then Prg(H, Inn(K)) = Prg(H,K) where

Prg(H,K) = |{(x, y) ∈ H ×K : x−1y−1xy = g}|
|H||K|

which is introduced and studied in [2]. In this paper, we study several properties as well
as obtain several computing formulae of Prg(H,Aut(K)). We also obtain some bounds for
Prg(H,Aut(K)) and characterize some finite groups through Prg(H,Aut(K)) as applica-
tions.

We write S(H,Aut(K)) to denote the set {[x, α] : x ∈ H and α ∈ Aut(K)} and
[H,Aut(K)] := 〈S(H,Aut(K))〉. We also write L(H,Aut(K)) := {x ∈ H : [x, α] =
1 for all α ∈ Aut(K)} and L(G) := L(G,Aut(G)), the absolute center of G (see [6]).
Note that L(H,Aut(K)) is a normal subgroup of H contained in H ∩ Z(K). Further,
L(H,Aut(K)) = ∩

α∈Aut(K)
CH(α), where CH(α) = {x ∈ H : [x, α] = 1} is a subgroup

of H. Let CAut(K)(x) := {α ∈ Aut(K) : α(x) = x} for x ∈ H and CAut(K)(H) =
{α ∈ Aut(K) : α(x) = x for all x ∈ H}. Then CAut(K)(x) is a subgroup of Aut(K)
and CAut(K)(H) = ∩

x∈H
CAut(K)(x). We consider the action of Aut(K) on K given by

(α, x) 7→ α(x) where α ∈ Aut(K) and x ∈ K. Let orbK(x) := {α(x) : α ∈ Aut(K)} be
the orbit of x ∈ K. Then by orbit-stabilizer theorem, we have

| orbK(x)| = | Aut(K)|
|CAut(K)(x)|

. (1.2)

Clearly, Prg(H,Aut(K)) = 1 if and only if [H,Aut(K)] = {1} and g = 1 if and only if
H = L(H,Aut(K)) and g = 1. Also, Prg(H,Aut(K)) = 0 if and only if g /∈ S(H,Aut(K)).
Therefore, we consider H 6= L(H,Aut(K)) and g ∈ S(H,Aut(K)) throughout the paper.

2. Some properties
We begin with the following lower bounds.

Proposition 2.1. Let H and K be two subgroups of a finite group G such that H ⊆ K
and g ∈ K.

(a) If g = 1 then

Prg(H,Aut(K)) ≥ |L(H,Aut(K))|
|H| + |CAut(K)(H)|(|H|−|L(H,Aut(K))|)

|H|| Aut(K)| .

(b) If g 6= 1 then Prg(H,Aut(K)) ≥ |L(H,Aut(K))||CAut(K)(H)|
|H|| Aut(K)| .

Proof. Let C denotes the set {(x, α) ∈ H × Aut(K) : [x, α] = g}.
If g = 1 then we have S := (L(H,Aut(K)) × Aut(K)) ∪ (H × CAut(K)(H)) is a subset

of C. We also have
|S| = |L(H,Aut(K))|| Aut(K)| + |CAut(K)(H)||H| − |L(H,Aut(K))||CAut(K)(H)|.

Therefore,

Prg(H,Aut(K)) ≥ 1
|H|| Aut(K)|

{|L(H,Aut(K))|| Aut(K)|+

|CAut(K)(H)||H| − |L(H,Aut(K))||CAut(K)(H)|}
and hence part (a) follows.

Now we consider the case when g 6= 1. Since g ∈ S(H,Aut(K)) we have C is non-
empty. Let (y, β) ∈ C then (y, β) /∈ L(H,Aut(K)) ×CAut(K)(H) otherwise [y, β] = 1. It is
easy to see that the coset (y, β)(L(H,Aut(K)) × CAut(K)(H)) is a subset of C having or-
der |L(H,Aut(K))||CAut(K)(H)|. Therefore, |C| ≥ |L(H,Aut(K))||CAut(K)(H)| and hence
part (b) follows. �
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Proposition 2.2. Let H and K be two subgroups of a finite group G such that H ⊆ K.
If g ∈ K then

Prg−1(H,Aut(K)) = Prg(H,Aut(K)).

Proof. Let X and Y denote the sets {(x, α) ∈ H × Aut(K) : [x, α] = g} and {(y, β) ∈
H × Aut(K) : [y, β] = g−1}, respectively. Consider the mapping f : X → Y given by
f((x, α)) = (α(x), α−1). Since f is bijective, we have |X| = |Y |. Hence, the result follows
from (1.1). �
Proposition 2.3. Let G1 and G2 be two finite groups. Let H1,K1 and H2,K2 be subgroups
of G1 and G2 respectively such that H1 ⊆ K1, H2 ⊆ K2 and gcd(|K1|, |K2|) = 1. If
(g1, g2) ∈ K1 ×K2 then

Pr(g1,g2)(H1 ×H2,Aut(K1 ×K2)) = Prg1(H1,Aut(K1))Prg2(H2,Aut(K2)).

Proof. Let X denotes the set
{((x, y), αK1×K2) ∈ (H1 ×H2) × Aut(K1 ×K2) : [(x, y), αK1×K2 ] = (g1, g2)}.

Also, let Y and Z denote the sets {(x, αK1) ∈ H1 × Aut(K1) : [x, αK1 ] = g1} and
{(y, αK2) ∈ H2 × Aut(K2) : [y, αK2 ] = g2}, respectively. Since gcd(|K1|, |K2|) = 1, by
[7, Lemma 2.1], we have Aut(K1 × K2) = Aut(K1) × Aut(K2). Therefore, for every
αK1×K2 ∈ Aut(K1 ×K2) there exist unique αK1 ∈ Aut(K1) and αK2 ∈ Aut(K2) such that
αK1×K2 = αK1 ×αK2 , where αK1 ×αK2((x, y)) = (αK1(x), αK2(y)) for all (x, y) ∈ H1 ×H2.
Also, for all (x, y) ∈ H1 ×H2, we have [(x, y), αK1×K2 ] = (g1, g2) if and only if [x, αK1 ] = g1
and [y, αK2 ] = g2. These show that X = Y × Z. Therefore

|X|
|H1 ×H2|| Aut(K1 ×K2)|

= |Y |
|H1|| Aut(K1)|

· |Z|
|H2|| Aut(K2)|

.

Hence, the result follows from (1.1). �
In the year 1940, Hall [5] introduced the concept of isoclinism between two groups.

Following Hall, Moghaddam et al. [8] have defined autoisoclinism between two groups, in
the year 2013. Recall that two groups G1 and G2 are said to be autoisoclinic if there exist
isomorphisms ψ : G1

L(G1) → G2
L(G2) , β : [G1,Aut(G1)] → [G2,Aut(G2)] and γ : Aut(G1) →

Aut(G2) such that the following diagram commutes
G1

L(G1) × Aut(G1) ψ×γ−−−−→ G2
L(G2) × Aut(G2)ya(G1,Aut(G1))

ya(G2,Aut(G2))

[G1,Aut(G1)] β−−−−→ [G2,Aut(G2)]
where the maps a(Gi,Aut(Gi)) : Gi

L(Gi) × Aut(Gi) → [Gi,Aut(Gi)], for i = 1, 2, are given by

a(Gi,Aut(Gi))(xiL(Gi), αi) = [xi, αi].
Such a pair (ψ × γ, β) is called an autoisoclinism between the groups G1 and G2. We
generalize the notion of autoisoclinism in the following way:

Let H1,K1 and H2,K2 be subgroups of the groups G1 and G2 respectively. The pairs of
subgroups (H1,K1) and (H2,K2) such that H1 ⊆ K1 and H2 ⊆ K2 are said to be autoiso-
clinic if there exist isomorphisms ψ : H1

L(H1,AutK1) → H2
L(H2,Aut(K2)) , β : [H1,Aut(K1)] →

[H2,Aut(K2)] and γ : Aut(K1) → Aut(K2) such that the following diagram commutes

H1
L(H1,Aut(K1)) × Aut(K1) ψ×γ−−−−→ H2

L(H2,Aut(K2)) × Aut(K2)ya(H1,Aut(K1))

ya(H2,Aut(K2))

[H1,Aut(K1)] β−−−−→ [H2,Aut(K2)]
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where the maps a(Hi,Aut(Ki)) : Hi
L(Hi,Aut(Ki)) × Aut(Ki) → [Hi,Aut(Ki)], for i = 1, 2, are

given by
a(Hi,Aut(Ki))(xiL(Hi,Aut(Ki)), αi) = [xi, αi].

Such a pair (ψ×γ, β) is said to be an autoisoclinism between the pairs of groups (H1,K1)
and (H2,K2). We conclude this section with the following generalization of [3, Theorem
5.1] and [12, Lemma 2.5].

Theorem 2.4. Let G1 and G2 be two finite groups with subgroups H1,K1 and H2,K2
respectively such that H1 ⊆ K1 and H2 ⊆ K2. If (ψ × γ, β) is an autoisoclinism between
the pairs (H1,K1) and (H2,K2) then, for g ∈ K1,

Prg(H1,Aut(K1)) = Prβ(g)(H2,Aut(K2)).

Proof. Let us consider the sets Sg = {(x1L(H1,Aut(K1)), α1) ∈ H1
L(H1,Aut(K1)) ×Aut(K1) :

[x1, α1] = g} and Tβ(g) = {(x2, α2) ∈ H2
L(H2,Aut(K2)) × Aut(K2) : [x2L(H2,Aut(K2)), α2] =

β(g)}. Since (H1,K1) is autoisoclinic to (H2,K2) we have |Sg| = |Tβ(g)|. Again, it is clear
that

|{(x1, α1) ∈ H1 × Aut(K1) : [x1, α1] = g}| = |L(H1,Aut(K1))||Sg| (2.1)
and

|{(x2, α2) ∈ H2 × Aut(K2) : [x2, α2] = β(g)}| = |L(H2,Aut(K2))||Tβ(g)|. (2.2)

Hence, the result follows from (1.1), (2.1) and (2.2). �

3. Computing formulae and applications
For any x ∈ H, let us define the set Tx,g(H,K) = {α ∈ Aut(K) : [x, α] = g}, where g is

a fixed element of K. Note that Tx,1(H,K) = CAut(K)(x). Also, Tx,g(H,K) is non-empty
if and only if xg ∈ orbK(x). We have the following useful lemma.

Lemma 3.1. Let H and K be two subgroups of a finite group G such that H ⊆ K. If
Tx,g(H,K) is non-empty then Tx,g(H,K) = µCAut(K)(x) for some µ ∈ Tx,g(H,K) and
hence |Tx,g(H,K)| = |CAut(G)(x)|.

Proof. Assume that Tx,g(H,K) is non-empty. Let µ be an element of Tx,g(H,K). If
ν ∈ µCAut(K)(x) then ν = µα for some α ∈ CAut(K)(x). We have

[x, ν] = [x, µα] = x−1µ(α(x)) = [x, µ] = g

which implies ν ∈ Tx,g(H,K). Hence, µCAut(K)(x) ⊆ Tx,g(H,K).
If γ ∈ Tx,g(H,K) then γ(x) = xg. We have µ−1γ(x) = µ−1(xg) = x which implies

µ−1γ ∈ CAut(K)(x). Therefore, γ ∈ µCAut(K)(x) and so Tx,g(H,K) ⊆ µCAut(K)(x). Hence,
Tx,g(H,K) = µCAut(K)(x). �

The following theorem gives two computing formulae for Prg(H,Aut(K)).

Theorem 3.2. Let H and K be two subgroups of a finite group G such that H ⊆ K. If
g ∈ K then

Prg(H,Aut(K)) = 1
|H|| Aut(K)|

∑
x∈H

xg∈orbK(x)

|CAut(K)(x)|

= 1
|H|

∑
x∈H

xg∈orbK(x)

1
| orbK(x)|

.
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Proof. Clearly {(x, α) ∈ H × Aut(K) : [x, α] = g} = ∪
x∈H

({x} × Tx,g(H,K). Since for
any two distinct elements x, y ∈ H the sets {x} × Tx,g(H,K)) and {y} × Ty,g(H,K) are
disjoint, we have

|H|| Aut(K)|Prg(H,Aut(K)) = | ∪
x∈H

({x} × Tx,g(H,K))| =
∑
x∈H

|Tx,g(H,K)|.

Hence, the result follows from Lemma 3.1 and (1.2) noting that Tx,g(H,K) 6= ∅ if and only
if xg ∈ orbK(x). �

Considering g = 1 in Theorem 3.2, we get the following computing formulae for the
ratio Pr(H,Aut(K)).

Corollary 3.3. Let H and K be two subgroups of a finite group G such that H ⊆ K.
Then

Pr(H,Aut(K)) = 1
|H|| Aut(K)|

∑
x∈H

|CAut(K)(x)| = | orbK(H)|
|H|

where orbK(H) = {orbK(x) : x ∈ H}.

Corollary 3.4. Let H and K be two subgroups of a finite group G such that H ⊆ K. If
CAut(K)(x) = {I} for all x ∈ H \ {1}, where I is the identity element of Aut(K), then

Pr(H,Aut(K)) = 1
|H|

+ 1
| Aut(K)|

− 1
|H|| Aut(K)|

.

Proof. By Corollary 3.3, we have

|H|| Aut(K)| Pr(H,Aut(K)) =
∑
x∈H

|CAut(K)(x)| = | Aut(K)| + |H| − 1.

Hence, the result follows. �

Note that the fact |{(x, α) ∈ H × Aut(K) : [x, α] = 1}| =
∑

α∈Aut(K)
|CH(α)| also gives the

following computing formula

Pr(H,Aut(K)) = 1
|H|| Aut(K)|

∑
α∈Aut(K)

|CH(α)|.

In the remaining part of this section, we shall discuss some applications of the computing
formulae obtained above. More precisely, we shall obtain some bounds for Prg(H,Aut(K))
as well as some characterizations of finite groups in terms of Prg(H,Aut(K)). We begin
with the following upper bound.

Proposition 3.5. Let H and K be two subgroups of a finite group G such that H ⊆ K.
If g ∈ K then

Prg(H,Aut(K)) ≤ Pr(H,Aut(K)).
The equality holds if and only if g = 1.

Proof. Using Theorem 3.2, we have

Prg(H,Aut(K)) = 1
|H|| Aut(K)|

∑
x∈H

xg∈orbK(x)

|CAut(K)(x)|

≤ 1
|H|| Aut(K)|

∑
x∈H

|CAut(K)(x)| = Pr(H,Aut(K)).

The equality holds if and only if xg ∈ orbK(x) for all x ∈ H if and only if g = 1. �
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Corollary 3.6. Let H and K be two subgroups of a finite group G such that H ⊆ K.
Then

Prg(H,Aut(K)) ≤ Pr1(H,K).
Proof. By [2, Theorem 2.3], we have

Pr1(H,K) = 1
|H|

∑
x∈H

1
| clK(x)|

where clK(x) = {α(x) : α ∈ Inn(K)}. Since clK(x) ⊆ orbK(x) for all x ∈ H, we have∑
x∈H

1
| clK(x)|

≥
∑
x∈H

1
| orbK(x)|

.

Therefore, by Theorem 3.2, we have Pr(H,Aut(K)) ≤ Pr1(H,K). Hence, the result follows
from Proposition 3.5. �
Proposition 3.7. Let H and K be two subgroups of a finite group G such that H ⊆ K.
Let g ∈ K and p the smallest prime dividing | Aut(K)|. If g 6= 1 then

Prg(H,Aut(K)) ≤ |H| − |L(H,Aut(K))|
p|H|

<
1
p
.

Proof. For x ∈ L(H,Aut(K)) we have xg /∈ orbK(x). Therefore, by Theorem 3.2,

Prg(H,Aut(K)) = 1
|H|

∑
x∈H\L(H,Aut(K))

xg∈orbK(x)

1
| orbK(x)|

. (3.1)

If x ∈ H \ L(H,Aut(K)) and xg ∈ orbK(x) then | orbK(x)| > 1. Also | orbK(x)| divides
| Aut(K)| and so | orbK(x)| ≥ p. Hence, the result follows from (3.1). �
Proposition 3.8. Let H1, H2 and K be subgroups of a finite group G such that H1 ⊆
H2 ⊆ K. Then

Prg(H1,Aut(K)) ≤ |H2 : H1|Prg(H2,Aut(K)).
The equality holds if and only if xg /∈ orbK(x) for all x ∈ H2 \H1.
Proof. By Theorem 3.2, we have

|H1|| Aut(K)|Prg(H1,Aut(K)) =
∑
x∈H1

xg∈orbK(x)

|CAut(K)(x)|

≤
∑
x∈H2

xg∈orbK(x)

|CAut(K)(x)|

= |H2|| Aut(K)|Prg(H2,Aut(K)).
Hence, the result follows. �
Proposition 3.9. Let H and K be two subgroups of a finite group G such that H ⊆ K.
If g ∈ K then

Prg(H,Aut(K)) ≤ |K : H| Pr(K,Aut(K))
with equality if and only if g = 1 and H = K.
Proof. By Proposition 3.5, we have

Prg(H,Aut(K)) ≤ Pr(H,Aut(K))

= 1
|H|| Aut(K)|

∑
x∈H

|CAut(K)(x)|

≤ 1
|H|| Aut(K)|

∑
x∈K

|CAut(K)(x)|.
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Hence, the result follows from Corollary 3.3. �
Theorem 3.10. Let H and K be two subgroups of a finite group G such that H ⊆ K and
p the smallest prime dividing | Aut(K)|. Then

Pr(H,Aut(K)) ≥ |L(H,Aut(K))|
|H|

+ p(|H| − |XH | − |L(H,Aut(K))|) + |XH |
|H|| Aut(K)|

and
Pr(H,Aut(K)) ≤ (p− 1)|L(H,Aut(K))| + |H|

p|H|
− |XH |(| Aut(K)| − p)

p|H|| Aut(K)|
,

where XH = {x ∈ H : CAut(K)(x) = {I}}.

Proof. Since XH ∩ L(H,Aut(K)) = ∅ we have∑
x∈H

|CAut(K)(x)| = |XH | + | Aut(K)||L(H,Aut(K))|

+
∑

x∈H\(XH∪L(H,Aut(K)))
|CAut(K)(x)|.

Also {I} 6= CAut(K)(x) 6= Aut(K) and so p ≤ |CAut(K)(x)| ≤ | Aut(K)|
p for x ∈ H \ (XH ∪

L(H,Aut(K))). Therefore∑
x∈H

|CAut(K)(x)| ≥|XH | + | Aut(K)||L(H,Aut(K))|

+ p(|H| − |XH | − |L(H,Aut(K))|) (3.2)
and

∑
x∈H

|CAut(K)(x)| ≤|XH | + | Aut(K)||L(H,Aut(K))|

+ | Aut(K)|(|H| − |XH | − |L(H,Aut(K))|)
p

. (3.3)

Hence, the result follows from Corollary 3.3, (3.2) and (3.3). �
Following two theorems give characterizations of H in terms of Pr(H,Aut(K)).

Theorem 3.11. Let H ⊆ K be two subgroups of a finite group G.
(a) If p and q are the smallest primes dividing | Aut(K)| and |H| respectively then

Pr(H,Aut(K)) ≤ p+q−1
pq . In particular, if p = q then Pr(H,Aut(K)) ≤ 2p−1

p2 ≤ 3
4 .

(b) If Pr(H,Aut(K)) = p+q−1
pq , for some primes p and q, then pq divides |H||Aut(K)|.

Further, if p and q are the smallest primes dividing |Aut(K)| and |H| respectively,
then H

L(H,Aut(K))
∼= Zq. In particular, if H and Aut(K) are of even order and

Pr(H,Aut(K)) = 3
4 then H

L(H,Aut(K))
∼= Z2.

Proof. (a) Since H 6= L(H,Aut(K)) we have |H : L(H,Aut(K))| ≥ q. Therefore, by
Theorem 3.10, we have

Pr(H,Aut(K)) ≤ 1
p

(
p− 1

|H : L(H,Aut(K))|
+ 1

)
≤ p+ q − 1

pq
.

(b) Using (1.1), we have (p+q−1)|H|| Aut(K)| = pq|{(x, α) ∈ H×Aut(K) : [x, α] = 1}|.
Since pq does not divide (p+ q − 1), pq divides |H|| Aut(K)|.

If p and q are the smallest primes dividing | Aut(K)| and |H| respectively then, by
Theorem 3.10, we have

p+ q − 1
pq

≤ 1
p

(
p− 1

|H : L(H,Aut(K))|
+ 1

)
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which gives |H : L(H,Aut(K))| ≤ q. Hence, H
L(H,Aut(K))

∼= Zq. �

Theorem 3.12. Let H ⊆ K be two subgroups of a finite group G.
(a) If p, q are the smallest primes dividing | Aut(K)| and |H| respectively and H is non-

abelian then Pr(H,Aut(K)) ≤ q2+p−1
pq2 . In particular, if p = q then Pr(H,Aut(K)) ≤

p2+p−1
p3 ≤ 5

8 .
(b) If H is non-abelian and Pr(H,Aut(K)) = q2+p−1

pq2 , for some primes p and q, then pq
divides |H|| Aut(K)|. Further, if p and q are the smallest primes dividing | Aut(K)|
and |H| respectively then H

L(H,Aut(K))
∼= Zq × Zq. In particular, if H and Aut(K)

are of even order and Pr(H,Aut(K)) = 5
8 then H

L(H,Aut(K))
∼= Z2 × Z2.

Proof. (a) Since H is non-abelian we have |H : L(H,Aut(K))| ≥ q2. Therefore, by
Theorem 3.10, we have

Pr(H,Aut(K)) ≤ 1
p

(
p− 1

|H : L(H,Aut(K))|
+ 1

)
≤ q2 + p− 1

pq2 .

(b) Using (1.1), we have (q2 + p− 1)|H|| Aut(K)| = pq2|{(x, α) ∈ H × Aut(K) : [x, α] =
1}|. Since pq does not divide (q2 + p− 1), pq divides |H|| Aut(K)|.

If p and q are the smallest primes dividing | Aut(K)| and |H| respectively then, by
Theorem 3.10, we have

q2 + p− 1
pq2 ≤ 1

p

(
p− 1

|H : L(H,Aut(K))|
+ 1

)
which gives |H : L(H,Aut(K))| ≤ q2. Since H is non-abelian we have |H : L(H,Aut(K))|
6= 1, q. Hence, H

L(H,Aut(K))
∼= Zq × Zq. �

Proposition 3.13. Let H and K be two subgroups of a finite group G such that H ⊆
K. Let p, q be the smallest prime divisors of | Aut(K)|, |H| respectively and | Aut(K) :
CAut(K)(x)| = p for all x ∈ H \ L(H,Aut(K)). Then

Pr(H,Aut(K)) =


p+q−1
pq if H

L(H,Aut(K))
∼= Zq

q2+p−1
pq2 if H

L(H,Aut(K))
∼= Zq × Zq.

Proof. For all x ∈ H \ L(H,Aut(K)) we have | Aut(K) : CAut(K)(x)| = p and so
|CAut(K)(x)| = | Aut(K)|

p . Therefore, by Corollary 3.3, we have

Pr(H,Aut(K)) = |L(H,Aut(K))|
|H|

+ 1
|H|| Aut(K)|

∑
x∈H\L(H,Aut(K))

|CAut(K)(x)|

= |L(H,Aut(K))|
|H|

+ |H| − |L(H,Aut(K))|
p|H|

= 1
p

(
p− 1

|H : L(H,Aut(K))|
+ 1

)
.

Hence, the result follows. �
Note that Proposition 3.13 gives partial converses of Theorems 3.11(b) and 3.12(b). We

conclude this paper with the following two lower bounds analogous to the lower bounds
obtained in [11, Theorem A] and [10, Theorem 1].

Theorem 3.14. Let H and K be two subgroups of a finite group G such that H ⊆ K.
Then

Pr(H,Aut(K)) ≥ 1
|S(H,Aut(K))|

(
1 + |S(H,Aut(K))| − 1

|H : L(H,Aut(K))|

)
.
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The equality holds if and only if orbK(x) = xS(H,Aut(K)) for all x ∈ H \L(H,Aut(K)).

Proof. We have µ(x) = x[x, µ] ∈ xS(H,Aut(K)) for all x ∈ H \ L(H,Aut(K)) and
µ ∈ Aut(K). Therefore, for all x ∈ H \L(H,Aut(K)) we have orbK(x) ⊆ xS(H,Aut(K))
and so | orbK(x)| ≤ |S(H,Aut(K))|. Using Corollary 3.3, we have

Pr(H,Aut(K)) = 1
|H|

 ∑
x∈L(H,Aut(K))

1
| orbK(x)|

+
∑

x∈H\L(H,Aut(K))

1
| orbK(x)|


≥ |L(H,Aut(K))|

|H|
+ 1

|H|
∑

x∈H\L(H,Aut(K))

1
|S(H,Aut(K))|

.

Hence, the result follows. �
Corollary 3.15. Let H and K be two subgroups of a finite group G such that H ⊆ K.
Then

Pr(H,Aut(K)) ≥ 1
|[H,Aut(K)]|

(
1 + |[H,Aut(K)]| − 1

|H : L(H,Aut(K))|

)
.

If H 6= L(H,Aut(K)) then the equality holds if and only if [H,Aut(K)] = S(H,Aut(K))
and orbK(x) = x[H,Aut(K)] for all x ∈ H \ L(H,Aut(K)).

Proof. It is easy to see that
1
n

(
1 + n− 1

|H : L(H,Aut(K))|

)
≥ 1
m

(
1 + m− 1

|H : L(H,Aut(K))|

)
(3.4)

for any two integers m ≥ n. If L(H,Aut(K)) 6= H then equality holds in (3.4) if and
only if m = n. Now, the result follows from Theorem 3.14 and (3.4) since |[H,Aut(K)]| ≥
|S(H, Aut(K))|.

Note that the equality holds if and only if equality holds in Theorem 3.14 and (3.4). �
It is worth mentioning that Theorem 3.14 gives better lower bound than the lower

bound given by Corollary 3.15. Also
1

|[H,Aut(K)]|

(
1 + |[H,Aut(K)]| − 1

|H : L(H,Aut(K))|

)
≥|L(H,Aut(K))|

|H|

+ p(|H| − |L(H,Aut(K))|)
|H|| Aut(K)|

.

Hence, Theorem 3.14 gives better lower bound than the lower bound given by Theorem
3.10.

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.

References
[1] H. Arora and R. Karan, What is the probability an automorphism fixes a group ele-

ment?, Comm. Algebra, 45(3), 1141–1150, 2017.
[2] A.K. Das and R.K. Nath, On generalized relative commutativity degree of a finite

group, Int. Electron. J. Algebra, 7, 140–151, 2010.
[3] P. Dutta and R.K. Nath, Autocommuting probabilty of a finite group, Comm. Algebra,

46 (3), 961–969, 2018.
[4] P. Dutta and R.K. Nath, On generalized autocommutativity degree of finite groups,

Hacet. J. Math. Stat. 48 (2), 472–478, 2019.
[5] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182, 130–

141, 1940.
[6] P.V. Hegarty, The absolute centre of a group, J. Algebra, 169 (3), 929–935, 1994.



398 P. Dutta, R.K. Nath

[7] C.J. Hillar and D.L. Rhea, Automorphism of finite abelian groups, Amer. Math.
Monthly, 114 (10), 917–923, 2007.

[8] M.R.R. Moghaddam, M.J. Sadeghifard and M. Eshrati, Some properties of autoiso-
clinism of groups, Fifth International group theory conference, Islamic Azad Univer-
sity, Mashhad, Iran, 13-15 March 2013.

[9] M.R.R. Moghaddam, F. Saeedi and E. Khamseh, The probability of an automorphism
fixing a subgroup element of a finite group, Asian-Eur. J. Math. 4 (2), 301–308, 2011.

[10] R.K. Nath and A.K. Das, On a lower bound of commutativity degree, Rend. Circ.
Mat. Palermo, 59 (1), 137–142, 2010.

[11] R.K. Nath and M.K. Yadav, Some results on relative commutativity degree, Rend.
Circ. Mat. Palermo, 64 (2), 229–239, 2015.

[12] M.R. Rismanchian and Z. Sepehrizadeh, Autoisoclinism classes and autocommutativ-
ity degrees of finite groups, Hacet. J. Math. Stat. 44 (4), 893–899, 2015.

[13] G.J. Sherman, What is the probability an automorphism fixes a group element?, Amer.
Math. Monthly, 82, 261–264, 1975.


