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Abstract 

In this work, the Faber polynomial expansions and a different method were employed to 

estimate the |𝑎𝑛| coefficients of a subclass of bi-close-to-convex functions, which is introduced 

by subordination concept in the open unit disk. Further, we generalize some of the previous 

outcomes.  
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1. INTRODUCTION 

 

Suppose  be a class of analytic functions in the open unit disk { :| | 1}z C z   , as 
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All univalent functions in the subclass of  are denoted by . For , 0 1   , the important subclasses 

of starlike, convex and close-to-convex functions are expressed by (see for details [1,2]), 
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respectively, and by Alexander’s Theorem we know, (0)  if and only if 
*

(0)z    . Hence, we 

can rewrite ( ) as follows: 
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Considering the Koebe one-quarter theorem [1], the image of  under f  includes a disk of radius

1 / 4 . Obviously, the inverse 
1

f


 of f   is expressed by 

 

1 1

0 0

1
( ( ))   ( ) and ( ( ))    | | ( ); ( ) ,

4
f f z z z f f w w w r f r f

 

    
 
 
 

 

 

where 
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If both f  and 
1

f


 are univalent in , then function f   is said to be bi-univalent in  and the 

class was denoted by . 

 

A major problem in geometric function theory is calculation of the bounds for the coefficients 
n

a  as they 

give information about the geometric properties of these functions. For example, the bound for the 
2

a  of 

functions f   gives the distortion and growth bounds followed by covering theorems, see, for example, 

[3-8]. The coefficient estimate issue i.e. bound of | | ( {1,2})
n

a n N  for each f  is still an open 

problem. 

 

Faber [9] introduced the Faber polynomials, which is an important factor in diverse fields of mathematical 

sciences, especially in geometric function theory. Several authors worked on utilizing the Faber polynomial 

expansions to estimate coefficient for bi-univalent functions, [10-14]. By employing the Faber polynomial 

expansion of functions f   given in (1), the coefficients of its inverse function 
1

g f


  is written as 

(see, for details, [15,16]): 
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so that (7 )
j

V j n is a homogeneous polynomial in the quantities 
2 3
, , ,

n
a a a and expressions such 

as (for instance) (-n)! are to be introduced by  symbols  as follows: 
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Particularly, the first three expirations of 
1

n

n
K




 are rendered by 
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In general, for any  0, 1, 2,p Z    , an expansion of 
p

n
K is rendered below ([15,17,18]; see also 

[16, p. 349]) 
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where (see, for details, [18]) 
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where the all nonnegative integers of 
1
, ,

n
  are summed, meeting the following conditions: 
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Note that 
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The purpose of our study is using the Faber polynomial expansions to obtain estimates of coefficients | |
n

a

for bi-close-to-convex functions, which is stated by subordinations in  . Further, we generalize some of 

the previous outcomes. 

 

2. PRELIMINARIES 

 

First, some definitions and lemmas are mentioned in this paper.  

 

Definition 2.1. [1] Let ℎ and 𝐻 be analytic in . We state that ℎ is subordinate to 𝐻, written as 

    ,h z H z  provided there exists an analytic function ,  described on  with the conditions 

 0 0 
 

and   1z  , satisfying  In particular, if 𝐻 is univalent then 

   h z H z  is equivalent to ( ) ( )h H
 
and (0) (0)h H . 

 

Different categories of starlike and convex functions were introduced by Ma and Minda [19], where each 

factor zf'(z)/f (z) or 1+zf''(z)/f(z)  is subordinated to the total function. To this aim, they determined an 

analytic function with the characteristics of a positive real part of , (0) 1, (0) 0    , and maps  

onto a region starlike respecting 1  and symmetric respecting the real axis. So, we let ( )z is analytic 

function with the characteristics of a positive real part in  and ( )  symmetric respecting the real axis, 

such that 
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Recently, Sivasubramanian et al. [20] introduced two subclasses [ ]


 and ( )


and only obtained 

estimates on the coefficients 
2

| |a  and 
3

| |a for functions in these subclasses.  

 

Definition 2.2. [20] Let (R)


 interpret the class of functions of the form (1), defined on | | Rz  , for 

which the inverse function has an analytic continuation to | | Rz  where 
1

f


 is given by (2). We call the 

functions in (R)


bi-analytic in | | Rz  . We abbreviate (1)
 

 and we note that 

 is a proper 

subclass of . 

 

Definition 2.3. [20] Let 0 1  . We say that f


  presented by (1) is strongly bi-close-to-convex of 

order   if there exist bi-convex functions , (0)    so that 
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and g  is the analytic continuation presented by (2). The category of strongly bi-close-to-convex functions 

of order   denoted by [ ]


. 

 

Definition 2.4. [20] Let 0 1  . A function f


 given by (1) be so that ( ) 0f z  on . Then we 

say f is bi-close-to convex of order   if there exist bi-convex functions , (0)   such that 
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order   denoted by ( )


. 

 

Lemma 2.5. [1] Let u(z) is analytic in  satisfying u(0)=0,  |u(z)| < 1,  and assume that 
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Lemma 2.6. [12] Let 
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3. MAIN RESULTS 

 

First, the subclass ( )


 is introduced and investigated then coefficients | |
n

a  are estimated for functions 

in this category. 

 

Definition 3.1. We say that f   presented by (1) is in the class ( )
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if the following condition is 

considered: 

 

( )
( ) ( ),

( )

f z
z z

z








                                                                                                                  (4) 

 

and 

 

( )
( ) ( ),

( )

g w
w w

w








                                                                                                               (5) 

 

where 
2 2

( ) , ( )
n n

n n

n n

z z c z w w d w 
 

 

     belong to (0) and g  is presented by (2). 

 

Remark 3.2. Since every starlike function is a close-to-convex function, so for the class ( )
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There are several elections of ,   and  , which supply interesting subclasses of ( )

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Remark 3.5. For ( ) , ( )z z w w   and 
1
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to a class 



which defined by Srivastava et al. [7, Definition 1]. 

 

Remark 3.6. For ( ) , ( )z z w w  
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Remark 3.7. For ( ) , ( )z z w w   , the class ( )


reduce to a class ( )


which defined by Ali et 

al. [3, page 345]. 

 

Theorem 3.8. Suppose ( )f 


 be given by (1). If 0
k n n

a c d   for 2 1k n   , then 
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Proof. Let function ( )f 
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and 
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By considering the corresponding coefficients of (10), we get 
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Similarly, by considering the corresponding coefficients of (11), we find that 
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Now, from 0
k n n

a c d   for 2 1k n   , we have 
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
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.
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Now solving the absolute values of either of two relations mentioned above and using 
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n n

p q
 
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and | | 1,| | 1
n n
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This concludes the bound as presented in equation (7) and this completes the proof. 

 

Corollary 3.9. Suppose 
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1
1 2 2

1
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 
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 where 0 1  be given by (1). 

If 0
k n n

a c d   for 2 1k n   , then 

 

2
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Corollary 3.10. ([11, Theorem 2.1]) For 0 1  , Suppose the function 

2
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1 2(1 ) 2(1 )
1
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z

f z z
z


 



 
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a c d   for

2 1k n   , then 
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2(1 )
| | 1 3.
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
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Corollary 3.11. ([12, Theorem 2.1]) Suppose 
*

1
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1
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Az
f A B z

Bz



    


where 
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k

for 2 1k n   , then 
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1
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Proof. By proof of Theorem 3.8 and from (14) and (15), we will have 
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,

n n n
na B p a


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 
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Now solving the absolute values of two relations mentioned above, using 
1

B =A-Bwe obtain result and 

this completes the proof. 

 

Theorem 3.12. Suppose f   presented by (1) be in the subclass 
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2 1
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and 

 

3 1
| | 1 .a B                                                                                                                                              (17) 

 

Proof. With respect to the equations (12) and (13) for n = 2 and n = 3, we have respectively, 

 

2 2 1 1
2 2a c B p    (18) 

2

3 3 1 2 1 1 2 1 1
3 3 2a c B c p B p B p     (19) 

2 2 1 1
2 2a c B q     (20) 

2 2 2

2 3 2 3 1 2 1 1 2 1 1
6 3 3(2 ) 2 .a a c c B c q B q B q        (21) 

 

Also from adding (19) and (21), we have 

 

 2 2 2 2

2 2 1 2 1 1 1 2 1 2 1
6 6 2 ( ) ( ) ( ) .a c B c p q B p p q q         

 

Therefore, by taking absolute values for the above equation, we have 

 

 2 2 2 2

2 2 1 2 1 1 1 2 1 2 1
6 | | 6 | | 2 | | (| | | |) | | | | .a c B c p q B p p q q         
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Since 0 1  , then by using Lemma 2.6, we get 

 

 2 2 2 2

2 2 1 2 1 1 1 1 1

1 1

6

.

| | 6 | | 4 | | (| | | |) 1 ( 1) | | 1 ( 1) | |

6 4 2

a c B c p q B p q

B B

         

  
 

 

So we get the desired estimate on 
2

|a |  in equation (16). 

 

Finally, from equation (19) and using Lemma 2.6, we get that 

 

 2

3 3 1 2 1 1 1 1 1
3 | | 3 | | 2 | || | 1 ( 1) | | 3 2 .a c B c p B p B B         

 

Therefore, we obtain inequality equation (17) and this completes the proof. 

 

Remark 3.13. Taking 
1

( )
1

z
z

z









 
 
 

where 0 1  in Theorem 3.12 we have the next corollary 

which is the results presented by Sivasubramanian et al. in [20, Theorem 2.1]. 

 

Corollary 3.14. Suppose f   presented by (1) be in the class 
1

,
1

z

z









 


 


 





 where 0 1  . Then 

 

2
| | 1 2a                                                                                                                             

 

and 

 

3
| | 1 2 .a           

                                                                                                                                 

Remark 3.15. By taking  
1 (1 2 )

( )
1

z
z

z




 



 where 0 1   in Theorem 3.12 we conclude the next 

corollary which is the results presented by Sivasubramanian et al. in [20, Theorem 3.1]. 

 

Corollary 3.16. Suppose f   presented by (1) be in the class 
1 (1 2 )

,
1

z

z




 



 
 
 

 where 0 1 

. Then 

 

2
| | 1 2(1 )a                                                                                                                              

 

and 

 

3
| | 1 2(1 ).a         
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