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Abstract

The aim of this paper is to describe some connections between spectral theory in infinite
dimensional Lie algebras, deformation theory and linearization of nonlinear dynamical
systems. We explain how results from isospectral deformations, cohomology groups and
algebraic geometry can be used to obtain insight into integrable systems. Another part will
be dedicated to the study of infinite continued fractions and isospectral deformation of peri-
odic Jacobi matrices and general difference operators from an algebraic geometrical point
of view. Also, the notion of algebraically completely integrable systems is explained and
techniques to solve such systems are presented. Several nonlinear problems in mathematical
physics illustrate these results.

1. Introduction

The discovery towards the end of the 19th century by Poincaré [1] that complete integrability is an exceptional a phenomenon for Hamiltonian
dynamical systems marked the end of a long and fruitful interaction between Hamiltonian mechanics and algebraic geometry and the interest
in integrable systems disappeared almost completely; it has been a dormant subject for more than half a century. In fact many algebraic
geometrical results such that elliptic and hyperelliptic curves, Abelian integrals, Riemann surfaces, etc., have their origin in problems of
mechanics. Fortunately the discovery, 50 years ago that the Korteweg-de Vries (KdV) equation [2] could be integrated by spectral methods
have generated an enormous number of new ideas in the area of Hamiltonian completely integrable dynamical systems. The resolution of
this problem has led to unexpected connections between mechanics, spectral theory, Lie groups, algebraic geometry and even differential
geometry, which has provided new insights into the old mechanical problems of the last centuries and many new ones as well. With respect
to this, some questions arise: how do you decide about the complete integrability of a Hamiltonian system? Once you have found necessary
conditions of complete integrability on the parameters involved in a Hamiltonian system, how do you prove that the system is effectively
completely integrable and how to determine its solutions explicitly? It is well known that solving explicitly a nonlinear Hamiltonian system
by quadrature (i.e., by a finite number of algebraic operations including the inverting of functions), was a central theme in mechanics during
the 19-th century but the methods of resolution were something very unsystematic and required a great deal of luck and ingenuity. Jacobi [3]
himself was very much aware of this difficulty in his famous ”Vorlesungen über Dynamik”, in the context of geodesic flow on the ellipsoid
(before introducing the elliptic coordinates). Difficulties come from the fact that in most problems the quadratures were obtained in terms
of elliptic or hyperelliptic integrals and where it was often necessary to find remarkable coordinates algebraically related to the originally
given ones, in which the Hamilton-Jacobi equation could be solved by separation of variables. In recent years, important results have been
obtained following studies on the Korteweg-de Vries (K-dV) and Kadomtsev-Petviashvili (KP) hierarchies. The use of tau functions related
to infinite dimensional Grassmannians, Fay identities, vertex operators and the Hirota’s bilinear formalism led to obtaining important results
concerning these algebras of infinite order differential operators. In addition, many problems related to algebraic geometry, combinatorics,
probabilities and quantum gauge theory,..., have been solved explicitly by methods inspired by techniques from the study of dynamical
integrable systems. An account of these results will appear elsewhere. This circle of ideas are far from being completely understood, but it is
a gold mine of research problems.
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The purpose of this paper is to describe some connections between spectral theory, Jacobi matrices, continued fractions and difference
operators and it is organized as follows: Section 2 concerns nonlinear integrable dynamical systems which can be written as Lax equations
with a spectral parameter. Such equations have no a priori Hamiltonian content. However, through the Adler-Kostant-Symes construction, we
can produce Hamiltonian dynamical systems on coadjoint orbits in the dual space to a Lie algebra whose equations of motion take the Lax
form. We outline an algebraic-geometric interpretation of the flows of these systems, which are shown to describe linear motion on a complex
torus via the van Moerbeke-Mumford linearization method. We also present Griffith’s method of studying these problems without reference
to Kac-Moody’s algebras. These results are exemplified by several problems of dynamical integrable systems: Euler-Arnold equations for
the geodesic flow on the special orthogonal group (the rotation group), Jacobi geodesic flow on the ellipsoid, Neumann problem on the
sphere, Lagrange top, periodic infinite band matrix, n-dimensional rigid body and Toda lattice. Section 3 is devoted to the study of some
connections between continued fractions, isospectral deformation of Jacobi matrices, difference operators, Cauchy-Stieltjes transform and
Abelian integrals from an algebraic geometrical point of view. In Section 4 the notion of algebraically completely integrable Hamiltonian
systems are explained and techniques to solve such systems are presented. Some important problems will be studied such that: the periodic
5-particle Kac-van Moerbeke lattice, generalized periodic Toda systems, Ramani-Dorizzi-Grammaticos (RDG) series of integrable potentials
and a generalized Hénon-Heiles system.

2. Coadjoint orbits in Kac-Moody Lie algebras, isospectral deformations and linearization

Assume a Hamiltonian system having the Lax form (with a rational indeterminate h) :

Ȧ≡ dA
dt

= [A,B] or [B,A], A =
n

∑
j=l

A jh j, B =
n

∑
j=l

B jh j, (2.1)

where A j and B j are matrices.

Theorem 2.1. For every h ∈ C, the flow (2.1) preserves the spectrum of A. For almost all (z,h) ∈ C2, the spectral curve defined by

C = {(z,h) ∈ C2 : P(z,h)≡ det(A− zI) = 0}, (2.2)

is time independent and its coefficients tr (An) are first integrals.

The matrix A− zI, has a one-dimensional null-space, defining a holomorphic line bundle on the curve C. Whenever the entries of the A j
are moving in time, the curve C does not move, inducing a motion on the set of line bundles. The set of holomorphic line bundles on an
algebraic curve form a group for the operation of tensoring ⊗ and the full set with a given topological type is parametrized by the points
of a g-dimensional complex algebraic torus, where g is the genus of the curve. This torus that we note, Jac(C), is the Jacobian or Picard
variety of the curve. When C is an elliptic curve, Jac(C) is isomorphic to C. Since the flow (2.1) induces deformations of line bundles, their
topological type remains unchanged and therefore it induces a motion on the Jacobian variety; under some checkable condition on A and B,
du to Griffiths [4] (see further for details).
We state the Adler-Kostant-Symes theorem [5]-[7] valid for any Lie algebra :

Theorem 2.2. Let G be a Lie algebra with a non-degenerate, ad-invariant metric 〈,〉. Assume that G = L ⊕K as a vector space
decomposition, where L is an ideal and K is a Lie sub-algebra.
a) Then we have the split G = G ∗ = L ⊥+K ⊥, L ⊥ 'K ∗ coupled with K via an induced form 〈〈,〉〉 inherits the Kostant-Kirillov
coadjoint symplectic structure. The Poisson bracket of the latter, between functions F and G on K ∗, is given by

{F,G}(A) = 〈〈A, [∇K ∗F,∇K ∗G]〉〉 , A ∈K ∗.

b) Let M ⊂K ∗ be an invariant manifold under the above coadjoint action of K on K ∗. Then the functions H defined on a neighborhood
of M invariants under the coadjoint action of G , lead to commuting vector fields of the Lax isospectral flows

Ȧ≡ dA
dt

= [A, prL (∇H)] ,

where prL is the projection on L .

The reader interested in the most general form of this theorem can consult with profit the recent paper [8]. This is a general theorem for
constructing fully dynamical Hamiltonian integrable systems on the coadjoint orbits of a Lie algebra. We will see explicitly how to apply,
with some precautions, this theorem to certain Lie algebras of infinite dimension.
Any finite dimensional semi-simple Lie algebra G leads to an infinite dimensional Lie algebras, the so-called Kac-Moody extensions (that
we also note G ) :

G =

{
n

∑
−∞

A jh j|n ∈ Z free

}
,

with bracket [
∑Aihi,∑B jh j

]
= ∑

k
∑

i+ j=k

[
Ai,B j

]
hk

and ad-invariant, symmetric forms 〈
∑Aihi,∑B jh j

〉
k
= ∑

i+ j=−k

〈
Ai,B j

〉
,
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depending on k ∈ Z. Obviously if the form 〈,〉 is non degenerate, then the form 〈,〉k is also.
Let G s

r (r ≤ s) be the vector subspace of G , corresponding to powers of h between r and s. A first interesting class of problems is obtained
by taking G = G l(n,R) and by putting the form 〈,〉1 on the Kac-Moody extension. Then we have the decomposition into Lie sub-algebras

G = G ∞
0 +G−1

−∞ ≡L +K ,

with L = L ⊥, K = K ⊥ and L = K ∗.
Another class is obtained by choosing any semi-simple Lie algebra G . Then the Kac-Moody extension G equipped with the form 〈,〉= 〈,〉0
has the natural level decomposition

G = ∑
i∈Z

Gi,
[
Gi,G j

]
⊂ Gi+ j, [G0,G0] = 0, G∗i = G−i.

Let A+ = ∑
i≥0

Gi and A− = ∑
i<0

Gi. Then the product Lie algebra G ×G has the following bracket and pairing

[(a1,a2) ,((b1,b2)] = ([a1,b1],−[a2,b2]) , 〈(a1,a2) ,(b1,b2)〉= 〈a1,b1〉−〈a2,b2〉.

It admits the decomposition into L +K with

L = {(a,−a) : a ∈ G } , L ⊥ = {(a,a) : l ∈ G } ,

K = {(c1,c2) : c1 ∈ A−,c2 ∈ A+,Pr0(c1) = Pr0(c2)} , K ⊥ = {(c1,c2) : c1 ∈ A−,c2 ∈ A+,Pr0(c2 + c1) = 0} ,

where Pr0 denotes projection onto G0. Then from the last theorem, the orbits in K ∗ = L ⊥ possesses a lot of commuting Hamiltonian
vector fields of Lax form.
We consider the invariant manifold Mn, n≥ 1, in L = K ∗ defined by the set of

A =
n−1

∑
j=1

A jh j +µh j, µ ≡ diag(µ1, ...,µn) fixed, diag(An−1) = 0,

as well as the K -invariant manifolds Mk
− j defined by

Mk
− j =

k

∑
i=− j

Li ⊆ G 'L ⊥.

We state the following theorem [9]-[11] :

Theorem 2.3. a) Let H =
〈

f (Ah− j),hk〉
1, be functions defined on the manifold Mn where f are differentiable functions. Then, the equations

Ȧ =
[
A,PrK ( f ′(Ah− j)hk− j)

]
, A =

n−1

∑
i=0

Aihi +µhn,

determine integrable Hamiltonian systems whose linearization is carried out on the Jacobian of the curve C of genus (m−1)(mn−2)/2
defined by (2.2). Moreover, especially for j = n, k = n+1, the flow

Ȧ =
[
A , adν ad−1

µ An−1 +νh
]
, (2.3)

depends on f by the relation νi = f ′ (µi) only.
b) Let H(a1,a2) = f (a1), be functions defined on the manifold Mk

− j where f are differentiable functions. We have

ȧ =

[
a,(Pr+− 1

2
pr0)∇H(a)

]
,

where Pr+ is the projection onto A+ and these Lax equations are linearized on the Jacobian of a curve whose affine equation is given by the
characteristic polynomial of elements in Mk

− j, considered as functions of h.

Using the van Moerbeke-Mumford approach [11], one can construct an algebraic map from the complex invariant manifolds of linearizable
dynamical systems to the Jacobi variety Jac(C) or one of its sub-manifolds such as Prym varieties, associated with an algebraic curve
determined by the spectral curve C (2.1). The equations that linearize the dynamic system are given by

g

∑
j=1

∫ s j(t)

s j(0)
ωk = ckt, 1≤ k ≤ g,

where (ω1, ...,ωg) is a basis in the space of holomorphic differentials on the curve C of genus g.

1) As a first example for M1 in the above theorem, we consider A = X +µh, with X ∈ so(n). It is deduced that the Hamiltonian flow (2.3),
where µi and νi can be taken arbitrarily, is the 0th-order in h

Ẋ = [X ,Λ(X)], Λ(X)i j = λi jXi j, λi j = λ ji, λi j =
νi−ν j

µi−µ j
,



66 Fundamental Journal of Mathematics and Applications

and an identity to first order in h. This flow expresses the Euler-Arnold equations [12] for the geodesic flow on the group SO(n), for a left
invariant diagonal metric Λ. The algebraic curve

C = {(z,h) ∈ C2 : det(X +µh− zI) = 0},

has an involution

σ : C −→C, (z,h) 7−→ (−z,−h),

exchanging sheets of C over C0 =C/σ . In such a situation, this involution extends by linearity to a map (which will again be denoted by
σ ), σ : Jac(C)−→ Jac(C) and up some points of order two, the Jacobi variety Jac(C) splits into an even part, i.e., Jac(C) and an odd part
(Prym variety) denoted Prym(C/C0) and defined by

Prym(C/C0) =

(
H0
(

C,Ω1
)−)∗

/H1 (C,Z)− ,

where Ω1 is the sheaf of holomorphic 1-forms on the curve C and − means the −1 eigenspace for a vector space on which the involution σ

acts. We have

Jac(C) = Jac(C0)⊕Prym(C/C0).

The phase space for this problem is an orbit defined in the group SO(n) by [ n
2 ] orbit invariants. By Theorem 2.3, the problem linearizes on

Prym(C/C0) of dimension
n(n−1)

2 −[ n
2 ]

2 .

2) For another example, consider the case of M2 in the above theorem with

A = µh2− y⊗ y−hx∧ y, (x,y ∈ Rn),

where (x,y) ∈ R2n. In this case, equation (2.3) is reduced to the study of

Ȧ =
[
A,νh+adν ad−1

µ (y∧ x)
]
,

where νi = f ′(µi). Explicitly, we can rewrite this equation in the form of a nonlinear dynamic system :

ẋ = −∂Hν

∂y
=−νy− (adν ad−1

µ (y∧ x))x,

ẏ =
∂Hν

∂x
=−(adν ad−1

µ (y∧ x))y,

where

Hν =
1
2 ∑

i
νi

(
y2

i +∑
j 6=i

(xiy j− x jyi)
2

µi−µ j

)
.

Note that in the particular case where

f (z) = logz, νi =
1
µi
,

then this problem is reduced to the study of the well known Jacobi geodesic flow on the ellipsoid :

x2
1

ν2
1
+ · · ·+ x2

n
ν2

n
= 1.

Another special case is where f (z) =
1
2

z2, νi = µi. Here the problem is reduced to the study of the Neumann movement (under the influence
of the force −µx) of a point on the sphere [13] :

Sn−1 : x2
1 + · · ·+ x2

n = 1.

According to theorem 2.3, the linearization of the problem related to these two cases is carried out on the Jacobi variety Jac(H ), where H
is a hyperelliptic curve of genus n−1. For an interesting geometric interpretation of these motions and their relationship with confocal
quadrics, theorem of Chasles, geodesic, intersection of two quadrics, K-dV equation, etc., see for example [13]-[17].

3) Another example of M2, n = 3, in the above theorem, concerns the Lagrange spinning top [18]. It expresses a particular case of the
rotational motion of a solid body around a fixed point. Here, we have

A = mh+ γ + lh2,

where m ∈ so(3) (angular momentum), γ ∈ so(3) (unit vector in the direction of gravity), l = (α +β )ε with ε ∈ so(3) (coordinates of the
center of mass) and where (α +β ,α +β ,2α) (inertia tensor in diagonalized form). Here, the linearization of the problem takes place on the
Jacobi variety of an elliptic curve, i.e., on the curve itself (see [19] and for higher-dimensional generalizations [20]).
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4) As an example of Mk
− j in theorem 2.3, b) (see [9]-[11]), we consider the periodic infinite band matrix M of period n having j+h+1

diagonals; the spectrum of M is defined by the points (z,h) ∈ C2 such that

Mv(h) = zv(h), v(h) = (...,h−1v,v,hv, ...), v ∈ Cn.

Let Mh be the square matrix obtained from M and let C be the curve whose affine equation is det(Mh− zI) = 0. Then the set of infinite band
matrices with j+ k+1 diagonals, in higher dimensions many partial results seem to lead to rigidity. In fact, it was shown that a discrete
2-dimensional Laplacian cannot be deformed, given its periodic spectrum; the proof can be summarized by the observation that the Picard
variety of most algebraic surfaces are trivial; the proof that the specific spectral surface defined by the 2-dimensional Laplacian has trivial
Picard variety is based on the technique of toroidal embedding, which reduces cohomological computations to combinatorial questions.
Finally, inspired by the dynamical systems, Mumford [21] has given a beautiful description of hyperelliptic Jacobians of dimension g.
Griffiths [4] has given a necessary and sufficient condition on B (easily checkable), for an equation of the type (2.1) to be linearizable on
the Jacobi variety Jac(C) of its spectral curve defined by (2.2) (although, without reference to Kac-Moody Lie algebras). Indeed, suppose
that for every p(z,h) belonging to the curve C of affine equation (2.2), with dimker(A− zI) = 1 (i.e., the corresponding eigenspace of A
is one-dimensional) and generated by a vector v(t, p) ∈ Cn. So, we can find a family of holomorphic mappings which send (z,h) ∈C to
ker(A− zI) :

φt : C −→ Pn(C), p 7−→ Cv(t, p),

called the eigenvector map associated to the equation (2.1). Let

Ψ(t) = φ
∗
t

(
OPn(C)(1)

)
∈ Pics(C), s = deg φt(C),

where Pics(C)∼= Jac(C) is the Picard variety of the curve C and OPn(C)(1) is the hyperplane line bundle in Pn(C). Obviously the degree of
Ψ(t) does not vary with t Let H be the hyperplane class in Pn(C). The Poincaré dual of the class [C] of C coincides with the degree of C,

deg Ψ(t) =
∫

C
φ
∗
t H =

∫
φt (C)

H = deg(C).

Since Ψ(t) moves in Pics(C) when t varies, then by fixing a line bundle Ψ(0) ∈ Pics(C), the line bundle Ψ(0)−1⊗Ψ(t) moves in the
Jacobian variety Jac(C). We will determine a necessary and sufficient condition of a cohomological nature on B so that the flow

t 7−→Ψ(t), (2.4)

is linearizing on Jac(C). By applying cohomological techniques of the theory of deformation, we can find necessary and sufficient conditions
to linearize the flow (2.4). Indeed, this is because the tangent space for any deformation is in a proper cohomology group, and according to
the theory of duality on algebraic curves, the higher cohomology can always be eliminated. Let’s see that with a little more detail. Let X be a
complex manifold and

φ : C −→ X , (2.5)

a non-constant holomorphic map. Let θC, θX be the respective tangent sheaves and φ∗ the differential of φ . The normal sheaf of C in X is
defined by the following exact sequence

0−→ θC
φ∗−→ φ

∗
θX −→ Nφ −→ 0 (2.6)

and let H0(C,Nφ ) (that we also note H0(Nφ )) be the Kodaira-Spencer tangent space [22] to the moduli space of (2.5). Let φt : C −→ X ,
φ0 = φ , be a deformation of (2.5). In local product coordinates (z, t) on

⋃
t Ct , w = (w1,w2, ...,wn) ∈ X , we show that φt is given by

(t,ξ ) 7−→ w(t,ξ ), i.e., the section φ̇ ∈ H0(Nφ ) and is locally given by

∂w(t,ξ )
∂ t

∣∣∣∣
t=0

modulo
∂w(0,ξ )

∂ z
.

The corresponding cohomological sequence of (2.6) is

H0(θC)−→ H0(φ∗θX )−→ H0(Nφ )
∂−→ H1(θC).

Consider the tangent space H1(θC) to the moduli space of the curve C as well as the tangent Ċ ≡ ∂ (φ̇) ∈ H1(θC) to the family of curves
{Ct}. Hence, H0(φ∗θX )/H0(θC)⊂ H0(Nφ ) is the tangent space to deformations of (2.5) where, according to theorem 2.1, the curve C is
independent of t.
Consider now the Euler exact sequence of vector bundles

0−→ OPn(C)
i−→ Cn⊗OPn(C)(1)

p−→ OPn(C) −→ 0

Therefore, the following sequences (Ψ(0) = φ∗OPn(C)(1)) :

0
↓

OC
↓v

Cn⊗Ψ(0)
↓

0 −→ θC
φ∗−→ φ∗ΘPn(C) −→ Nφ −→ 0

↓
0
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are exact and the cohomology diagram corresponding to these sequences contains the following part :

H0(C,Cn⊗Ψ(0))
↓τ

H0(C,θC) −→ H0(C,φ∗θPn(C))
j−→ H0(C,Nφ )

δ−→ H1(C,θC)

↓δ
H1(C,OC)

Let (t,ξ ) 7−→ v(t,ξ ) ∈ Cn\{0}, be a position vector mapping with ξ a local coordinate on C. In other words, a local lift vt (which is a
time-dependent map C −→ Cn\{0}) of the family of holomorphic maps φt : C −→ Pn(C), to Cn\{0}, such that

φt(ξ ) = C.v(t,ξ )⊂ Cn.

As this lift exists only locally, it will have to find an independent object of this lift but which exists globally. The solution is to use this lift to
determine such an object that we note v̇. Notice that the space Cvt(p) and the fibre of φ∗OPn(C)(−1) at a point p ∈C identify and define the
maps φ∗OPn(C)(−1)Cn⊗OC and

vt : OC −→ Cn⊗Ψ(t), φ 7−→ φvt ,

(here, v0 coincides with the application v mentioned in the previous diagram). In the case where η will be another lift such that :

η(t,ξ ) = κ(t,ξ )v(t,ξ ), κ 6= 0,

then we will have η̇ = κ v̇+ κ̇v. The inclusion OC
v
↪→ Cn⊗L, L = f ∗OPn(C)(1), is locally given by OC 3 φ 7−→ φ .v, and then (modulo

v(t,ξ )), the expression

v̇(ξ ) =
∂v(t,ξ )

∂ t

∣∣∣∣
t=0
∈ H0(C,Cn⊗L/OC) = H0(C, f ∗θPn(C))

is well-defined independently of the choice of the lift, and we have σ(v̇) = φ . We are interested in the tangent vector

Ψ̇(0)≡ dΨ(t)
dt

∣∣∣∣
t=0
∈ H1(C,OC).

Theorem 2.4. If v̇ is an infinitesimal variation of φt : C −→ Pn(C), then

Ψ̇(0)≡ dΨ(t)
dt

∣∣∣∣
t=0

= δ (v̇) ∈ H1(C,OC).

In addition if τ is the map mentioned in the diagram above, then there is an equivalence between the fact that Ψ̇(0) = 0 and v̇ = τ(w) for
some w ∈ H0(Cn⊗Ψ(0)).

Let h0, h1 be homogeneous coordinates and consider h as an affine coordinate on P1(C) which is the base of the covering π : C −→ P1(C).
Note that B(t,h) can be written in the form

B(t,h) =
N

∑
k=0

Bk(t)h
k =

N

∑
k=0

Bk(t)h
N
(

h1

h0

)k
∈ H0(C,Hom(F ,F (N))),

where F is the sheaf of sections of the trivial bundle C×F . We have F (D) = F ⊗OC(D) and B(t,h) can be seen as a holomorphic
section of the bundle Hom(F ,F )⊗OC(N), OC(N) = π∗OP1(N). In other words, we visualize h = [h0 : h1] as a homogeneous coordinate

on P1(C) pulled up to C. We have
B

hK
0
∈ H0(C,Hom(F ,F (D))), v ∈ H0(V ⊗L) where D = (hN

0 ), is the divisor N.π−1(∞) on the curve C

and F (D)∼= F (N) are the sections of F ⊗OC(D). It should be noted that here
B

hN
0

is a matrix in Hom(F ,F ) with meromorphic functions

in H0(C,OC(D)) as entries, i.e.,
h1

h0
is seen as a function on HO(C,OC(D)). We deduce that

(
B

hN
0

)
.v ∈ H0(C,F ⊗Ψ(0)(D)) and the Lax

equation can be interpreted in cohomological form as follows:

Theorem 2.5. The following conditions are equivalent :
(i)

v̇ = τ

(
B

hN
0
.v

)
Ψ̇(0) = 0,

(ii) There is a meromorphic function ϕ ∈ HO(C,OC(D)) such that
B

hN
0
.v+ϕv ∈ H0(C,F ⊗L(D)) is holomorphic.
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By differentiating the eigenvalue problem Av(t, p) = zv(t, p) (in the neighborhood of the point p = (h,z) ∈C) with respect to t, and taking
into account the Lax equation in the form Ȧ = [B,A], we immediately obtain the expression A(v̇−Bv) = z(v̇−Bv). Since eigenvalues have
(generically) a multiplicity of 1, then for a some λ , we have

Bv = v̇+λv. (2.7)

This equation can be written in the form Bv = v̇+λ jv, where λ j is the main part of Laurent series expansion of λ in the neighborhood of p.
Then given the curve C defined by (2.2) and p ∈C, Griffiths defines

Lp ≡ [Laurent tail(B)]p = {main part of Laurent series expansion of λ in the neighborhood of p},

and shows that the linearization of the Lax flow takes place on the Jacobi variety Jac(C) if and only if p ∈ (h)∞ (divisor of the poles of h), we
have for any meromorphic function f on C such that : ( f )≥ n(h)∞,

dLp

dt
∈ linear combination {Lp; Laurent tail at p of f}.

Let P(h,g) ∈ C[h,g] and note that if we replace B by B+P(h,A) in equation (2.1), we see that this equals invariant which shows that B is
not unique and that its natural place is somewhere in a cohomology group.
Consider a positive divisor

D =

(
1
h

)
(∞) = ∑

j
n j p j, n j ≥ 0,

on C, where h is seen as a meromorphic function. The polynomial B(t,h) =
n

∑
k=0

Bkhk of degree n should be interpreted as an element of

H0(C,Hom(V,V (D)) where V is the sheaf of sections of the trivial bundle C×V and V (D) =V ⊗OC(D). A section of OD(D) is written

ϕ = ∑ϕ j, ϕ j =
−1

∑
k=−n j

akzk
j,

where z j is a local coordinate around p j. This is a principal part (Laurent tail) centered on p j. A question arises : Given a main part ϕ j,
determine conditions for a function ϕ ∈ H0(C,OC(D)) such that ϕ −ϕ j is holomorphic in the neighborhood of p j. The answer to this
question (known as the Mittag-Leffler problem) is provided by

Theorem 2.6. Let {ϕ j} be a Laurent tail and let D = ∑ j a j p j. The following conditions are equivalent :
(i) There exist ϕ ∈ H0(C,OC(D)) such that ϕ−ϕ j is holomorphic near p j .
(ii) For every holomorphic differential ω on C, we have

∑
j

Resp j (ϕ j.ω) = 0.

The residue of B, denoted by ς(B) ∈ H0(C,OD(D), is the collection of Laurent tails {λ j} given above, where λ j is the main part of the
Laurent series expansion of λ around p.
We will say that the flow Ψ(t) (2.4) is linearized if there is a complex number c such that

d2Ψ(t)
dt2 = c

dΨ(t)
dt

.

The Griffiths theorem is as follows :

Theorem 2.7. 1) We have

Ψ̇(0) =
dΨ(t)

dt

∣∣∣∣
t=0

= δ1(ς(B)).

2) The following conditions are equivalent :
(i) The flow Ψ(t) (2.4) is linearized in Pics(C).
(ii) We have

ς(Ḃ) = 0 mod.(ς(B), Im res),

where Im res⊂ H0(C,OD(D) is the Laurent tails of meromorphic functions in H0(C,OD(D)).
(iii) We have

∑
j

Resp j (ς̇ j(B))ω) = t ∑
j

Resp j (ς j(B))ω), ω ∈ H0(C,ΩC)
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It follows from the above theorem that the linearized flow on Jac(C) is provided by the bilinear map

(t,ω) 7−→ t ∑
j

Resp j (ς j(B))ω) = t ∑
j

Resp j (λ jω). (2.8)

As an example, consider Euler’s problem of a free rigid body in Rn. This one is described by the following equations :

Ṁ = [M,Ω], M = ΩJ+ JΩ ∈ so(n), Ω(t) ∈ so(n),

where J = diag(λ1, ...,λn), λ j > 0. These equations form a Hamiltonian system on each adjoint orbit of so(n) and whose Hamiltonian

is explicitly described by H(M) =
1
2
(M,Ω) =−1

4
Tr(MΩ). Manakov [23] observed that these equations admit a Lax equation with an

indeterminate parameter h,

˙
(

︷ ︸︸ ︷
M+ J2h) = [M+ J2h,Ω+ Jh].

Hence D =

(
1
h

)
(∞) = ∑ j p j, is the divisor with n distinct points p j located on h = ∞. We deduce from equation (2.7) with B = Ω+ Jh,

the following relation : ς(B) = ∑
j

λ j

z j
, where z j =

1
h

is a local coordinate on C around p j. We have ς(Ḃ) = 0 since λi are constant,

and consequently, the flow is linearized on Jac(C). Taking into account that A = M + J2h, M +M> = 0, J2 − J2> = 0, we obtain
P(h,z) = (−1)nP(−h,−z). The curve C has an involution σ : C −→ C, (h,z) 7−→ (−h,−z). Here the linearization of the problem

necessitates the knowledge of
1
2

dimO independent first integrals and in involution (this is because Ω moves on an adjoint orbit O ⊂ so(n)).
In general, we have

dimO =
n(n−1)

2
−
[n

2

]
, (2.9)

Let g(C) =
(n−1)(n−2)

2
be the genus of the algebraic curve C and g(C0) the genus of the quotient C0 =C/σ of C by the involution σ .

Using the Riemann-Hurwitz formula, we get

g(C)−g(C0) =
1
2

(
n(n−1)

2
−
[n

2

])
. (2.10)

Note that σ(ς(B)) =−ς(B) and the linearization of the problem in question is carried out on the Prym variety Prym(C/C0) of the curve C
for the involution σ , interchaging the sheets of the double covering C −→C0. From (2.10) it follows that

dimPrym(C/C0) =

{
n(n−2)

4 n≡ 0 mod.2
(n−1)2

4 n≡ 1 mod.2
(2.11)

and taking into account (2.9), we finally get dimPrym(C/C0) =
1
2

dimO . The linearization of the Euler equations is carried out on the Prym

variety Prym(C/C0) of exactly the correct dimension.

3. Infinite continued fraction and spectral theory for periodic Jacobi operators

A Jacobi matrix is a doubly infinite matrix (ai j) with entries i, j such that : ai j = 0 for |i− j| large enough. The set of these matrices is an
associative algebra and consequently a Lie algebra by anti-symmetrization. Consider the Jacobi matrix

Γ =



b1 a1 0 · · · 0

a1 b2 a2
...

0 a2
. . .

. . . 0
...

. . .
. . .

0 · · · 0


,

where all the b j are real and all the a j are positive, and let

ϕ(z) =
a2

0

z−b1−
a2

1

z−b2−
a2

2
z−b3−. . .

(3.1)

be the associated continued Γ-fraction, where a0 is a positive real number. By cutting off the Γ-fraction ϕ(z) at the k-th term, we obtain the

k-th Padé approximant
Ak(z)
Bk(z)

of ϕ(z), i.e.,

ϕ(z) = lim
k→∞

Ak(z)
Bk(z)

. (3.2)
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We show that ϕ(z) admits formal series expansion arount the point z = 0 (pole),

ϕ(z) =
c0

z
+

c1

z2 +
c2

z3 + · · ·=
∞

∑
k=0

ck

zk+1 .

Note that the characteristic polynomial

Bk(z) = det



b1− z a1 0 · · · 0

a1 b2− z a2
...

0 a2
. . .

. . . 0
...

. . .
. . . ak−1

0 · · · 0 ak−1 bk− z


,

of Γ, is the last term of the second order recursion

Bk(z) = (bk− z)Bk−1(z)−a2
k−1Bk−2(z).

The polynomials Ak(z), Bk(z) form a pair of solutions of a finite difference equation of the second order (the eigenvectors of the Jacobi
matrix from which we remove the first row and the first column) :

ak+1yk+2 +bk+1yk+1 +akyk = zyk+1, k ∈ N

with the boundary conditions : y0 6= 0, y1 = 0, yN+1 = 0. In addition, these solutions are linearly independent and we have also the following
relation :

ak−1 (Ak−1(z)Bk(z)−Ak(z)Bk−1(z)) = 1, k ∈ N∗

The polynomials Bk form an orthogonal system with respect to the Stieltjes measure dσ(x) on R,∫
∞

−∞

Bk(x)Bl(x)dσ(x) = δkl .

Conversely, if a family of polynomials Pn(x) is orthogonal for dσ(x), then Pn(x) satisfies the following recurrence relation :

Pk(x)− (λkx−µ j)Pk−1(x)+ γk−1Pk−2(x) = 0,

where λk > 0, µ and γk > 0 are constants. Moreover, if we consider the continued fraction

ψ(z) =
γ0

λ1z−µ1−
γ1

λ2z−µ2−
γ2

λ3z−µ3−. . .

and realize an equivalent transformation

ψ(z) =
γ0

z− µ1
λ1
−

γ1
λ1λ2

z− µ2
λ2
−

γ2
λ2λ3

z− µ3
λ3
−. . .

we reconstruct the Γ-fraction corresponding to dσ(x) (where we can put
γk

λkλk+1
= a2

k and
µk

λk
= bk). As a result, there is a one-to-one

correspondence between the set of orthogonal polynomial systems on R and that of Jacobi matrices. In fact, if the orthogonal polynomials

Pn =
γ0

∏
n−1
k=1 ak

Bn−1(x), 1≤ n < ∞

form a basis of the vector space consisting of all the polynomials, then the Jacobi matrix represents the multiplication by x.

As an example of V− j,k (theorem 2.3, b)), consider the infinite matrix :

A =



. . .
. . .

. . . b0 a0 0 · · · 0

a0 b1 a1
...

0 a1
. . .

. . . 0
...

. . .
. . . aN−1

0 · · · 0 aN−1 bN
. . .

. . .
. . .



, (ai,bi ∈ C) (3.3)
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The matrix A is N-periodic when

ai+N = ai, bi+N = bi,

for all i ∈ Z. We denote by f = (..., f−1, f0, f1, ...) the (infinite) column vector and by D (shift operator) the operator passage of degree +1,
D fi = fi+1. Since the matrix A is N-periodic, we have ADN = DNA. Reciprocally, this relation of commutation means that N is the period of
A. Consider the finite Jacobi matrix (symmetric tridiagonal and N-periodic) :

A(h) =



b1 a1 0 · · · aNh−1

a1 b2 a2
...

0 a2
. . .

. . . 0
...

. . .
. . . aN−1

aNh · · · 0 aN−1 bN


,

where h ∈ C∗. The determinant of the matrix

A(h)− zI =



b1− z a1 0 · · · aNh−1

a1 b2− z a2
...

0 a2
. . .

. . . 0
...

. . .
. . . aN−1

aNh · · · 0 aN−1 bN − z


, (3.4)

is

det(A(h)− zI) = (−1)N+1
(

α(h+h−1)−PN(z)
)
≡ F(h,h−1,z), (3.5)

where (z,h) ∈ C×C∗, α = a1a2 · · ·aN , and P(z) is given by the following polynomial of degree N (with real coefficients) :

P(z) = det



b1− z a1 0 · · · 0

a1 b2− z a2
...

0 a2
. . .

. . . 0
...

. . .
. . . aN−1

0 · · · 0 aN−1 bN − z


−a2

0 det



b2− z a2 0 · · · 0

a2 b3− z a3
...

0 a3
. . .

. . . 0
...

. . .
. . . aN−2

0 · · · 0 aN−2 bN−1− z


= zN + · · ·

Let C be the Riemann surface defined by the set of (z,h) ∈ C×C∗ such that : A f = z f and DN f = h f . In other words, we have

C =
{
(z,h) ∈ C×C∗ : F(h,h−1,z) = 0

}
. (3.6)

Assuming that α 6= 0, we derive from (3.5) and (3.6) the following relation :

h =
P(z)±

√
P2(z)−4α2

2α
.

Note that C is a hyperelliptic curve with 2N branch points over the roots of the equation : P(z) =±2α and two points at infinity P and Q;
the point P covering the case z = ∞, h = ∞ while the point Q is relative to the case z = ∞, h = 0. The hyperelliptic involution on the curve
C maps (z,h) into (z,h−1) and C can be singular. Using Riemann-Hurwitz formula, we find g = N−1 (= genus of C). The meromorphic
function h has neither zero nor poles except in the neighborhood of z = ∞. When z↗ ∞, we have

h' P(z)
α

=
zN

α
+ · · · ,

on the sheet +, which shows that h has a pole of order N. Similarly, when z↗ ∞, we have

h =
P(z)−

√
P2(z)−4α2

2α
=

2α

P(z)+
√

P2(z)−4α2
' αz−N + · · · ,

on the sheet -, and therefore h has a zero of order N. Let P be the point covering ∞ on the sheets + and Q the two point covering ∞ on the
sheets -. Therefore the divisor (h) of the function h on the curve C is

(h) =−NP +NQ.

The curve C has an antiholomorphic involution

∼: C −→C, (z,h) 7−→ (z,1/h),

i.e., the map ∼: p 7−→ p̃ is such that : P̃ = Q. Since the finite matrix A(h) for |h| = 1 is self-adjoint, then it admits a real spectrum.
Therefore, the fixed points of this involution form a set that we write C∼. The latter is determined by the set of p ∈C such that : p̃ = p, or it
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is the set of (z,h) such that : h = 1/h and z = z, or what amounts to the same, is the set of (z,h) such that : |h| = 1. Let C+ (repectively
C−) the set of p ∈C such that : |h|> 1 (repectively |h|< 1). Note that C+ contains the point P and C− contains the point Q. We have
C\C∼ =C+∪C−, which shows that the set C∼ divides C into two distinct regions C+ and C−, and so

C =C+∪C∼∪C−.

In fact, C∼ is homologous to zero because C∼ can be thought of as the boundary between C+ and C−. Moreover, the involution ∼ extends to
an involution ∗ on the field of meromorphic functions as follows: ϕ∗(p) = ϕ(p̃), and on the differential space as follows : (ϕdψ)∗ = ϕ∗dψ∗,

which shows that : h∗ =
1
h

and z∗ = z. The matrices A and DN have an eigenvector f = (..., f−1, f0, f1, ...) in common. Such a condition is
parameterized by the Riemann surface C (3.6). In the following, appropriate standardization is used by selecting f0 ≡ 1, from where FN = h.
Let us therefore f = ( f1, f2, ..., fN−1)

>. Since f satisfies (A(h)− zI) f = 0, then we have

fk =
C1,k

C1,l
fl =

C2,k

C2,l
fl = · · ·=

CN,k

CN,l
fl , 1≤ k, l ≤ N,

where Ck,l is the (k, l)-cofactor of (A(h)− zI), that is to say,

Ck,l = (−1)k+lMk,l . (3.7)

where Mkl is the (k, l) minor of the matrix (A(h)− zI) , i.e., the determinant of the N−1 submatrix obtained by removing the kth-line and
the lth-column of the matrix (A(h)− zI)). In particular, we have

fk =
CN,k

CN,N
h =

Ck,k

Ck,N
h.

According to matrix (3.4), we note that

CN,1 = a1a2 · · ·aN−1 +(−1)N aN

h
PN−1,

C1,N = a1a2 · · ·aN−1 +(−1)NaNhPN−1,

where PN−1 ≡ (−z)N−2 + · · · , and similarly, CN,N = (−z)N−1 + · · · . To determine the divisor structure of fk, one proceeds as follows : for
f1, we have

( f1)∞ = (CN,1)∞ +(h)− (CN,N)∞,

= −(2N−2)Q−NP +NQ+(N−1)P +(N−1)Q,

= Q−P,

and for the other fk, we consider first the matrix (3.4) shifted by one, i.e.,

b2− z a2 0 · · · a1h−1

a2 b3− z a3
...

0 a3
. . .

. . . 0
...

. . . bN − z aN
a1h · · · 0 aN b1− z


.

Hence, 

b2− z a2 0 · · · a1h−1

a2 b3− z a3
...

0 a3
. . .

. . . 0
...

. . . bN − z aN
a1h · · · 0 aN b1− z





f2
f1
f3
f1
...
fN
f1

h

= 0,

and as above, we have
(

f2
f1

)
∞
= Q−P , which implies that

( f2)∞ =

(
f2
f1

)
∞

+( f1)∞ = 2Q−2P,

and in general, we get

( fk)∞ = kQ− kP.

Note that the degree of a minimal positive divisor D on the curve C such that : for all k ∈ Z, ( fk)+D≥−kP + kQ, is given by

deg D = g = N−1.



74 Fundamental Journal of Mathematics and Applications

We have

dimL (D+ kP− (k+1)Q) = 0,

for all k ∈ Z, i.e., the divisor D is regular. To be convinced of this, it suffices to show that the divisor D is general. It means that
(ω1(p1), ...,ωg(pg)) 6= (0, ...,0) where (ω1, ...,ωg) is a normalized base of differential forms on C and p1, , ..., pg ∈C, or what is equivalent
if dimL (D) = 1 where L (D) denotes the set of meromorphic functions f such that : ( f )+D ≥ 0, or what amounts to the same if
dimΩ(−D) = 0 where Ω(D) denotes the set of meromorphic differential forms ω such that the divisor (ω)+D≥ 0. From the regularity of
the divisor D and the Riemann-Roch theorem, we deduce

dimL (D+ kP) = dimΩ(−D− kP)+g+ k−g+1,

= dimΩ(−D− kP)+ k+1,

for an integer k > g−2. Therefore, we have dimL (D+ kP) = k+1, because dimΩ(−D− kP) = 0. Moreover, L (D+ jP) is strictly
larger than L (D+( j− 1)P), and therefore by lowering the index j down to 0, it follows that dimL (D) = 1, which shows that the
divisor D is general. Let’s show now that D is regular. It suffices to proceed by induction. We have just shown that dimL (D) = 1. Since
f0 = 1 /∈L (D−Q), it means that L (D−Q)$ L (D) and that the function f0 = 1 does not belong to the first space but belongs to the
second and then, dimL (D−Q) = 0. Assuming that dimL (D+ kP(k+1)Q) = 0, we obtain (taking into account the Riemann-Roch
theorem) immediately

dimL (D+(k+1)P− (k+2)Q)≤ dimL (D+ kP− (k+1)Q)+1 = 1,

which implies equality because fk+1 belongs to the first space. In addition, we have

dimL (D+(k+1)P− (k+2)Q) = 0,

because fk+1 does not belong to the space L (D+(k+1)P− (k+2)Q), but belongs to the space L (D+(k+1)P− (k+1)Q).

Consider now, the differential of F (3.5) while taking into account that z appears only on the diagonal of the matrix A(h)− zI. Therefore, we
have

−
N

∑
i=1

Ciidz+h
∂F
∂h

dh
h

= 0,

and either

ω =
−iCNNdz

h ∂F
∂h

.

We have

ω =
−i dh

h

∑
N
i=1

Cii
CNN

,

=
−i dh

h

∑
N
i=1

Cii
CiN

. CiN
CNN

,

=
−i dh

h

∑
N
i=1

CNi
CNN

. CiN
CNN

.

Taking into account that CiN =C∗Ni, 1≤ i≤ N, we obtain

ω =
−i dh

h

∑
N
i=1

CNi
CNN

.
(

CiN
CNN

)∗ ,
=

−i dh
h

∑
N
i=1 fi f ∗i

,

= ± CNNdz√
P2(z)−4α2

.

From this we deduce that ω∗ = ω and in addition, we have ω ≥ 0 on C∼. We also have a relation which shows that the scalar product
between fk and fl is

〈 fk, fl〉=
∫
C ∼

fk. f
∗
l ω =

{
0 si k 6= l

> 0 si k = l

That is, the functions fk, k ∈ Z, are orthogonal to C∼ with respect to ω . We deduce from these properties that the divisor of ω is
(ω) = D+ D̃−P−Q, for the involution ∼ introduced previously. Given a matrix of the form A (3.3), we have obtained a series of data
{C,z,h,D,ω}. What is remarkable is that the reverse is also true (for further information, see [11]) :
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Theorem 3.1. Consider the following two sets of data :

1) Let ai,bi ∈ C, ai 6= 0, where ai+N = ai, bi+N = bi, −∞ < i <+∞. An infinite N-periodic matrix

. . .
. . .

. . . b0 a0 0 · · · 0

a0 b1 a1
...

0 a1
. . .

. . . 0
...

. . .
. . . aN−1

0 · · · 0 aN−1 bN
. . .

. . .
. . .



,

modulo conjugation by N-periodic diagonal matrices with real entries.
2) Let P and Q two points on a curve of genus N−1 and D be a divisor of degree N−1 on C such that:

(h) =−NP +NQ, (z) =−P−Q+S,

where h, z are two meromorphic functions on C and S is a positive divisor not containing the points P and Q. The curve C is equipped with
an antiholomorphic involution ∼: (z,h) 7−→ (z, 1

h
), for which C = C+∪C∼∪C−, where C∼ is the set of p ∈C such that : p̃ = p, i.e., the set

of (z,h) such that : |h|= 1, and C+ (repectively C−) is the set of p ∈C such that : |h|> 1 (repectively |h|< 1) containing P (repectively Q).
By introducing an involution ? acting on the space of all meromorphic functions on C and on the differential space in a way ϕ?(p) = ϕ̃(p̃)
and (ϕdψ)? = ϕ?dψ?, then h? = h−1 and z? = z and the divisor of a differential form ω on C is

(ω) = D+ D̃−P−Q.

Then, there is a one-to-one correspondence and equivalence of these sets of data.

For any difference operator X , we define

(X+)i j =


Xi j si i < j,

1
2 Xi j si i = j,

0 si i > j,
, X− = X−X [+].

Let M be the vector space of infinite N-periodic matrices A such that for some k, ai j = 0 if |i− j|> K. On M , we introduce the following
scalar product :

〈A,B〉= Tr(AB>) = ∑
(i, j)∈Z2

ai jbi j.

We call a functional F differentiable if there exists a matrix
∂F
∂A

in M such that :

lim
ε→0

F(A+ εB)−F(A)
ε

=

〈
∂F
∂A

,B
〉
,

for every B. The following bracket

{F,G}=
〈[(

∂F
∂X

)
+

,

(
∂G
∂X

)
+

]
−
[(

∂F
∂X

)
−
,

(
∂G
∂X

)
−

]
,X
〉
, (F,G ∈M ),

satisfies the Jacobi identity. Let P(A,S,S−1) be a polynomial in S+S−1 and A with real coefficients. Consider the following Lax equation:

Ȧ =
[
P(A,S,S−1)+−P(A,S,S−1)−,A

]
. (3.8)

When the matrix A(t) deforms with t, then only the divisor D varies while {C,z,h,P,Q} remain fixed. As we have already shown, the
coefficients of zih j in equation (3.5) are invariants of this motion. The divisor D(t) evolves linearly on the Jacobi variety Jac(C). Any linear
flow over Jac(C) is equivalent to equation (3.8) and can be written in the form of a Hamitonian vector field with respect to the above bracket.
For example,, the flow

Ȧ =
[
A,(S−kAl ]+

]
,

is written as follows :

ȧi j = {F,ai j}, F =
1

l +1
Tr
(

S−kAl+1
)
.
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The (Poisson) bracket of two functional of the form Tr
(
S−kAl+1) is zero, which means that we have a set of integrals in involution. Let

(ω1, ...,ωg) be a holomorphic differential basis on the hyperelliptic curve C. We have

ωk =
zk−1√

P2(z)−4Q2
, k = 1,2, ...,g

and let ck = Resp(ωkz j), 1 ≤ j ≤ g. Since the order of the zeros of ωk at the points at infinity P , Q is equal to g− k, then ck = 0 for
k = 1,2, ...,g− j+1 and ck 6= 0 for k = g− j+1. Therefore, the flow which leaves invariant the spectrum of A and X is given by a polynomial
P(z) of degree at most equal to g :

Ȧ =
1
2
[A,P(A)+−P(A)−] ,

where P(A)+ is the upper triangular part of P(A) and −P(A)− is the lower triangular part of P(A), including the diagonal of P(A).
The (Poisson) bracket between two functional F and G can still be written in the form

{F,G}=

〈(
∂F
∂a

∂F
∂b

)
,J

 ∂G
∂a
∂G
∂b

〉 ,

where
∂F
∂a

=

(
∂F
∂ai

)
and

∂F
∂b

=

(
∂F
∂b i

)
are the column vectors, while J is the following 2n-order antisymmetric matrix :

J =

(
O A
−A > O

)
, A = 2



a1 0 0 ... −aN

−a1 a2 0
...

0 −a2 a3
...

...
...

0 ... ... −aN−1 aN


.

The symplectic structure [24] is given by

ω =
N

∑
j=2

db j ∧ ∑
j≤i≤N

dai

ai
. (3.9)

Flaschka variables [25] :

a j =
1
2

ex j−x j+1 , b j =−
1
2

y j,

applied to the form (3.9) with xN+1 = 0, leads to the symplectic structure

ω =
1
2

N

∑
j=2

dx j ∧dy j,

used by Moser [26, 27] in the study of a dynamic system describing the motion of N−1 particles on a line, interacting under an exponential
potential. See also the example below concerning the study of Toda lattice. We have

det(Ah− zI)|h=i = (−1)NzN +β1zN−1 +β2zN−2 + · · ·+βN ,

where β2, ...,βN are the g invariant, functionally independent and in involution. These are given by the branch points on the hyperelliptic
curve C or by the quantities TrAk for k = 2,3, ...,N, i.e., by the g = N−1 points chosen from the spectrum of A1 and A−1. With Jacobi’s
matrix, we can associate an operator T on a separable Hilbert space E as follows,

Te0 = b0e0 +a0e1, Tei = bie j +ai−1ei−1 +aiei+1, i = 1,2, ...

where (e1,e2, ...) is an orthonormal basis in E. The operator T is symmetric. Indeed, we have 〈Tu1,u2〉 = 〈u1,Tu2〉 for any two finite
vectors, according to the symmetry of the Jacobi matrix. Moreover, if the Carleman’s condition :

1
a0

+
1
a1

+ · · ·+ 1
an

+ · · ·=+∞

is satisfied, then the spectrum of the self-adjoint operator T (with e0 a generating element) is simple. In this case, the information about the
spectrum of T is contained in the following function,

ϕ(z) =
〈
(T − zI)−1e0,e0

〉
=
∫

∞

−∞

dσ(x)
z− x

, (3.10)

defined at z /∈ σ(T ) where σ(x) = 〈Ixe0,e0〉 and Ix is the resolution of the identity operator T . Recall that the infinite continued fraction
converges if the limit (3.2) exists. If the operator T is self-adjoint, then the continued fraction ϕ(z) converges uniformly in any closed
bounded domain of z without common points with real axis, to the analytic function defined by (3.10). If the support of dσ(x) is bounded,
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then the sequence
(

Ak(z)
Bk(z)

)
converges uniformly to a holomorphic function near z = ∞. Moreover, if a Jacobi matrix is bounded, i.e., if

there exists ρ > 0 such that, for all j, |a j| ≤
ρ

3
, |b j| ≤

ρ

3
, then the associated Γ-fraction converges uniformly on the domain {z : |z| ≥ ρ}

and the support of dσ(x) is included in [−ρ,ρ]. The fraction Γ associated with a periodic Jacobi matrix (this case is obviously bounded )
converges near z = ∞. In addition, the function ϕ(z) is written in the form (3.10) (Cauchy-Stieltjes transform of dσ(x)), which shows that
ϕ(z) has a first-order zero at z = ∞ and for any point z belonging the upper-half plane, the imaginary part of ϕ(z) is non positive.

We will now extend the Jacobi matrix Γ to the infinite symmetric, tridiagonal and N-periodic Jacobi matrix A (3.3) and use the results
obtained previously. We consider ϕ(z) (3.1) as being the associated N-periodic Γ-fraction. The latter converges near the infinite point
z = ∞. An analytic extension of the function ϕ(z) allows us to see that this coincides with the meromorphic function a0 f1 on the genus
(N−1)-hyperelliptic curve C (3.6). This curve is branched at the 2N real zeroes ξ1, ξ2,...,ξ2N of the polynomial P2(z)−4α2. We define the
stable band as being the interval [ξ2 j−1,ξ2 j], 1≤ j ≤ N, and the unstable band the interval [ξ2 j,ξ2 j+1], 1≤ j ≤ N−1.

Theorem 3.2. Each zero σ1 < σ2 < · · ·< σN−1 of Ck,l (3.7), belongs to the j-th finite unstable band [λ2 j,λ2 j+1], 1≤ j ≤ N−1.

We will see below (theorem 3.3) how to express the function ϕ(z) in terms of Abelian integrals on the hyperelliptic curve C (3.6). Note that
for N = 1, Bk(x) is the well-known Chebyshev polynomial of the second kind. In addition, Kato [28, 29] discovered, for N > 1, new results
related to discrete measurements. We have seen that

ϕ(z) = a0 f1 = a0
CN,1

CN,N
h,

belonging to L (D+P−Q). Then, we have

Theorem 3.3. We have

ϕ(z) =
Res

σ
−
1

ϕ(z)

z−σ1
+ · · ·+

Res
σ
−
N−1

ϕ(z)

z−σN−1
+

(−1)N+1

2πi

(∫
ξ2

ξ1

√
P2(x)−4α2

(z− x)CN,N(x)
dx+ · · ·+

∫
ξ2N

ξ2N−1

√
P2(x)−4α2

(z− x)CN,N(x)
dx

)
, (3.11)

where,

Res
σ
−
j

ϕ(z)≡
αh(σ−j )+(−1)Na2

0.∆

∏l 6= j(σ j−σl)
, j = 1,2, ...,N−1

and

∆≡ det



b2−σ j a2 0 · · · 0

a2 b3−σ j a3
...

0 a3
. . .

. . . 0
...

. . .
. . . aN−2

0 · · · 0 aN−2 bN−1−σ j


.

The differentials obtained in the previous section,

a
CN,N(x)√

P2(x)−4α2
dx, b

√
P2(x)−4α2

CN,N(x)
dx,

(a and b are constants) are positive mesures on each stable band [ξ2 j−1,ξ2 j]. Therefore, the expression (3.11) means that ϕ(z) can be
obtained by the Cauchy-Stieltjes transform of

dσ =
N−1

∑
j=1

Res
σ
−
j

ϕ(z),σ−j ).C(x−σ j)dx+
(−1)N+1

2πi
.

√
P2(x)−4α2

CN,N(x)
dx = discrete mesure + continuous mesure,

as follows,

ϕ(z) =
∫

∞

−∞

dσ

z− x
.

The function ϕ(z) belongs to L (D′+P−Q) where D′ = σ
+
1 + · · ·+σ

+
N−1 is contained in C+ = {p ∈C : |h|> 1} (see previous section).

From expression (3.11), we have

D = σ
−
j1 + · · ·+σ

−
jl +σ

+
jl+1

+ · · ·+σ
+
jN−1

,

where j1 < j2 < ... < jl denote the numbers for which Res
σ
−
j

ϕ(z)> 0 and jl+1 < jl+2 < ... < jN−1 the numbers for which Res
σ
−
j

ϕ(z) = 0.
Hence,

Res
σ
−
j

ϕ(z) = 0 or −

√
P2(σ−j )−4α2

∏l 6= j(σ j−σl)
.
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The Toda lattice equations [30] describe the motion of n masses with exponential restoring forces :

H =
1
2

N

∑
j=1

y2
j +

N

∑
j=1

ex j−x j+1 , (Hamiltonian).

We noted above that Flaschka variables [25] : a j =
1
2

ex j−x j+1 , b j =−
1
2

y j , can be used to express the symplectic structure ω (3.9) in terms
of x j and y j,

da j = a j(dx j−dx j+1), 2db j =−dy j,

then

ω =
1
2

N

∑
j=2

dx∗j ∧dy∗j , (x∗j ≡ x j− x1, y∗j ≡ y j).

We will study the integrability of this problem with the Griffiths approach. There are two cases :
(i) The non-periodic case, i.e., x0 =−∞, xN+1 =+∞, where the masses are arranged on a line. In term of the Flaschka variables above,
Toda’s equations take the following form

ȧ j = a j
(
b j+1−b j

)
,

ḃ j = 2(a2
j −a2

j+1),

with aN+1 = a1 and bN+1 = b1. To show that this system is completely integrable, one should find N independent first integrals in involution.
From the second equation, we have

˙︷ ︸︸ ︷
(b1 +b2 + · · ·+bN) = ḃ1 + ḃ2 + · · ·+ ḃN = 0,

and we normalize bi’s by requiring that b1 +b2 + · · ·+bN = 0. Applying this fact to (3.9), leads to the following symplectic form :

ω =
1
2

N

∑
j=2

dx j ∧dy j.

We have obtained a first integral of the system and it will be necessary to determine N−1 other integrals that are functionally independent
and in involution. We further define N×N matrices A and B with

A =



b1 a1 0 · · · aN

a1 b2
...

...

0
. . .

. . .
. . . 0

...
. . . bN−1 aN−1

aN · · · 0 aN−1 bN


, B =



0 a1 · · · · · · −aN

−a1 0
...

...
...

. . .
. . .

. . .
...

...
. . .

. . . aN−1
aN · · · · · · −aN−1 0


.

The system in question is written in the form Ȧ = [B,A]. Since Ik =
1
k

trAk, k = 1,2, ...,N, are first integrals (see theorem 2.1), then

İk = tr(Ȧ.Ak−1) = tr([B,A].Ak−1) = tr(BAk−ABAk−1) = 0.

Notice that I1 is the first integral already know. These N first integrals are functionally independent and in involution, the system in question
is thus completely integrable.
(ii) The periodic case, i.e., y j+N = y j , x j+N = x j , the connected masses will be arranged on a circle. We show that in this case, the spectrum
of the periodic matrix

A(h) =



b1 a1 0 · · · aNh−1

a1 b2
...

...

0
. . .

. . .
. . . 0

...
. . . bN−1 aN−1

aNh · · · 0 aN−1 bN


,

remains invariant in time. The matrix B(h) depending on the spectral parameter h, has the form

B(h) =



0 a1 · · · · · · −aNh−1

−a1 0
...

...
...

. . .
. . .

. . .
...

...
. . .

. . . aN−1
aNh · · · · · · −aN−1 0


,
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and the rest follows from the general theory. Note that if a j(0) 6= 0, then a j(t) 6= 0 for all t. Since A>(h) = A(h−1), the spectral curve C is
given by

0 = det(A(h)− zI) = P
(

1
h
,z
)
≡ P(h,z).

By the antisymmetry of A, the curve C has an involution

τ : C −→C, (h,z) 7−→
(

1
h
,z
)
. (3.12)

We choose

A(h) =

 0 ... aN
...

. . .
...

0 ... 0

h−1 +


b1 a1
a1 b2

. . .
bN−1 aN−1
bN aN

+

 0 ... 0
...

. . .
...

aN ... 0

h.

Note that here the matrix A is meromorphic (whereas previously we considered it to be a polynomial in h) but we will see that we can adopt
the theory explained in this section, to this situation too . We have

P(h,z) =−a1.a2...aN−1.

(
h+

1
h

)
+ zN + c1zN−1 + · · ·+ cN .

Let us assume that a1.a2...aN−1 6= 0 and pose

Q(h,z)≡ P(h,z)

∏
N−1
j=1 a j

= h+
1
h
+

zN + c1zN−1 + · · ·+ cN

∏
N−1
j=1 a j

= h+
1
h
+d0zN +d1zN−1 + · · ·+dN .

In P2(C), the affine algebraic curve of equation Q(h,z) = 0, is singular at infinity and to determine the genus g of its normalization, we
proceed as follows : note that the curve C appears as a double sheeted covering of P1(C) branched into 2N points coinciding with the fixed
points of involution σ (3.12), that is, points where h =±1. Using the Riemann-Hurwitz formula, we obtain

g = 2
(

g(P1(C))−1
)
+1+

2N
2

= N−1.

Consider the covering C −→ P1(C) below and P , Q located on two separate sheets. By putting
1
z
(∞) = P +Q, we see from the

equation Q(h,z) = 0, that the divisor of h is (h) = NP −NQ and in that case, the divisor D is written D = NP +NQ, which implies
that B ∈ H0(D,Hom(V,V (D)). The residue ς(B) ∈ H0(D,OD(D) satisfies the conditions of theorem 2.7, and consequently the linear flow
is given by the application (2.8). To compute the residue ς(B) of B, we will determine a set of holomorphic eigenvectors, using the van
Moerbeke-Mumford method described above. Let us calculate the residue in Q and the result will be similarly deduced in P . Consider a

general divisor E of degree g, of the form E =
g

∑
j=1

r j such that : dimL (E+(k−1)P−kQ) = 0, for all k. We deduce from Riemann-Roch’s

theorem that dimL (E + kP− kQ)≥ 1, and therefore dimL (E + kP− kQ) = 1, for all k. Let

( fk) ∈L (E + kP− kQ) = H0(C,OC(E + kP− kQ)), 1≤ k ≤ N

be a basis with fN = h. We can choose a vector v of the following form v = ( f1, ..., fN)>, such that v is an eigenvector of A, i.e., Av = zv,
(h,z) ∈C. Hence, V = h−1v is a holomorphic eigenvector. Without restricting generality, we take N = 3. The system Av = zv, is written
explicitly

b1 f1 +a2 f2 +a3 = z f1,

a1 f1 +b2 f2 +a2h = z f2,

a3h f1 +a2 f2 +b3h = zh.

By multiplying each equation of this system by
1
h

, everything becomes holomorphic except the last equation, i.e., a3 f1 = z+Taylor. Recall

that the section of OD(D) induced by λ in the equation (2.7) : Bv = v̇+λv, is the residue ς(B) of B. In other words,

Bv = ς(B)v+Taylor,

and therefore  a1 f2
h −

a3
h

− a1 f1
h +a2

a3 f1− a2 f2
h

=

 0
0
z

+Taylor.

We deduce that ς(B) =
z
h

, and ς(Ḃ) = 0. The same conclusion holds for the residue in P . Consequently, the flow in question linearizes on
the Jacobian variety of C.
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4. Algebraically integrable systems

Consider the nonlinear system of differential equations :

dz1

dt
= f1 (t,z1, ...,zn) ,

... (4.1)
dzn

dt
= fn (t,z1, ...,zn) ,

where f1, ..., fn are functions of n+1 complex variables t,z1, ...,zn and which apply a domain of Cn+1 into C. The Cauchy problem is the
search for a solution (z1(t), ...,zn(t)) in a neighborhood of a point t0, satisfying the initial conditions : z1(t0) = z0

1, ...,zn(t0) = z0
n. The system

(4.1) can be written in vector form in Cn,

dz
dt

= f (t,z(t)), z = (z1, ...,zn), f = ( f1, ..., fn).

In this case, the Cauchy problem will be to determine the solution z(t) such that z(t0) = z0 = (z0
1, ...,z

0
n). When the functions f1, ..., fn are

holomorphic in the neighborhood of
(
t0,z0

1, ...,z
0
n
)
, then the Cauchy problem admits a holomorphic solution and only one. A question arises

: can the Cauchy problem admits some non-holomorphic solution around
(
t0,z0

1, ...,z
0
n
)
? When f1, ..., fn are holomorphic, the answer is

negative. Other circumstances may arise for the Cauchy problem concerning the system of differential equations (4.1), when the holomorphic
hypothesis relative to the functions f1, ..., fn is no longer satisfied in the neighborhood of a point. In such a case, it can be seen that the
behavior of the solutions can take on the most diverse aspects. In general, the singularities of the solutions are of two types : mobile or fixed,
depending on whether or not they depend on the initial conditions. Important results have been obtained by Painlevé [31]. Suppose that the
system (4.1) is written in the form

dz1

dt
=

P1(t,z1, ...,zn)

Q1(t,z1, ...,zn)
,

...
dzn

dt
=

Pn(t,z1, ...,zn)

Qn(t,z1, ...,zn)
,

where

Pk (t,z1, ...,zn) = ∑
0≤i1,...,in≤p

A(k)
i1,...,in (t)zi1

1 ...z
in
n , 1≤ k ≤ n,

Qk (t,z1, ...,zn) = ∑
0≤ j1,..., jn≤q

B(k)
j1,..., jn(t)z

j1
1 ...z jn

n , 1≤ k ≤ n,

polynomials with several indeterminate z1, ...,zn and algebraic coefficients in t. There are two cases: (i) the fixed singularities are
constituted by four sets of points. The first set contains the singular points of the coefficients A(k)

i1,...,in (t), B(k)
j1,..., jn (t) intervening in

the polynomials Pk (t,z1, ...,zn) and Qk (t,z1, ...,zn). In general this set contains t = ∞. The second set consists of the points α j such

that : Qk (t,z1, ...,zn) = 0, which occurs if all the coefficients B(k)
j1,..., jn (t) vanish for t = α j. The third is the set of points βl such that

for some values (z1′ , ...,zn′) of (z1, ...,zn), we have Pk (βl ,z1′ , ...,zn′) = Qk (βl ,z1′ , ...,zn′) = 0. Then the second members of the above

system are presented in the indeterminate form
0
0

at the points (βl ,z1′ , ...,zn′). Finally, the set of points γn such that there exist u1, ...,un,

for which Rk (γn,u1, ...,un) = Sk (γn,u1, ...,un) = 0, where Rk and Sk are polynomials in u1, ...,un obtained from Pk and Qk by setting

z1 =
1
u1

, . . . ,zn =
1
un

. Each of these sets contains only a finite number of elements. The system in question has a finite number of fixed

singularities. (ii) the mobile singularities of solutions of this system are algebraic : poles and (or) algebraic critical points. There are no
essential singular points for the solution (z1, ...,zn).
We will use the method of indeterminate coefficients to find sufficient conditions for the existence and uniqueness of the meromorphic
solution of the Cauchy problem concerning the system (4.1). The solution will be expressed in the form of Laurent expansions in t and such
a solution is formal because we obtain it by performing on various series, which we assume a priori convergent, various operations whose
validity remains to be justified. The problem of convergence will therefore arise. The result will therefore be established as soon as we
have verified that these series are convergent. This will be done using the majorant method [32]-[34]. Without restricting the generality, we
consider the Cauchy problem relative to the normal system (4.1) where f1, ..., fn do not depend explicitly on t, i.e.,

dz1

dt
= f1 (z1, ...,zn) ,

... (4.2)
dzn

dt
= fn (z1, ...,zn) .

We suppose that f1, ..., fn are rational functions in z1, ...,zn and that the system (4.2) is weight-homogeneous, i.e., there exist positive integers
l1, ..., ln such that :

fi(α l1 z1, ...,α
ln zn) = α

li+1 fi(z1, ...,zn), 1≤ i≤ n,
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for each non-zero constant α . Note that if the determinant det
(

z j
∂ fi
∂ z j
−δi j fi

)
1≤i, j≤n

6≡ 0, then the numbers s1, ...,sn are unique. In order

to facilitate the notations, we will assume (without loss of generalities) that t0 = z0 = 0.

Theorem 4.1. Suppose that

zi =
1
tki

∞

∑
k=0

z(k)i tk, 1≤ i≤ n, z(0) 6= 0 (4.3)

(ki ∈ Z, some ki > 0) is the formal solution (Laurent series), obtained by the method of undetermined coefficients of the weight-homogeneous
system (4.2). Then the coefficients z(0)i satisfy the nonlinear equation

kiz
(0)
i + fi(z

(0)
1 , ...,z(0)n ) = 0, 1≤ i≤ n,

while z(1)i ,z(2)i , ... are solution of the following system of linear equations :

(L− kI )z(k) = some polynomial in the z( j), 0≤ j ≤ k,

where z(k) = (z(k)1 , ...,z(k)n )> and L≡
(

∂ fi
∂ z j

(z(0))+δi jki

)
1≤i, j≤n

, is the Jacobian matrix. Moreover, the formal series (4.3) are convergent.

The coefficients z(k)i are determined unequivocally with the adopted method of calculation which explains why the series (4.3) is the only
meromorphic solution. Moreover, the result of the previous theorem applies to the following quasi-homogeneous differential equation of
order n :

dnz
dtn = f

(
z,

dz
dt

, ...,
dn−1z
dtn−1

)
.

f being a rational function in z,
dz
dt

, ...,
dn−1z
dtn−1 and z(0) = z0

1,
dz
dt

(0) = z0
2,...,

dn−1z
dtn−1 (0) = z0

n. Indeed, the differential equation above reduces
to the following system :

z(t) = z1 (t) ,
dz
dt

(t) = z2 (t) , ...,
dn−1z
dtn−1 (t) = zn (t) .

We thus obtain

dz1

dt
= z2,

dz2

dt
= z3, ...,

dzn−1

dt
= zn,

dzn

dt
= f (z1,z2, ...,zn) .

Such a system constitutes a particular case of the normal system (4.2).

Let XH be a Hamiltonian vector field defined by

ż≡ dz
dt

= J
∂H
∂ z
≡ f (z), z ∈ Rm (4.4)

where J = J(z) is a skew-symmetric matrix polynomial in z of rank 2n, such that the Poisson bracket {H,F}=
〈

∂H
∂ z

,J
∂F
∂ z

〉
satisfies the

Jacobi identity. The system (4.4) is algebraic complete integrable (in abbreviated form : a.c.i.) when J has polynomial entries and when the
following conditions hold :
i) The system is completely integrable with polynomial invariants H1, ...,Hn+k. It means that besides the k invariants H1, ...,Hk (Casimir

functions), i.e., such that J
∂Hi

∂ z
(z) = 0, 1≤ i≤ k, the system admits n =

m− k
2

invariants Hk+1 = H,...,Hk+n in involution, i.e., such that{
Hi,H j

}
= 0. These give rise to n commuting vector fields. For generic ci, the invariant manifolds (level surfaces)

n+k⋂
i=1
{z ∈ Rm : Hi = ci} ,

are compact, connected and therefore real tori according to the Arnold-Liouville theorem [12].
ii) The invariant manifolds (level surfaces) thought of as lying in Cm,

n+k⋂
i=1
{z ∈ Cm : Hi = ci},

are related, for generic ci, to Abelian varieties T n = Cn/Lattice (complex algebraic tori) as follows :

n+k⋂
i=1
{z ∈ Cm : Hi = ci}= T n\D,

where D is a divisor (codimension one subvarieties) in T n. The coordinates zi are meromorphic on T n and D is the minimal divisor on T n

where the variables zi blow up. The flows (4.4) run with complex time are straight-line motions on T n.
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As the reader has surely noted, we have insisted in the above definition that invariants must be polynomials. But it must be understood that
the existence of a sufficient number of polynomial invariants does not necessarily imply the algebraic complete integrability of the system in
question. To convince ourselves of this, it is enough to consider the following Hamiltonian system whose Hamiltonian is

H((x,y) =
x2

2
+Pn(y),

where Pn(y) is a polynomial in y of degree n. We show that such a system is algebraically completely integrable if and only if n = 3 or 4, and
the explicit resolution of the system is done using elliptic functions. So a natural question arises : given a completely integrable system with
polynomial invariants, what makes it algebraically completely integrable? Mumford gives in his book [21] a definition of the algebraic
complete integrability including also non compact and explains (although it has nothing to do with the system above) this extra feature as

follows : the vector fields XH1 , ...,XHn define on the real torus Mc =
n+k⋂
i=1
{Hi = ci} ⊂ R2n an addition law

⊕ : Mc×Mc −→Mc, (x,y) 7−→ x⊕ y = gt+s(p), p ∈Mc,

with x = gt(p), y = gs(p), gt(p) = gX1
t1 ...g

Xn
tn (p), where gXi

ti (p) denote the flow of XHi . From the polynomial nature of the vector fields X, this
addition law will always be real analytic. The algebraic complete integrability of the system in question means that this law of addition is
rational. In other words, we have (x⊕ y) j = R j(xi,yi,c), where R j(xi,yi,c) is a rational function of the coordinates xi, yi for all i = 1,2, ...,n.
Putting x = p, y = gXi

t (p), in the above formula, we notice that on the real torus Mc, the flows gXi
t (p) depend rationally on the initial condition

p. Moreover, a Weierstrass theorem on the functions admitting a law of addition, affirms that the coordinates xi restricted to the real torus :

Rn/lattice−→Mc, (t1, ..., tn) 7−→ zi (t1, ..., tn) ,

are Abelian functions. Geometrically, this means that the real torus Mc ≈ Rn/lattice is the affine part of an algebraic complex torus
(Abelian variety) T n 'Cn/lattice and the real functions zi (t1, ..., tn), (ti ∈ R), are the restrictions to this real torus of meromorphic functions
zi (t1, ..., tn), (ti ∈ C) of n complex variables, with 2n real periods (of which n real periods and n imaginary periods). It must be said that
Mumford’s explanation of the algebraic complete integrability of a completely integrable Hamiltonian system with polynomial invariants, is
of purely theoretical interest. Indeed, how do you recognise from the differential equations that, on a given level manifold, the commuting
vector fields define a rational addition law ? Painlevé [31] provides the following provocative example, among many others not necessarily in
the context of Hamiltonian mechanics. Consider on C2 the two polynomial commuting vector fields :

X1 : ẋ = x, ẏ = xy,

X2 : ẋ = 0, ẏ = y.

The flow

gX1
t (x0,y0) =

(
x0et ,yx0(et−1)

0

)
,

doest not depend rationally on the initial condition (x0,y0). Therefore, simply looking at the face of the equations does not answer the
question of whether the problem is algebraically completely integrable. The only method was to solve the problem explicitly in terms of
Abelian integrals.
Now if the system (4.4) is algebraically completely integrable, it means that the variables zi restricted to a generic complex invariant manifold
of the flows, are meromorphic functions on a complex torus Cn/lattice; in fact these are Abelian functions. By compactness, these functions
must blow up along a divisor (a codimension one subvariety) D⊂ Cn/lattice. Expanding the solutions of the system (4.4) near this divisor
and allowing the constants of the motion to vary, one gets meromorphic solutions depending on dimD+ ]Hi = m−1 parameters, because
dimD = n− 1 and ]Hi = n+ k is the number of constants of the motion. The fact that algebraic complete integrable systems possess
(m−1)-dimensional families of Laurent solutions, was implicitly used by Kowalewski [35] in her classification of integrable rigid body
motions. The following necessary condition was developed and used by Adler-van Moerbeke [36] :

Theorem 4.2. Suppose that the Hamiltonian system (4.4) is algebraically completely integrable with Abelian functions zi and for generic c,
the invariant tori related to this system do not contain elliptic curves. Then this system must admit enough meromorphic Laurent expansion
solutions in t ∈ C such that : each zi blows up at least once and Laurent expansion of zi, depend on m−1, free parameters. In addition, the
system in question has families of Laurent solutions depending on m−2, m−3, ..., m−n, parameters and the coefficients of each of these
solutions are rational functions on affine algebraic varieties of dimensions m−1, m−2, m−3,...,m−n.

The question is whether this criterion is sufficient and how it can be used to detect algebraically completely integrable systems. The idea of
the direct proof given by Adler-van Moerbeke[37, 38] is closely related to the geometric spirit of the real Arnold-Liouville theorem [12].
Namely, a compact complex n-dimensional variety on which there exist n holomorphic commuting vector fields which are independent
at every point is analytically isomorphic to a n-dimensional complex torus Cn/Lattice and the complex flows generated by the vector
fields are straight lines on this complex torus. Now a complex affine algebraic variety is never compact, unless it is 0-dimensional. So the

main problem will be to complete the affine variety Mc =
n+k⋂
i=1
{z ∈ Cm,Hi = ci}, into a non-singular compact complex algebraic variety

Mc = Mc∪D in such a way that the vector fields extend holomorphically along D and remain independent there. If this is possible, Mc is
an Abelian variety (an algebraic complex torus) and the coordinates zi restricted to Mc are Abelian functions. To compactifize Mc into an
algebraic complex torus, a naive guess would be to take the natural compactification

Mc =
n+k⋂
i=1

{
Z ∈ Pm(C),Hi(Z) = ciZ

deg Hi
0

}
,
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of Mc by projectivizing the equations. Indeed, this can never work for a general reason: an Abelian variety M̃c of dimension bigger or equal
than two is never a complete intersection, that is it can never be described in some projective space Pn(C) by n-dim M̃c global polynomial
homogeneous equations. In other words, if Mc is to be the affine part of an Abelian variety, Mc must have a singularity somewhere along the
locus at infinity, i.e., along all or part of the hyperplane section {Z0 = 0} at infinity. The trajectories of the vector fields (4.4) hit every point
of the singular locus at infinity and ignore the smooth locus at infinity. In fact, the existence of meromorphic solutions to the differential
equations (4.4) depending on some free parameters can be used to manufacture the tori, without ever going through the delicate procedure of
blowing up and down. Information about the tori can then be gathered from the divisor. A partial converse to theorem 4.2, can be formulated
as follows [36] :

Theorem 4.3. We assume that condition i) in the above definition of the algebraic complete integrability is satisfied. In addition, suppose
that the system (4.4) with k+n polynomial invariants have a coherent tree of Laurent solutions, i.e., it possesses families of Laurent solutions
in t, depending on n−1, n−2,..., m−n, free parameters. Then, this system is algebraic complete integrable and moreover, there are no
other Laurent solutions of m−1 dimension than those provided by the coherent set.

The study of the algebraic complete integrability of Hamiltonian systems, includes several passages to prove rigorously. Here we mention
the main passages. We saw that if the flow is algebraically completely integrable, the differential equations (4.4) must admits Laurent series
solutions

zi(t) =
1
tki

(
z(0)i + z(1)i + · · ·

)
, ki ∈ Z, i = 1,2, ...

where z(0)i ,z(1)i , ... are rational functions depending on m−1, free parameters. We must have ki = li and coefficients in the series must satisfy
at the 0thstep nonlinear equations,

fi
(

z(0)1 , ...,z(0)m

)
+giz

(0)
i = 0, 1≤ i≤ m, (4.5)

and at the kthstep, linear systems of equations :

(M − kI)z(k) =
{

0 for k = 1
polynomials in z(1), ...,z(k−1) for k > 1,

(4.6)

where M =
∂ f
∂ z

+gI |z=z(0) is the Jacobian matrix of the equations (4.5). If m− 1, free parameters are to appear in the Laurent series,

they must either come from the nonlinear equations (4.5) or from the eigenvalue problem (4.6), i.e., M must have at least m−1, integer
eigenvalues. These are much less conditions than expected, because of the fact that the homogeneity k of the constant H must be an
eigenvalue of L. The formal series solutions are convergent as a consequence of the majorant method. By substituting these series solutions
into the constants of motion Hi(z), 1 ≤ i ≤ n+ k, one eliminates some parameters linearly, leading to an algebraic relation between the
remaining parameters, which is nothing but the equation of the divisor D along which the zi blow up; if the differential equations admit l
families of Laurent meromorphic solutions of the form above, it means that D is formed by l algebraic curves. More precisely, you have to
prove that the set

D≡
{

zi(t),1≤ i≤ m, Laurent solutions such that : H j (zi(t)) = c j +Taylor part
}

defines one or several n−1 dimensional algebraic varieties (”Painlevé” divisor) having the property that
n+k⋂
i=1
{z ∈ Cm : Hi = ci}∪D, is a

smooth compact, connected variety with n commuting vector fields independent at every point, i.e., a complex algebraic torus Cn/lattice.
Note that the system of coordinates z1, ...,zm can be enlarged to a new set z0 = 1,z1, ...,zN having the property that for fixed but arbitrary
0≤ j ≤ N, we have

˙︷ ︸︸ ︷(
zi

z j

)
=

żiz j− ziż j

z2
j

= ∑
k,l

ak,l

(
zk

z j

)(
zl

z j

)
,

i.e., the ratios
zi

z j
form a closed system of coordinates under differentiation. Indeed, consider a point p ∈ D, a chart U j around p on the torus

and a function z j in L(D) having a pole of maximal order at p. Then the vector
(

1
z j
,

z1

z j
, . . . ,

zN

z j

)
provides a good system of coordinates

in U j. Then taking the derivative with regard to one of the flows

˙︷ ︸︸ ︷(
zi

z j

)
are finite on U j as well. Therefore, since z2

j has a double pole

along D, the numerator must also have a double pole (at worst), i.e., żiz j− ziż j ∈ L(2D). Hence, when the divisor D is projectively normal,
i.e., whenever L(kD) = L(D)⊗k which means that the space L(kD) is generated by homogeneous polynomials of degree k in some basis
elements of L(D). At the bad points, the concept of projective normality play an important role: this enables one to show that

zi

z j
is a

bona fide Taylor series starting from every point in a neighborhood of the point in question. Therefore, the flows J
∂Hk+i

∂ z
,..., J

∂Hk+n

∂ z
are straight line motions on this torus (for concrete applications, see for example [32, 36, 39, 40, 41, 42, 43]). Let’s point out that having
computed the space of functions L (D) with simple poles at worst along with the expansions, it is often important to compute the space of
functions L (kD) of functions having k-fold poles at worst along with the expansions. These functions play a crucial role in the study of
the procedure for embedding the invariant tori into projective space. As mentioned previously, the idea of the Adler-van Moerbeke’s proof
[37, 38] consists of using arguments similar to those used in the proof of the real Arnold-Liouville theorem [12], and we can call this result
the Liouville-Arnold-Adler-van Moerbeke theorem:
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Theorem 4.4. Let M̃ be an n-dimensional complex compact manifold with n independent meromorphic functions. Assume that :
(i) For some divisor D, there exist n non-vanishing holomorphic vector fields X1, ...,Xn on the affine variety M̃\D = M which commute and
are independent at every point.
(ii) One vector field, say Xk (where 1≤ k ≤ n), extends holomorphically on M̃ and having the property that, for all p ∈ D,{

gXk
tk (p) : 0 <| t |< ε, t ∈ C

}
⊂M,

where gXk
tk denote the flow of Xk. This condition means that the orbits of Xk through D go immediately into the affine part M and in particular,

the vector field Xk does not vanish on any point of D.
Then, M̃ is an Abelian variety and the vector fields X1, ...,Xn extend holomorphically and remain independent on M̃.

1) As an example, consider the Kac-van Moerbeke periodic lattice [44] given by the following system :
.
x j = x j(x j−1− x j+1), j = 1, ...,5

where (x1, ...,x5) ∈ C5 and x j = x j+5. This vector field forms a Hamiltonian system for the Poisson structure

{x j,xk}= x jxk(δ j,k+1−δ j+1,k), 1≤ j,k ≤ 5

and admits three independent first integrals

H1 = x1x3 + x2x4 + x3x5 + x4x1 + x5x2,

H2 = x1 + x2 + x3 + x4 + x5,

H3 = x1x2x3x4x5.

Note that H1 and H2 are involution while H3 is a Casimir, and the system in question is therefore integrable. The affine manifold

3⋂
j=1

{
x = (x1,x2,x3,x4,x5) ∈ C5 : H j(x) = c j

}
, (c1,c2,c3) ∈ C3, c3 6= 0

is isomorphic to Jac(C)\D where C is a curve of genus 2 given by the equation.

w2 =
(

z3− c1z2 + c2z
)2
−4z,

and D consists of five copies of C in the Jacobian variety Jac(C). The flows generated by H1 et H2 are linearized on Jac(C) and the system is
algebraically completely integrable. The reader interested in the study of this system via various methods can find further information with
more detail in [39] as well as in [45].

2) The problem we are going to study now is the generalized periodic Toda systems. We consider l +1 vectors e0, ...,el in the Euclidean
vector space (Rl+1,〈.|.〉), l ≥ 1, linearly dependent and such that they are l to l linearly independent (i.e, for all j, the vectors e0, ..., ê j, ...,el

are linearly independent). Suppose that the non-zero reals ξ0, ...,ξl satisfying
l

∑
j=0

ξ je j = 0 are non-zero sum; that is,
l

∑
j=0

ξ j 6= 0. Let

Ω = (ai j)0≤i, j≤l be the matrix where

ai j = 2
〈ei|e j〉
〈e j|e j〉

, 0≤ i, j ≤ l.

We consider the vector field XΩ on C2(l+1), defined by
.
x = x.y

.
y = Ax, (x,y ∈ Cl+1),

where x.y = (x0y0, ...,xlyl). It has been shown [32] that if XΩ is an integrable vector field of an irreducibly algebraically completely integrable
system, then Ω is the Cartan matrix of a twisted affine Lie algebra. Specific detailed results concerning this problem can be found on the
technical paper [39] and also in [32, 46] and references therein, about link between Abelian varieties, Dynkin diagrams, singularities and
Toda lattice. The periodic l +1 particle Toda lattices are associated to extended Dynkin diagrams. They are completely integrable and have
as many polynomial invariants as points in the Dynkin diagram. The affine variety defined by the intersections of the constants of the motion
is completed into an Abelian variety by the addition of a specific divisor D. The latter consists of l +1 irreducible components D j each
associated with a root α j of the extended Dynkin diagram ∆. The intersection of k components D j1 , ...,D jk satisfies the following relation :

the intersection multiplicity of the intersection of k components of the divisor equals
order(W )

det(Ω)
where W and A are the Weyl group and the

Cartan matrix going with the sub-Dynkin diagram α j1 , ...,α jk associated with the k components. The intersection of all the divisors except
one is a discrete set of points whose number is explicitly determined, but on the other hand the intersection of all the divisors are empty. The
set-theoretical number of points is given (in terms of the Dynkin diagram) by

Number of

 ⋂
β 6=α

Dβ

=
pα

p0

(
order(Weyl group of the Dynkin diagram ∆\α0)

order(Weyl group of the Dynkin diagram ∆\α)

)
,

where the integers pα , are given by the null vector of the Cartan matrix (going with the extended Dynkin diagram ∆). The singularities of the
divisor are canonically associated to semi-simple Dynkin diagrams and those of each component occur only at the intersections with other
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components and their multiplicities at the intersection with other divisors are expressed in terms of how a corresponding root is located in the
sub-Dynkin diagram determined by this root and those of the members of the above divisor intersection. We have

sing(Dk)⊆ Dk ∩ ∑
0≤ j≤l

j 6=k

D j, k = 0, ..., l

and this inclusion is valid for the singular locus sing(Dk) of Dk. The multiplicity of the singularity of a particular component Dk, at
its intersection with m other divisors is entirely specified by the way the corresponding root αk are located in the sub-Dynkin diagram
αk,α j1 , ...,α jm . (See [39], for proof of these results as well as other information).

There are many examples of Hamiltonian systems, called algebraic completely integrable in the generalized sense, for which all movable
singularities of the general solution have only a finite number of branches and the complex invariant manifolds are coverings of Abelian
varieties. These systems of differential equations possess solutions which are Laurent expansions containing n-th root terms of type n

√
t (t

being complex time) and whose coefficients depend rationally on certain algebraic parameters. In other words, for these systems just replace
in the above definition of the complete algebraic integrability of Hamiltoian systems, the condition ii) by by this one,

iii) the invariant manifolds
n+k⋂
i=1
{z ∈ Cm : Hi = ci} are related to an l-fold cover T̃ n of the torus T n ramified along a divisor D in T n as follows

:

n+k⋂
i=1
{z ∈ Cm : Hi = ci}= T̃ n\D.

Let Hm be a family of Hamiltonians [47, 48] :

Hm(x,y) =
1
2
(p2

x + p2
y)+αmVm(x,y), m = 1,2, ...

where

Vm(x,y) =
[m/2]

∑
k=0

(m− k)!2m−2k

k!(2k−m)!
x2kym−2k, m = 1,2, ...

It is easy to verify that the associated Hamiltonian systems have a second first integral :

Fm(x,y) = px(xpy− ypx)+αmx2Vm−1(x,y), m = 1,2, ...

and they are Liouville integrable. The study of the systems corresponding to the cases m≥ 3 is not obvious contrary to the cases m = 1 and
m = 2 whose study is immediate. For m = 3, the study is reduced to that of the Hénon-Heiles system [49]:

.
y1 = x1,
.
y2 = x2, (4.7)
.
x1 = −εy1−2y1y2,
.
x2 = −y2

1−16εy2−16y2
2,

corresponding to a generalized Hénon-Heiles Hamiltonian

H =
1
2
(x2

1 + x2
2)+

ε

2
(y2

1 +16y2
2)+ y2

1y2 +
16
3

y3
2,

where y1,y2,x1,x2 are canonical coordinates and momenta respectively and ε a constant parameter. The associated Hamiltonian system has
the following second constant of motion :

F = 3x4
1 +6εx2

1y2
1 +12x2

1y2
1y2−4x1x2y3

1−4εy4
1y2−4y4

1y2
2 +3ε

2y4
1−

2
3

y6
1.

The functions H and F commute : {H,F}=
2

∑
k=1

(
∂H
∂xk

∂F
∂yk
− ∂H

∂yk

∂F
∂xk

)
= 0. The system (4.7) admits Laurent solutions in

√
t, depending

on three free parameters : α , β , γ and they are explicitly given as follows

y1 =
α√

t
+β t
√

t− α

18
t2√t +

αε2

10
t3√t− α2β

18
t4√t + · · · ,

y2 = − 3
8t2 −

ε

2
+

α2

12
t− 2ε2

5
t2 +

αβ

3
t3− γt4 + · · · , (4.8)

x1 = −1
2

α

t
√

t
+

3
2

β
√

t− 5
36

αt
√

t +
7

20
αε

2t2√t− 1
4

α
2
β t3√t + · · · ,

x2 =
3

4t3 +
1
12

α
2− 4

5
ε

2t +αβ t2−4γt3 + · · ·
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As previously mentioned, the convergence of these series results from the majorant method. By replacing these series in the equations H = a,
F = b, one eliminates one parameter linearly, leading to an algebraic relation between the two remaining parameters, which is nothing but
the equation of an algebraic curve D along which the (y1(t),y2(t),x1(t),x2(t)) blow up. To be more precise, we have

H =
1
9

α
2− 21

4
γ +

13
288

α
4 +

4
3

ε
3 = a,

F = −144αβ
3 +

294
5

α
3
βε

2 +
8
9

α
6−33γα

4 = b,

which implies that

144αβ
3− 294ε2

5
α

3
β +

143
504

α
8− 4

21
α

6 +
44
21

(
4ε

3−3a
)

α
4 +b = 0.

Let

A =
2⋂

k=1

{(y1,y2,x1,x2) ∈ C4 : H(y1,y2,x1,x2) = a,F(y1,y2,x1,x2) = b}, (4.9)

be the smooth affine surface defined by putting the two invariants H and F equal to generic constants a and b. The Laurent expansions above
where (y1(t),y2(t),x1(t),x2(t)) blow up contain square root terms of the type

√
t and admit three free parameters and in addition these

solutions restricted to the surface A are parameterized by the curve D. We will see that (4.7) is in fact a generalized algebraic completely
integrable system but is part of a new system that is algebraically completely integrable. This latter is a system of five nonlinear differential
equations with five unknowns having three first integrals, two of which are cubic and one is quartic. By inspection of the expansions (4.8),
we look for polynomials in (y1,y2,x1,x2) without fractional exponents, which suggests considering the following change of variables :

z1 = y2
1, z2 = y2, z3 = x2, z4 = y1x1, z5 = 3x2

1 +2y2
1y2. (4.10)

Note that this change of variables determines a morphism on the affine variety A (4.9). Using the two first integrals H, F and differential
equations (4.7), we obtain the following system :

ż1 = 2z4,

ż2 = z3,

ż3 = −z1−16εz2−16z2
2, (4.11)

ż4 = −εz1−
8
3

z1z2 +
1
3

z5,

ż5 = 2z1z3−8z2z4−6εz4,

having two cubic and one quartic invariants (constants of motion),

G1 =
1
2

εz1 +
1
6

z5 +8εz2
2 +

1
2

z2
3 +

2
3

z1z2 +
16
3

z3
2,

G2 = 9ε
2z2

1 + z2
5 +6εz1z5−2z3

1−24εz2
1z2−12z1z3z4 +24z2z2

4−16z2
1z2

2,

G3 = z1z5−3z2
4−2z2

1z2.

This new system is a completely integrable Hamiltonian system where G1 is the Hamiltonian whose structure is determined by the bracket

{H,F}=
〈

∂H
∂ z

,J
∂F
∂ z

〉
,

the anti-symmetric matrix J defines a Poisson structure for which the corresponding Poisson bracket satisfies the Jacobi identity. The two
first integrals G1 and G2 are in involution while the latter G3 is trivial (i.e., a Casimir function). For generic values of constants c1, c2 and c3,
the invariant variety

B =
3⋂

k=1

{(z1,z2,z3,z4,z5) ∈ C5 : Gk(z1,z2,z3,z4,z5) = ck}, (4.12)

is a smooth affine surface. The differential equations (4.11) admit Laurent series expansions restricted to the surface B (4.12); these solutions
can be read off from (4.8) and the change of variable (4.10) and depend on four free parameters. We have shown that the change of variables
(4.10) transforms the system (4.7) into an algebraic completely integrable system (4.11) of five differential equations in five unknowns and
parallel to that, the affine variety A (4.9) is transformed into the affine part B (4.12) of an Abelian variety B̃. The Hamiltonian system (4.7) is
a generalized algebraic complete integrable system, the invariant surface A (4.9) can be completed as a cyclic double cover A of an Abelian
surface B̃ and in addition, A is smooth except at the point lying over the singularity of type A3 whose resolution Ã of A is a surface of general
type. This explains (among other) why the asymptotic solutions to the differential equations (4.7) contain fractional powers. All this is
summarized as follows [50] :

Theorem 4.5. The system (4.7) admits Laurent solutions with fractional powers depending on three free parameters and is algebraic
complete integrable in the generalized sense. In addition, this system is part of a new system of differential equations (4.11) in five unknowns
having two cubic and one quartic invariants (constants of motion). This last system possesses Laurent expansions (but without fractional
powers) depending on four free parameters and it is algebraically completely integrable.
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The case m = 4 corresponds to Ramani-Dorizzi-Grammaticos (RDG) potential [47, 48], whose corresponding system is given by

q̈1−q1

(
q2

1 +3q2
2

)
= 0, q̈2−q2

(
3q2

1 +8q2
2

)
= 0. (4.13)

These equations can be written in the form of an integrable Hamiltonian system whose Hamiltonian is given by

H1 =
1
2
(p2

1 + p2
2)−

3
2

q2
1q2

2−
1
4

q4
1−2q4

2.

The second first integral being

H2 = p4
1−6q2

1q2
2 p2

1 +q4
1q4

2−q4
1 p2

1 +q6
1q2

2 +4q3
1q2 p1 p2−q4

1 p2
2 +

1
4

q8
1.

The first integrals H1 and H2 are obviously in involution. For generic (b1,b2) ∈ C2, the affine variety B defined by

B =
2⋂

k=1

{z ∈ C4 : Hk(z) = bk}, (4.14)

is a smooth surface. The solutions of the differential equations (4.13) in the form of Laurent’s series depend on three free parameters u,v,w.
and are written

q1 =
1√
t

(
u− 1

4
u3t + vt2− 5

128
u7t3 +

1
8

u(
3
4

u3v− 7
256

u8 +3κw)t4 + · · ·
)
,

q2 =
1
t

(
1
2

κ− 1
4

κu2t +
1
8

κu4t2 +
1
4

κu(
1
32

u5−3v)t3 +wt4 + · · ·
)
, (4.15)

p1 =
1

2t
√

t

(
−u− 1

4
u3t +3vt2− 25

128
t3u7 +

7
8

u
(

3
4

u3v− 7
256

u8 +3κw
)

t4 + · · ·
)
,

p2 =
1
t2

(
−1

2
κ +

1
8

κu4t2 +
1
2

κu
(

1
32

u5−3v
)

t3 +3wt4 + · · ·
)
,

where κ =±1. The convergence of these series derives from the the majorant method. Note that these solutions contain square root terms of
type

√
t, and we will see that these terms can be removed by introducing the variables z1,z2,z3,z4,z5 (4.17) which restores the Painlevé

property (that is, the only singularities are poles) of the system in question. Substituting (4.15) in the invariants H1 = b1 and H2 = b2, after
eliminating the parameter w, we obtain the following equation (of a curve of genus 16 denoted Γ) connecting the parameters u and v :

a1uv3 +a2u6v2−a3u11v+a4b1u3v−a5u16−a6b1u8 +b2 +a7 = 0. (4.16)

where a1 = 65
4 , a2 = 93

64 , a3 = 29487
8192 , a4 = 78336

8192 , a5 = 10299
65536 , a6 = 123

256 , a7 = 1536298731
52 . Consider on the variety B (4.14), the following

morphism

ψ : B −→ C5, (q1,q2, p1, p2) 7−→ (z1,z2,z3,z4,z5),

where

z1 = q2
1, z2 = q2, z3 = p2, z4 = q1 p1, z5 = p2

1−q2
1q2

2. (4.17)

These variables are easily obtained by simple inspection of the series (4.15). By using the variables (4.17) and differential equations (4.13),
one obtains

ż1 = 2z4,

ż2 = z3,

ż3 = z2(3z1 +8z2
2), (4.18)

ż4 = z2
1 +4z1z2

2 + z5,

ż5 = 2z1z4 +4z2
2z4−2z1z2z3.

This new system on C5 admits the following three first integrals

F1 =
1
2

z5− z1z2
2 +

1
2

z2
3−

1
4

z2
1−2z4

2,

F2 = z2
5− z2

1z5 +4z1z2z3z4− z2
1z2

3 +
1
4

z4
1−4z2

2z2
4, (4.19)

F3 = z1z5 + z2
1z2

2− z2
4.

The first integrals F1 and F2 are in involution , while F3 is trivial (Casimir function). The invariant variety A defined by

A =
3⋂

k=1

{(z1,z2,z3,z4,z5) ∈ C5 : Fk(z1,z2,z3,z4,z5) = ck}, (4.20)
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is a smooth affine surface for generic values of (c1,c2,c3) ∈ C3. The system (4.18) is completely integrable and possesses Laurent series
solutions which depend on four free parameters α,β ,γ et θ :

z1 =
1
t

α− 1
2

α
2 +β t− 1

16
α

(
α

3 +4β

)
t2 + γt3 + · · · ,

z2 =
1
2t

κ− 1
4

κα +
1
8

κα
2t− 1

32
κ

(
−α

3 +12β

)
t2 +θ t3 + · · · ,

z3 = − 1
2t2 κ +

1
8

κα
2− 1

16
κ

(
−α

3 +12β

)
t +3θ t2 + · · · , (4.21)

z4 = − 1
2t2 α +

1
2

β − 1
16

α

(
α

3 +4β

)
t +

3
2

γt2 + · · · ,

z5 =
1

2t2 α
2− 1

4t

(
α

3 +4β

)
+

1
4

α

(
α

3 +2β

)
−
(

α
2
β −2γ +4κθα

)
t + · · · ,

where κ =±1. The convergence of these series is guaranteed by the majorant method. By replacing these series in the equations F1 = c1,
F2 = c2, F3 = c3 one eliminates two parameters γ and θ linearly, leading to an algebraic relation between the two remaining parameters,
which is the equation of an algebraic curve C of genus 7,

64β
3−16α

3
β

2−4
(

α
6−32α

2c1−16c3

)
β +α

(
32c2−32α

4c1 +α
8−16α

2c3

)
= 0. (4.22)

The Laurent solutions restricted to the surface A (4.20) are thus parameterized by two copies C−1 and C1 of the same Riemann surface C
(4.22) and we embed these curves in a hyperplane of P15(C) using the sixteen functions :

1, z1, z2, 2z5− z2
1, z3 +2κz2

2, z4 +κz1z2, W ( f1, f2), f1( f1 +2κ f4), f2( f1 +2κ f4), z4( f3 +2κ f6),

z5( f3 +2κ f6), f5( f1 +2κ f4), f1 f2( f3 +2κ f6), f4 f5 +W ( f1, f4), W ( f1, f3)+2κW ( f1, f6), f3−2z5 +4 f 2
4 ,

where W (s j,sk)≡ ṡ jsk− s j ṡk is the Wronskian. The curves C1 and C−1 have double points in common where they are tangent to each other
and which are a singularity of type A3 of C1 +C−1. The Hamiltonian system (4.13) is algebraic complete integrable in the generalized sense
and the invariant surface B (4.14) is completed as a cyclic double cover B of the Abelian surface Ã, ramified along the divisor C1 +C−1.
In addition, B is smooth except at the singularity above and the resolution B̃ of B is a surface of general type. Let G be a cyclic group of
two elements {−1,1} on V j

ε =U j
ε ×{τ ∈ C : 0 < |τ|< δ}, where τ =

√
t and U j

ε is an affine chart of Γε for which the Laurent expansions
(4.21) are well defined. Since the action of G is defined by (−1)◦ (u,v,τ) = (−u,−v,−τ) and is without fixed points in V j

ε , then the quotient
V j

ε /G identifies itself with the image of the smooth map h j
ε : V j

ε −→ B defined by the Laurent series (4.21). We have

(−1,1).(u,v,τ) = (−u,−v,τ), (1,−1).(u,v,τ) = (u,v,−τ),

which means that G×G acts separately on each coordinate and so,, identifying V j
ε /G2 with the image of ψ ◦h j

ε in A. Note that, except for a
finite number of points, B j

ε = V j
ε /G is smooth and the coherence of the B j

ε follows from the coherence of V j
ε and the action of G. After

gluing various varieties B j
ε\{some points} on B, we obtain a smooth complex manifold B̂ which is a double cover of the Abelian variety Ã

ramified along C1 +C−1, and therefore can be completed to an algebraic cyclic cover of Ã. We would like to know information on the points
that are missing. For this, we must examine the image of Γ×{0} in ∪B j

ε . The quotient Γ×{0}/G is birationally equivalent to the curve ϒ

defined by the equation :

a1y3 +a2x3y2−a3x6y+a4b1x2y−
(

a5x8 +a6b1x4−b2−a7

)
x = 0,

and its genus is 7, where a1, ...,a7, have been defined above and y = uv,x = u2. The curve ϒ is birationally equivalent to C and the
only points of ϒ fixed under (u,v) 7−→ (−u,−v) are the points at ∞. These correspond to the (double) ramification points of the map
Γ×{0} −→ ϒ : (u,v) 7−→ (x,y), and coincide with the points at ∞ of the curve C. The variety B̂ constructed above is birationally equivalent
to the compactification B of B and B is a cyclic double cover of the Abelian surface Ã. The system (4.13) is algebraic complete integrable in
the generalized sense and B is smooth except at the point lying over the singularity (of type A3) of C1 +C−1. The resolution B̃ of singularities
of B, is a surface of general type with invariants : Euler characteristic of B̃ =1 and geometric genus of B̃=2. In conclusion, we have [51],

Theorem 4.6. The Hamiltonian system (4.13) is algebraic complete integrable in the generalized sense and possess Laurent expansions
depending on three free parameters : u,v,w, and containing square root terms of type

√
t. These Laurent solutions restricted to the affine

manifold B (4.14) are parameterized by two copies Γ1 and Γ−1 of an algebraic curve Γ (4.16) of genus 16. This system is part of a new
algebraically completely integrable system (4.18) in five unknowns and having three quartics invariants (4.19). The complex invariant
manifold A (4.20) defined by putting these polynomial invariants equal to generic constants is the affine part of an Abelian surface Ã with
Ã\A =C1 +C−1, where the divisor C1 +C−1 is very ample and consists of two components C1 and C−1 of a genus 7 curve C (4.22). In
addition, the invariant manifold B is completed into a cyclic double cover B of the Abelian surface Ã, ramified along the divisor C1 +C−1 in
such a way that the vector fields extend holomophically alond this divisor and remain independent there. Moreover, B is smooth except at
the point lying over the singularity (of type A3) of C1 +C−1 and the resolution B̃ of B is a surface of general type with invariants : Euler
characteristic of B̃=1 and geometric genus of B̃=2.

5. Conclusion

At the end of this paper, it is worth to mention some similar problems as well as recent results. Abelian varieties, very heavily studied by
algebraic geometers, enjoy certain algebraic properties which can then be translated into differential equations and their Laurent solutions.
Among the results presented in this paper, there is an explicit calculation of invariants for Hamiltonian systems which cut out an open set in
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an Abelian variety and various algebraic curves related to these systems are given explicitly. The integrable systems presented here are
interesting problems, particular to experts of Abelian varieties who may want to see explicit examples of correspondence for varieties defined
by different algebraic curves. The methods used are primarily analytical but heavily inspired by algebraic geometrical methods. The concept
of algebraic complete integrability is quite effective in small dimensions and has the advantage to lead to global results, unlike the existing
criteria for real analytic integrability, which, at this stage are perturbation results. In fact, the overwhelming majority of dynamical systems,
Hamiltonian or not, are non-integrable and possess regimes of chaotic behavior in phase space. The methods used are primarily analytical
but heavily inspired by algebraic geometrical methods. Abelian varieties and cyclic coverings of Abelian varieties, very heavily studied by
algebraic geometers, enjoy certain algebraic properties which can be translated into differential equations and their Laurent solutions.
In recent years, other important results have been obtained following studies on the KP and KdV hierarchies. The use of tau functions related
to infinite dimensional Grassmannians, Fay identities, vertex operators and the Hirota’s bilinear formalism led to obtaining remarkable
properties concerning these algebras of infinite order differential operators as for example the existence of an infinite family of first integrals
functionally independent and in involution. The elaboration of powerful methods and the discovery of their common algebraic structures
led to important developments concerning the study of nonlinear problems. The functions τ(t) are specific functions of time, constructed
from sections of a determinant bundle on an infinite-dimensional Grassmannian manifold. These functions generalize the Riemann theta
functions and they are solutions of the KP hierarchy, i.e, solutions of an infinite series of nonlinear partial differential equations connecting
infinity of functions of infinity variables. The functions τ(t) can be Schur polynomials, falling within Fredholm’s group representation
theory or determinants. Recently, a new type of tau function has appeared, within the framework of quantum gauge theory with gauge group
SU(N) when N is large. This led to the so-called matrix models (quantum gravity) for counting triangulations on certain surfaces (topology).
The underlying models have remained relatively intractable except in two space-time dimensions; although being physically toy models,
their structure is still very rich. The first tau function was introduced by Sato, Miwa, and Jimbo in relation to the theory of isomonodromic
deformations. It has been defined as a correlation function of certain quantum fields associated with the poles of a Fuchsian system on the
Riemann sphere. These functions give information on the topology of moduli spaces of Riemann surfaces and are closely related to the
theory of representations of Virasoro algebras and W-algebras. The τ(t) functions play an important role in a large number of branches of
mathematics and theoretical physics, such as integrable systems, string theories, quantum-gauge theories, isomonodromic deformations,
matrix models (quantum gravity), the associated matrix integrals which have power series expansions (perturbative series) and whose terms
count the triangulations on surfaces (Feynman graphs), the module problems and in many other domains. Many problems related to algebraic
geometry, combinatorics, probabilities and quantum gauge theory,..., have been solved explicitly by methods inspired by techniques from the
study of integrable systems. In particular, the study of random matrices, a domain that establishes links with several problems, for example
with combinatorics, probabilities, number theory, models of growth and random tailings and questions of communication technology. The
functions τ(t) are the source of inspiration for many mathematicians and physicists in search of new algebraic structures appearing in
mathematics and physics. The vertex operators give a good device to the investigation of the matrix models and the spectrum of the stochastic
matrices. An account of these results will appear elsewhere.
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