Available online: May 30, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 1974–1982 (2019) DOI: 10.31801/cfsuasmas.000000 ISSN 1303–5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

$\omega\text{-}\mathbf{CONTINUITY}$ ON GENERALIZED NEIGHBOURHOOD SYSTEMS

ESRA DALAN YILDIRIM

ABSTRACT. We introduce ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous functions on generalized topological spaces and study their relations with other classes of generalized continuous functions given in [1, 8]. Then, we define the notion of omega open set on generalized neighbourhood systems as ω - φ -open set. By using these sets, we generate generalized topology. Also, we introduce two kinds of continuity on generalized neighbourhood systems and investigate relationships between these two kinds, (φ, φ') -continuity and weakly- (φ, φ') -continuity.

1. INTRODUCTION

Császár introduced generalized topology and generalized neighbourhood systems, then he defined two kinds of continuity on them in [3]He gave some characterizations of (φ, φ') -continuous functions in [3, 4]. Min [8] introduced weak- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuity and weak- (φ, φ') -continuity, and he investigated relationships between such functions. Hdeib [6] gave the definition of ω -closed set as containing all its condensation points. Afterwards, he introduced the notion of ω -continuous functions in [7]. Besides, Al-Zoubi [2] defined ω -weakly continuous functions and showed that every ω -continuous function is ω -weakly continuous. He then studied their basic properties. Al Ghour [1] extended the concept of omega open set in ordinary topological space to generalized topological space and introduced ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuity as using omega open sets in generalized topology.

In this paper, we introduce ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous functions using ω - \mathfrak{g} open sets, then obtain their relations with ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous functions and
weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous functions. Also, we define ω - φ -closed and ω - φ -open sets
on generalized neighbourhood systems, and get some characterizations of these
sets. Then, we give the definitions of two new operators; namely, $i_{\varphi_{\omega}}$ and $\gamma_{\varphi_{\omega}}$.

2010 Mathematics Subject Classification. Primary 54A05, 54C08; Secondary 54C05.

©2019 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: May 21, 2018; Accepted: April 30, 2019.

Key words and phrases. ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuity, ω - (φ, φ') -continuity and ω -weakly- (φ, φ') -continuity.

and study their basic properties. Besides, we produce generalized topology via ω - φ -open sets. Afterwards, we introduce ω -(φ, φ')-continuous and ω -weakly-(φ, φ')continuous functions on generalized neighbourhood systems and investigate relationships between these functions, (φ, φ') -continuous functions and weakly- (φ, φ') continuous functions.

2. Preliminaries

Definition 1. [3] Let X be a nonempty set and $\wp(X)$ be the power set of X. Then $\mathfrak{g} \subseteq \wp(X)$ is called a generalized topology (briefly GT) on X iff $\emptyset \in \mathfrak{g}$ and $H_i \in \mathfrak{g}$ for $i \in I \neq \emptyset$ implies $H = \bigcup H_i \in \mathfrak{g}$. The pair (X, \mathfrak{g}) is called a generalized topological space (briefly GTS). The elements of \mathfrak{g} are called \mathfrak{g} -open sets and the complements of g-open sets are called g-closed sets. If g is a GT on X and $S \subseteq X$, the interior of S (denoted by $i_{\mathfrak{g}}(S)$) is the union of all $H \subseteq S, H \in \mathfrak{g}$ and the closure of S (denoted by $c_{\mathfrak{q}}(S)$) is the intersection of all \mathfrak{g} -closed sets containing S.

Definition 2. [3] Let $\varphi : X \to \varphi(\varphi(X))$ satisfy $a \in V$ for $V \in \varphi(a)$. Then $V \in \varphi(a)$ is called a generalized neighbourhood (briefly GN) of $a \in X$ and φ is called a generalized neighbourhood system (briefly GNS) on X. The collection of all GNSs on X is denoted by $\Phi(X)$.

If φ is a GNS on X and $S \subseteq X$:

$$i_{\varphi}(S) = \{a \in S : \text{ there exists } V \in \varphi(a) \text{ such that } V \subseteq S\}$$

and

$$\gamma_{\varphi}(S) = \{ a \in X : V \cap S \neq \emptyset \text{ for all } V \in \varphi(a) \}.$$

Lemma 3. [3] Let φ be a GNS on X and $H \in \mathfrak{g}_{\varphi}$ iff $H \subseteq X$ satisfies: if $a \in H$ then there is $V \in \varphi(a)$ such that $V \subseteq H$. Then \mathfrak{g}_{φ} is a GT. For $\varphi \in \Phi(X)$, $i_{\varphi} = i_{\mathfrak{g}_{\varphi}}$ and $c_{\varphi} = c_{\mathfrak{g}_{\varphi}}$.

Lemma 4. [3] Let $\varphi \in \Phi(X)$ and $S \subseteq X$. Then,

- $\begin{array}{ll} (1) \ \imath_{\varphi}, \gamma_{\varphi} \in \Gamma(X) \ and \ \gamma_{\varphi}(S) = X \imath_{\varphi}(X S). \\ (2) \ i_{\mathfrak{g}_{\varphi}}(S) \subseteq \imath_{\varphi}(S) \ and \ \gamma_{\varphi}(S) \subseteq c_{\mathfrak{g}_{\varphi}}(S). \end{array}$

Theorem 5. [3] Let (X, \mathfrak{g}) be a GTS and $S \subseteq X$. Then

- (1) $c_{\mathfrak{g}}(S) = X i_{\mathfrak{g}}(X S).$ (2) $i_{\mathfrak{g}}(S) = X c_{\mathfrak{g}}(X S).$

Definition 6. [5] Let (X, τ) be a topological space and $S \subseteq X$. A point $a \in X$ is called a condensation point of S if for each $H \in \tau$ with $a \in H$ the set $H \cap S$ is uncountable.

Definition 7. [6] Let (X, τ) be a topological space and $S \subseteq X$. S is called ω -closed if it contains all its condensation points. The complement of an ω -closed set is called ω -open.

Definition 8. [1] Let (X, \mathfrak{g}) be GTS and S be a subset of X. A point $a \in X$ is a condensation point of S if for each $H \in \mathfrak{g}$ with $a \in H$, the set $H \cap S$ is uncountable. The set of all condensation points of S is denoted by $\operatorname{cond}(S)$. S is ω - \mathfrak{g} -closed if $\operatorname{cond}(S) \subseteq S$. The complement of an ω - \mathfrak{g} -closed set is called ω - \mathfrak{g} -open. The family of all ω - \mathfrak{g} -open sets of (X, \mathfrak{g}) is denoted by \mathfrak{g}_{ω} .

Theorem 9. [1] A subset S of a GTS (X, \mathfrak{g}) is ω - \mathfrak{g} -open iff for every $a \in S$, there exists a $H \in \mathfrak{g}$ such that $a \in H$ and H - S is countable.

Theorem 10. [1] For any GTS (X, \mathfrak{g}) , \mathfrak{g}_{ω} is a GT on X finer than \mathfrak{g} .

Definition 11. A function $f: (X, \tau_1) \to (Y, \tau_2)$ is said to be

- (1) ω -continuous [7] if $f^{-1}(H)$ is ω -open in (X, τ_1) for each $H \in \tau_2$.
- (2) ω -weakly continuous [2] if for each $a \in X$ and for each $H \in \tau_2$ containing f(a), there exists an ω -open subset G of X containing a such that $f(G) \subseteq c_{\tau_2}(H)$.

Definition 12. [3] A function $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is called $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous if for every \mathfrak{g}_2 -open set H in Y, $f^{-1}(H)$ is \mathfrak{g}_1 -open in X.

Theorem 13. [8] Let $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ be a function. Then the following conditions are equivalent:

- (1) f is $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous,
- (2) For every \mathfrak{g}_2 -closed set K in Y, $f^{-1}(K)$ is \mathfrak{g}_1 -closed in X,
- (3) For each $a \in X$ and each \mathfrak{g}_2 -open set H containing f(a), there exists a \mathfrak{g}_1 -open set G containing a such that $f(G) \subseteq H$.

Definition 14. A function $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is called weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous [8] (respectively, ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous [1]) if for each $a \in X$ and for every \mathfrak{g}_2 open set H containing f(a), there is an \mathfrak{g}_1 -open set (respectively, ω - \mathfrak{g}_1 -open set) Gcontaining a such that $f(G) \subseteq c_{\mathfrak{g}_2}(H)$ (respectively, $f(G) \subseteq H$).

Proposition 15. [8] If $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous at $a \in X$, then f is weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous at a.

Theorem 16. [1] Let $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ be a function. Then the following conditions are equivalent:

- (1) f is ω -($\mathfrak{g}_1, \mathfrak{g}_2$)-continuous,
- (2) For each \mathfrak{g}_2 -open set $H \subseteq Y$, $f^{-1}(H)$ is ω - \mathfrak{g}_1 -open in X,
- (3) For each \mathfrak{g}_2 -closed set $K \subseteq Y$, $f^{-1}(K)$ is ω - \mathfrak{g}_1 -closed in X.

Proposition 17. [1] If $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous at $a \in X$, then f is ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous at a.

Definition 18. Let φ and φ' be two GNSs on X and Y, respectively. Then a function $f: (X, \varphi) \to (Y, \varphi')$ is said to be (φ, φ') -continuous [3] (respectively, weakly- (φ, φ') -continuous [8]) if for $a \in X$ and $V \in \varphi'(f(a))$, there exists $U \in \varphi(a)$ such that $f(U) \subseteq V$ (respectively, $f(U) \subseteq \gamma_{\varphi'}(V)$).

Proposition 19. [8] Every (φ, φ') -continuous function is weakly- (φ, φ') -continuous.

3. ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous functions

Definition 20. The ω -interior (ω -closure) of a subset S of a space (X, \mathfrak{g}) is the interior (closure) of S in the space $(X, \mathfrak{g}_{\omega})$ and is denoted by $i_{\mathfrak{g}_{\omega}}(S)(c_{\mathfrak{g}_{\omega}}(S))$. $i_{\mathfrak{g}_{\omega}}(S)$ is the union of all $H \subseteq S$ for $H \in \mathfrak{g}_{\omega}$ and $c_{\mathfrak{g}_{\omega}}(S)$ is the intersection of all ω - \mathfrak{g} -closed sets containing S.

Remark 21. $i_{\mathfrak{g}_{\omega}}(S)$ is the largest $H \in \mathfrak{g}_{\omega}$ such that $H \subseteq S$ and $c_{\mathfrak{g}_{\omega}}(S)$ is the smallest ω - \mathfrak{g} -closed set containing S.

Lemma 22. Let (X, \mathfrak{g}) be GTS and $S_1 \subseteq S_2 \subseteq X$.

(1) $c_{\mathfrak{g}_{\omega}}(S_1) = X - i_{\mathfrak{g}_{\omega}}(X - S_1) \text{ and } i_{\mathfrak{g}_{\omega}}(S_1) = X - c_{\mathfrak{g}_{\omega}}(X - S_1).$ (2) $i_{\mathfrak{g}_{\omega}}(S_1) \subseteq i_{\mathfrak{g}_{\omega}}(S_2) \text{ and } c_{\mathfrak{g}_{\omega}}(S_1) \subseteq c_{\mathfrak{g}_{\omega}}(S_2).$ (3) $i_{\mathfrak{g}}(S_1) \subseteq i_{\mathfrak{g}_{\omega}}(S_1) \subseteq S_1 \subseteq c_{\mathfrak{g}_{\omega}}(S_1) \subseteq c_{\mathfrak{g}}(S_1).$

Proof.

- (1-2) It is clear from the definitions of $i_{\mathfrak{g}_{\omega}}$ and $c_{\mathfrak{g}_{\omega}}$.
 - (3) They are also obvious since $\mathfrak{g} \subseteq \mathfrak{g}_{\omega}$.

Proposition 23. Let (X, \mathfrak{g}) be a GTS and $S \subseteq X$.

- (1) S is ω -g-open in X if and only if $i_{\mathfrak{g}_{\omega}}(S) = S$.
- (2) S is ω -g-closed in X if and only if $c_{\mathfrak{g}_{\omega}}(S) = S$.

Proof. The proofs are obvious from Remark 21.

Remark 24. In general, $i_{\mathfrak{g}}(S) \neq i_{\mathfrak{g}_{\omega}}(S)$ and $c_{\mathfrak{g}}(S) \neq c_{\mathfrak{g}_{\omega}}(S)$ for $S \subseteq X$.

Example 25. Let $X = \mathbb{R}$ with $GT \mathfrak{g} = \{\emptyset, (\mathbb{R} - \mathbb{Q})^- \cup \{0\}, (\mathbb{R} - \mathbb{Q})^+ \cup \{0\}, (\mathbb{R} - \mathbb{Q}) \cup \{0\}\}$. Then $i_{\mathfrak{g}_{\omega}}(S_1) = \mathbb{R} - \mathbb{Q}$ and $i_{\mathfrak{g}}(S_1) = \emptyset$ for $S_1 = \mathbb{R} - \mathbb{Q}$ and $c_{\mathfrak{g}_{\omega}}(S_2) = \mathbb{Q}$ and $c_{\mathfrak{g}}(S_2) = \mathbb{R}$ for $S_2 = \mathbb{Q}$.

Definition 26. Let (X, \mathfrak{g}_1) and (Y, \mathfrak{g}_2) be two GTSs. Then, a function $f : (X, \mathfrak{g}_1) \rightarrow (Y, \mathfrak{g}_2)$ is called ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous if for each $a \in X$ and for each \mathfrak{g}_2 open set H containing f(a), there exists an ω - \mathfrak{g}_1 -open set G containing a such that $f(G) \subseteq c_{\mathfrak{g}_2}(H)$.

Proposition 27. If $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous, then it is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

Proof. Let H be a \mathfrak{g}_2 -open set containing f(a) for $a \in X$. Since f is ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ continuous, $f^{-1}(H)$ is ω - \mathfrak{g}_1 -open set containing a. Therefore, there exists a ω - \mathfrak{g}_1 -open set $f^{-1}(H)$ such that $f(f^{-1}(H)) \subseteq H \subseteq c_{\mathfrak{g}_2}(H)$. Hence, f is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

We can give an example to show that the converse implication of Proposition 27 may not be true.

Example 28. Let $X = Y = \mathbb{R}$, $\mathfrak{g}_1 = \{\emptyset, \mathbb{R}, \mathbb{R} - \{0\}\}$ and $\mathfrak{g}_2 = \{\emptyset, \mathbb{Q}, \mathbb{Q} - \{0\}\}$. Let $f : (\mathbb{R}, \mathfrak{g}_1) \to (\mathbb{R}, \mathfrak{g}_2)$ be the function defined by

$$f(a) = \begin{cases} 0 & \text{if } a \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{if } a \in \mathbb{Q} \end{cases}$$

Then, f is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous but it is not ω - $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

Proposition 29. If $f : (X, \mathfrak{g}_1) \to (Y, \mathfrak{g}_2)$ is weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous, then it is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

Proof. Let H be a \mathfrak{g}_2 -open set containing f(a) for $a \in X$. Since f is weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ continuous, there exists a \mathfrak{g}_1 -open set G containing a such that $f(G) \subseteq c_{\mathfrak{g}_2}(H)$.
Since $\mathfrak{g}_1 \subseteq \mathfrak{g}_{1\omega}$, G is also ω - \mathfrak{g}_1 -open set containing a such that $f(G) \subseteq c_{\mathfrak{g}_2}(H)$.
Hence, f is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

We give the following example to show that the converse of Proposition 29 is not true.

Example 30. Let $X = \{1, 2, 3, 4\}, \mathfrak{g}_1 = \{\emptyset, \{1\}, \{1, 3\}, \{2, 4\}, \{1, 2, 4\}, X\}$ and $\mathfrak{g}_2 = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{1, 3, 4\}, \{2, 3, 4\}, X\}$. Let $f : (X, \mathfrak{g}_1) \rightarrow (Y, \mathfrak{g}_2)$ be the function defined by f(1) = f(2) = f(3) = 1 and f(4) = 2. Then, f is ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous but it is not weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous.

Briefly, we get the following diagram from Proposition 15 and 17 and Proposition 27 and 29.

$(\mathfrak{g}_1,\mathfrak{g}_2)$ -continuous	\Rightarrow	ω -($\mathfrak{g}_1, \mathfrak{g}_2$)-continuous
\Downarrow		\Downarrow
weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous	\Rightarrow	ω -weakly- $(\mathfrak{g}_1, \mathfrak{g}_2)$ -continuous

4. ω - (φ, φ') -continuous and ω -weakly- (φ, φ') -continuous functions

Definition 31. Let φ be a GNS on X and $S \subseteq X$. A point $a \in X$ is called a condensation point of S on φ if for each $V \in \varphi(a)$ such that $V \cap S$ is uncountable.

Definition 32. Let φ be a GNS on X and $S \subseteq X$. S is called $\omega \cdot \varphi$ -closed if it contains all its condensation points on φ . The complement of an $\omega \cdot \varphi$ -closed set is called $\omega \cdot \varphi$ -open.

Theorem 33. Let φ be a GNS on X and $S \subseteq X$. S is ω - φ -open if and only if for each $a \in S$, there exists a $V \in \varphi(a)$ such that V - S countable.

Proof.

(Necessity) Let S be ω - φ -open. Then, X-S is ω - φ -closed, that is, X-S contains all its condensation points on φ . Thus, for each $a \in S$, a is not a condensation point on φ of X-S. Therefore, there exists a $V \in \varphi(a)$ such that $V \cap (X-S)$ is countable. Hence, there exists a $V \in \varphi(a)$ such that V - S is countable.

(Sufficiency) The proof can be done similarly.

Definition 34. Let φ be a GNS on X and $S \subseteq X$.

 $\iota_{\varphi_{\omega}}(S) = \{a \in S : \text{ there exists } \omega \cdot \varphi \cdot open \text{ set } V \text{ containing } a \text{ such that } V \subseteq S\}$ and

 $\gamma_{\varphi_{\omega}}(S) = \{ a \in X : \text{for all } \omega \text{-}\varphi \text{-}\text{open set } V \text{ containing } a \text{ such that } V \cap S \neq \emptyset \}.$

Lemma 35. Let φ be a GNS on X and $S \subseteq X$.

- (1) If S is ω - \mathfrak{g}_{φ} -open, then it is ω - φ -open.
- (2) If $a \in S \in \varphi(a)$, then it is ω - φ -open.

Proof.

- (1) Let $a \in S$ and S be ω - \mathfrak{g}_{φ} -open. Then, there exists a $G \in \mathfrak{g}_{\varphi}$ such that $a \in G$ and G - S is countable. Then, there is $V \in \varphi(a)$ such that $V \subseteq G$. Since G - S is countable, V - S is also countable. Hence, for $a \in S$, there exists a $V \in \varphi(a)$ such that V - S is countable. Thus, S is $\omega - \varphi$ -open.
- (2) Let $a \in S \in \varphi(a)$. There exists a $V = S \in \varphi(a)$ such that $V S = \emptyset$ is countable. Thus, S is ω - φ -open.

The following example is given to show that the converse implications of Lemma 35 do not hold.

Example 36. Let $X = \mathbb{R}$ and

$$\varphi(a) = \begin{cases} \{\mathbb{Q}\} & \text{if } a \in \mathbb{Z} \\ \{\mathbb{R}\} & \text{if } a \in \mathbb{R} - \mathbb{Z} \end{cases}$$

Then, $S = \mathbb{Z}$ is ω - φ -open but it is not ω - \mathfrak{g}_{φ} -open and $S \notin \varphi(a)$ for $a \in S$.

Lemma 37. Let $\varphi \in \Phi(X)$ and $S_1, S_2 \subseteq X$. Then,

- (1) $\gamma_{\varphi_{\omega}}(S_1) = X i_{\varphi_{\omega}}(X S_1) \text{ and } i_{\varphi_{\omega}}(S_1) = X \gamma_{\varphi_{\omega}}(X S_1).$ (2) If $S_1 \subseteq S_2$, then $i_{\varphi_{\omega}}(S_1) \subseteq i_{\varphi_{\omega}}(S_2)$ and $\gamma_{\varphi_{\omega}}(S_1) \subseteq \gamma_{\varphi_{\omega}}(S_2).$ (3) $i_{\varphi}(S_1) \subseteq i_{\varphi_{\omega}}(S_1) \subseteq S_1 \subseteq \gamma_{\varphi_{\omega}}(S_1) \subseteq \gamma_{\varphi}(S_1).$ (4) $i_{(\mathfrak{g}_{\varphi})_{\omega}}(S_1) \subseteq i_{\varphi_{\omega}}(S_1) \text{ and } \gamma_{\varphi_{\omega}}(S_1) \subseteq c_{(\mathfrak{g}_{\varphi})_{\omega}}(S_1).$

Proof. (1-2) The proofs are clear from the definitions of $i_{\varphi_{\omega}}$ and $\gamma_{\varphi_{\omega}}$.

ESRA DALAN YILDIRIM

- (3) The proofs are obvious from Lemma 35(2) and Lemma 37(1).
- (4) The proofs are obvious from Lemma 35(1), Lemma 37(1) and Lemma 22(1).

Lemma 38. Let φ be a GNS on X and $G \in \mathfrak{g}_{(\varphi_{\omega})}$ if and only if $G \subseteq X$ satisfies: if $a \in G$ then there is an ω - φ -open set V containing a such that $V \subseteq G$. Then, $\mathfrak{g}_{(\varphi_{\omega})}$ is a GT.

Proof. $\emptyset \in \mathfrak{g}_{(\varphi_{\omega})}$. Let $G_i \in \mathfrak{g}_{(\varphi_{\omega})}$ for each $i \in I \neq \emptyset$. Then, for $a \in \bigcup_{i \in I} G_i$, there exists $i \in I$ such that $a \in G_i$. Therefore, there is an ω - φ -open set V containing a such that $V \subseteq G_i$. Thus, we have $V \subseteq \bigcup G_i$. Hence, $\bigcup G_i \in \mathfrak{g}_{(\varphi_{\omega})}$.

Theorem 39. Let φ be a GNS on X and $S \subseteq X$. $S \in \mathfrak{g}_{(\varphi_{\omega})}$ if and only if $\iota_{\varphi_{\omega}}(S) = S$.

Proof. Let $S \in \mathfrak{g}_{(\varphi_{\omega})}$. Then, for each $a \in S$, there exists an ω - φ -open set V containing a such that $V \subseteq S$. Thus, $a \in \imath_{\varphi_{\omega}}(S)$ and $S \subseteq \imath_{\varphi_{\omega}}(S)$. Also, from Lemma 37(3), $\imath_{\varphi_{\omega}}(S) \subseteq S$. Hence, we have $\imath_{\varphi_{\omega}}(S) = S$. Conversely, let $\imath_{\varphi_{\omega}}(S) = S$ and $a \in S$. Then, there exists an ω - φ -open set containing a such that $V \subseteq S$. Hence, $S \in \mathfrak{g}_{(\varphi_{\omega})}$.

Definition 40. Let φ and φ' be two GNSs on X and Y, respectively. Then a function $f: (X, \varphi) \to (Y, \varphi')$ is called $\omega - (\varphi, \varphi')$ -continuous (respectively, ω -weakly- (φ, φ') -continuous) for $a \in X$ and $V \in \varphi'(f(a))$, there exists $\omega - \varphi$ -open set U containing a such that $f(U) \subseteq V$ (respectively, $f(U) \subseteq \gamma_{\varphi'}(V)$).

Proposition 41. Every (φ, φ') – continuous function is ω - (φ, φ') –continuous.

Proof. The proof is straightforward by Lemma 35(2).

Proposition 42. Every weakly- (φ, φ') -continuous function is ω -weakly- (φ, φ') -continuous.

Proof. It is clear from Lemma 35(2).

Proposition 43. Every ω - (φ, φ') -continuous function is ω -weakly- (φ, φ') -continuous.

Proof. It is obvious since $\gamma_{\varphi'}$ is enlarging.

We can give an example to show that the converse implications of Proposition 41 and 42 do not hold.

Example 44. Let $X = \{1, 2, 3\}$ and two GNSs φ and φ' be defined as follows: $\varphi(1) = \{X\}, \varphi(2) = \{\{2, 3\}\}, \varphi(3) = \{X\} \varphi'(1) = \{\{1\}\}, \varphi'(2) = \{\{2, 3\}\}, \varphi'(3) = \{\{1, 3\}\}.$ Let $f : (X, \varphi) \to (X, \varphi')$ be a function defined by f(1) = f(2) = 1, f(3) = 2. Then,

f is not (φ, φ') -continuous and not weakly- (φ, φ') -continuous but it is ω - (φ, φ') -continuous and ω -weakly- (φ, φ') -continuous.

We can give an example to show that the converse of Proposition 43 does not hold.

Example 45. Let $X = Y = \mathbb{R}$ and two GNSs φ and φ' be defined as follows:

$$\varphi(a) = \begin{cases} \{\mathbb{R} - \mathbb{Q}\} & \text{if } a \in \mathbb{R} - \mathbb{Q} \\ \{\mathbb{R}\} & \text{if } a \in \mathbb{Q} \\ \end{bmatrix} \text{ and } \varphi'(a) = \begin{cases} \{\mathbb{R}\} & \text{if } a \in \mathbb{R} - \mathbb{Q} \\ \{\mathbb{Q}\} & \text{if } a \in \mathbb{Q} \end{cases}$$

Let $f: (X, \varphi) \to (Y, \varphi')$ be a function defined by

$$f(a) = \begin{cases} \sqrt{2} & \text{if } a \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{if } a \in \mathbb{Q} \end{cases}$$

Then, f is ω -weakly- (φ, φ') -continuous but it is not ω - (φ, φ') -continuous.

Therefore, we obtain the following diagram from Proposition 19 and Proposition 41, 42 and 43.

Theorem 46. Let $\varphi \in \Phi(X)$, $\varphi' \in \Phi(Y)$ and $f : (X, \varphi) \to (Y, \varphi')$ be a function. If f is $\omega \cdot (\varphi, \varphi')$ -continuous, then it is $\omega \cdot (\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous.

Proof. Let $a \in X$ and $G \in \mathfrak{g}_{\varphi'}$ containing f(a). Then, there exists $V \in \varphi'(f(a))$ such that $V \subseteq G$. Since f is ω - (φ, φ') -continuous, there is an ω - φ -open set Ucontaining a such that $f(U) \subseteq V$. Since $U \subseteq f^{-1}(f(U)) \subseteq f^{-1}(G)$ and U is ω - φ open containing a, then $a \in f^{-1}(G) \in \mathfrak{g}_{(\varphi_{\omega})}$. Thus, f is ω - $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous from $f(f^{-1}(G)) \subseteq G$.

Theorem 47. Let $\varphi \in \Phi(X)$, $\varphi' \in \Phi(Y)$ and $f : (X, \varphi) \to (Y, \varphi')$ be a function. If f is ω -weakly- (φ, φ') -continuous, then it is ω -weakly- $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous.

Proof. Let $a \in X$ and $G \in \mathfrak{g}_{\varphi'}$ containing f(a). Then there is $U \in \varphi'(f(a))$ such that $U \subseteq G$. Since f is ω -weakly- (φ, φ') -continuous, there exists ω - φ -open set V containing a such that $f(V) \subseteq \gamma_{\varphi'}(U)$. By Lemma 37(2), we have $f(V) \subseteq \gamma_{\varphi'}(U) \subseteq \gamma_{\varphi'}(G)$. Since $V \subseteq f^{-1}(\gamma_{\varphi'}(G))$ and V is ω - φ -open containing a, then $f^{-1}(\gamma_{\varphi'}(G))$ belongs to $\mathfrak{g}_{(\varphi_{\omega})}$. Thus, we have $f(f^{-1}(\gamma_{\varphi'}(G))) \subseteq \gamma_{\varphi'}(G) \subseteq c_{\mathfrak{g}_{\varphi'}}(G)$ from Lemma 4(2). Hence, f is ω -weakly- $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous.

We give the following example to show that the converse implications of Theorem 46 and Theorem 47 do not hold.

Example 48. Let $X = Y = \mathbb{R}$ and two GNSs φ and φ' be defined as follows:

$$\varphi(a) = \{\mathbb{R}\} \quad and \quad \varphi'(a) = \begin{cases} \{[a,\infty)\} & \text{if } a \in \mathbb{Q} \\ \{(-\infty,a]\} & \text{if } a \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Let $f: (X, \varphi) \to (Y, \varphi')$ be a function defined by f(a) = a. Then, f is ω - $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous and ω -weakly- $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous but it is not ω - (φ, φ') -continuous and not ω -weakly- (φ, φ') -continuous.

Finally, we attain the following diagram by Proposition 27 and 43 and Theorem 46 and 47.

ω - (φ, φ') -continuous	\Rightarrow	ω - $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous.
\downarrow		\downarrow
()	、 、	(, malle (* *) continueus

 ω -weakly- (φ, φ') -continuous

 ω -weakly- $(\mathfrak{g}_{(\varphi_{\omega})}, \mathfrak{g}_{\varphi'})$ -continuous

References

- Al Ghour, S. and Zareer, W., Omega open sets in generalized topological spaces, J. Nonlinear Sci. Appl., 9(5) (2016),3010-3017.
- [2] Al-Zoubi, K. and Al-Jarah, H., Weakly ω-continuous functions, Acta Math. Univ. Comenian., 79(2) (2010), 253-264.
- [3] Császár, Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96(4) (2002), 351-357.
- [4] Császár, Á., On generalized neighbourhood systems, Acta Math. Hungar., 121(4) (2008), 395-400.
- [5] Engelking, R., General Topology, Berlin: Helderman-Verlag, 1989.
- [6] Hdeib, HZ., ω-closed mappings, Rev. Colombiana Mat., 16(1-2) (1982), 65-78.
- [7] Hdeib, HZ., ω-continuous functions, Dirasat, 16(2) (1989), 136-142.
- [8] Min, WK., Weak continuity on generalized topological spaces, Acta Math. Hungar., 124(1-2) (2009), 73-81.

Current address, Esra DALAN YILDIRIM: Yasar University, Faculty of Science and Letters, Department of Mathematics, 35100- İzmir, Turkey.

E-mail address: esra.dalan@yasar.edu.tr

ORCID Address: http://orcid.org/0000-0002-6553-771X