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provided in the Nigerian Pension Reform Act of 2004. The plan member is free to invest in
risk-free asset and two risky assets. A stochastic differential equation of the pension wealth
that takes into account certainly agreed proportions of the plan member’s salary, paid as a
contribution towards the pension fund, is presented. The Hamilton-Jacobi-Bellman (H-J-B)
equation, Legendre transformation, and dual theory are used to obtain the explicit solution
of the optimal investment strategies for CRRA utility function. Our investigation reveals
that the inflation has significant negative effect on optimal investment strategy, particularly,
the CCRA is not constant with the investment strategy since the inflation parameters and
coefficient of CRRA utility function have insignificant input on the investment strategy.

1. Introduction

There are two major designs of pension plan, namely, the defined benefit (DB) pension, and the defined contribution (DC) pension plan. As
the names implies, in that of the DB, the benefits of the plan member are defined, and the sponsor bears the financial risk. Whereas, in the
DC pension plan, the contributions are defined, the retirement benefits depends on the contributions and the investment returns, and the
contributors (the plan members) bears the financial risk. Recently, the DC pension has taken dominance over the DB pension plan in the
pension scheme, since DC pension plan is fully funded, which makes it easier for the plan managers (Pension Fund Administrators (PFAs’)
and the Pension Fund Custodians (PFCs’) to invest equitably in the market, and also makes it easier for the plan members to receive their
retirement benefit as and when due.

Investment strategies of the contributions, which in turn is a strong determinant of the investment returns vis-a-vis the benefits of the
contributors at retirement must be given optimum attention. Recent publications in economic Journals and other reputable Mathematics and
Science Journals have brought to light, a variety of methods of optimizing investment strategies and returns. For instance, some researchers
have made various contributions in this direction, particularly, in DC Pension Plan. [1] did work on, “stochastic life styling: optimal dynamic
asset allocation for defined contribution pension plans. In their work, various properties and characteristics of the optimal asset allocation
strategy, both with and without the presence of non-hedge able salary risk were discussed. The significance of alternative optimal strategy by
pension providers was established.

In order to deal with optimal investment strategy, the need for maximization of the expected utility of the terminal wealth became necessary.
Example, the Constant Relative Risk Aversion (CRRA) utility function, and (or) the Constant Absolute Risk Aversion (CARA) utility
function were used to maximize the terminal wealth. [1]-[4], and [5] used CRRA to maximize terminal wealth. However, [6] used the CRRA
and the CARA to maximize terminal wealth.

[7] applied the well-known H-J-B equation, Legend transform, and dual theory to obtain the explicit solutions of CRRA and CARA utility
function, for the maximization of the terminal wealth. In 2012, Nan-wei Han et al took a different direction. The investigated optimal asset
allocation for DC pension plans under inflation. In their work, the retired individuals receive an annuity that is indexed by inflation and a

Email addresses: kevinnjoku60@yahoo.com, 0000-0002-4430-4159 (K. N. C. Njoku) Osu.bright @mouau.edu.ng, 0000-0003-2463-430X (B. O. Osu)



92 Fundamental Journal of Mathematics and Applications

downside protection on the amount of this annuity is considered. More so, in 2015, [1] considered an Inflationary market. In their work, the
plan member made extra contribution to amortize the pension fund. The CRRA utility function was used to maximize the terminal wealth.
This triggered our research. Ours is to investigate and view the extent of damage the inflation may have caused to enable us to introduce, not
just an amortization fund, but an optimum amortization fund that would sufficiently dampen the effect of inflation. The approach used here is
similar to that of [5]. The models we used is that of [8], though, we considered inflation of globally competing goods, and some real life
assumptions are made to buttress this fact.

2. Preliminaries

We start with a complete and frictionless financial market that is continuously open over the fixed time interval [0, 7], for T > 0O, representing
the retirement time of any plan member.

We assume that the market is composed of the risk-free asset (cash), the inflation-linked bond, and risky asset (the stock price subject to
inflation). Let (Q, F,P) be a complete probability space, where Q is a real space and P is a probability measure, {W; (¢), W;(¢)} are two
standard orthogonal Brownian motions, {F; (t), F;(z)} are right continuous filtrations whose information are generated by the two standard
Brownian motions {Wj (¢), W;()}, whose sources of uncertainties are respectively to the inflation rate and the stock market. We assume also
that at the early stage of the inflation, before government intervention policy, {Wg (¢), Wi (¢)}, {Ws (¢), Wgr(¢)} are two standard orthogonal
Brownian motions, respectively.

Let C(r) denote the price of the risk free asset at time ¢ and it is modeled as follows

dC(r)
C(t)

= rp(t)dt,C(0) = 1

r(t) is the real interest rate process and is given by the stochastic differential equation (SDE)

drR(t) = (a — brg ([)) dt — O'RdWR(l‘),

or = Vkirg(t) + ky , >0,

where rg is a real interest rate, rg(0), k1, and k; are positive real numbers. If k; (resp., k) is equal to zero, we have a special case, as in [9],
[10] dynamics. So under these dynamics, the term structure of the real interest rates is affine, which has been studied by [7], [4], [11] and [2].
Let S(¢) denote the price of the risky asset subject to inflation and its dynamics is given based on a continuous time stochastic process at
¢t > 0 and the dynamics of the price process is described as follows
as(t) = (rr(t) +A105° + 407 50p)dt + 6°sdW; + o' dWy, S(0) = 1 Q2.1
S ( t) = \'R 10s 20 50U N s N I, = .
premium associated with the positive volatility constants 6,° and ¢’ , respectively, see [4]. 6 represents the inflation price m with A1 and 2>
represents the instantaneous market risk.
An inflation-linked bond with maturity 7', whose price at time ¢ is denoted by B (,1(¢)), t > 0, and its evolution is given by the SDE below
(see [8])

dB(t, I(1)), )
B(t, I(1)),

Let us denote the stochastic wage of the plan member, at time #, by P(¢) which is described by

= (rr (t)+ 0167)dt +01dW(t), B(T, I(T)) =1 (2.2)

‘;PT(;)) = pp(t) di+ & pdWi(t) + o’ ,dWy(1),

where, U, (1) denotes the expected instantaneous rate of the wage, while 6*,, and o! p denote the two volatility scale factors of stock and
inflation, respectively. Since the wage is stochastic, we let the instantaneous mean of the wage to be up (¢, r (1)) =r(t) + u,, where my, is a
real constant.

3. Methodology

3.1. Hamilton-Jacobi-Bellman (HJB) equation

Suppose, we represent u = (up,us) as the strategy and we define the utility attained by the contributor from a given state y at time ¢ as
Gu(t,rr,y) = E, V(X (T)) | rr (1) = rg,Y (t) =], G.D

where 7 is the time, rg is the real interest rate and y is the wealth. Our interest here is to find the optimal value function
G(t,rr,y) =supGy(t, rr,y)
u

and the optimal strategy u* = (up*,ug*) such that

Gu*(tyrRay) G(termy)‘
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3.2. Legendre transformation

The nonlinear partial differential equation obtained in (3.1) above is transformed into a linear partial differential equation, using the Legendre
transform method and Dual theory.

Theorem 3.1. [12] Let f: R" — R be a convex function for z > 0, define the Legendre transform
L(z) = max{f (y) ~ 2y}, (32)

where L(z) is the Legendre dual of f(y). Suppose, f(y) is strictly convex, then the supremum (3.2) would be attained at one point, denoted
by yo (i.e, the sup. exist). We write

L(z) = sup, {f(y) =2y} = f (vo) —2y0
By Theorem 3.1 and the assumption of convexity of the value function G(¢,rg,y), we define the Legendre transform

G(t,rg,2) =sup G(t,rg,y) —2y |0 <y < oo} 0<t<T. (3.3)
y>0

Where z > 0 denotes the dual variable to y and G is the dual function of G.
The value of y where this optimum is attained is denoted by h (¢,r,z), so that

h(t,rg,z) = ig(f)y | G(t,rr,y) > 2y +G(t,rr,2)} 0<t<T. (3.4)
y

from (3.4), we see that the function / and G are closely related, hence we write either of them as dual of G. To see this relationship,
G(t,rR,z) =G (t,rg,h) —zh.
where
h(t,rg,z) =y, Gy =z, and relating Gtohbyh=—G,.
Replicating the idea in (3.3) and (3.4), above, we define the Legendre transform of the utility function U (y), at terminal time, thus

U(z) =supyg U (x) —zx |0 < x < oo},

where z > 0 denotes the dual variable to y, and U is the dual of U.
Similarly, the value of y where this optimum is attained is denoted by G(z), such that

G(z) =supy=0{w|Ux) >zx+U(z)}.

Consequently, we have

where G is the inverse of the marginal utility U.
Since i (T,rg,y) = U (y), then at the terminal time, 7', we can define

h(T,rk,2) = inf {3 U (v) > y+h(T,rg,2)}
y

and

h(T,rg,z) =sup{ U (y) — 2y}
y>0

so that

h(T,rg,z) = (U (2). (3.5)
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4. Model formulation

Here, the contributions are continuously paid into the pension fund at the rate of KP(r) where K is the mandatory rate of contribution. Let
W (t) denote the wealth of pension fund at time r € [0,7]. up (t) and ug (¢) represent the proportion of the pension fund invested in the bond
and the stock respectively. This implies that the proportion of the pension fund invested in the risk-free asset uc (t) = 1 — up (t) — ug (¢). The
dynamics of the pension wealth is given by

ds (1)
S(t)

dW (t) = ucW (1) dc) +upW (t) w +usW (t) (¢)dt 4.1)

C()
Substituting (1), (2.1) and (2.2) in (4.1) we have

AW (1) =W (1) [rR (1) + 616yu + (/11 o+ Aol 9,) us] di +KP(t)dt +W (1) (jup + 6! sus)dWy (1) + W (1)0* usdWs (1) (4.2)

Let the relative wealth (¢)rbe defined as follows

y@:%% @3)

Applying product rule and Ito’s formula to (4.3) and making use of (2.3) and (4.2) we arrive at the following equation

1 1 1
dy(t) = Y() {r(r) — U+ (cssp)2 + (Glp)2+ [(116%4—/1261501) - Eolso’p - Ecssosp} us -+ (6191— Eoyolp) uB}dt

+ Kdi+Y(1) <61u3 +olug— o ,,) AW +Y (1) (0*sus— 6° ) AW, Y(0) = W(0)/P(0)
Simplifying,
dY (t) = X (c| + couts + c3ug)dt + Kdt +Y (1) (GIuB +olug—o! ,,) AWy (1) + Y (¢) (0% sus — 0 ) dWs (1), (4.4)

where

c1 =g ()= pp+(0°,) 2+ (o)

' 1 1
= (ll Gbs%»AzG’SQ[) — EGISOJP — EGASGAP

1 1
=076 — EG[G P

The Hamilton-Jacobi-Bellman (HJB) equation associated with (4.4) is

{)’(Cl +uscr + MBC3)Gy +KGy

+32[((o1us + o' sus — ) 4.5)

1
G+ (a—brg) G, + 26rR2G,RrR+sup{ P
u

+ (0% ug — GSP)Z}GW =0 }

where G;, Gy, Grzry , Gy and Gyy, are partial derivatives of first and second orders with respect to time, real interest rate, and relative wealth.
Differentiating (4.5) with respect to up and ug, we obtain the first-order maximizing conditions for the optimal strategies up™* and ug* , thus

3Gy +yoy (c,ug* +olugt — o ,,) Gy =0 (4.6)

e2Gy+x0l <0'1uB* +olgug* — G’p> Gy +y0%s (6°5us™ — 6%) Gyy =0 4.7

Solving (4.6) and (4.7) simultaneously we have

Lo olse3 —cr01 Gy N o*p0ls+0°,0% — ol 0l “8)
s = 2 2 :
(o) oy Gy (%)
1 I (s I s _ I I I 0
ug* = o'p 05(0°p0s+0°p0%s—0,0) o'(0sc3—c0) Gy 3 Gy 4.9)
o1 (c%)%01 (055)%y Gy or%y Gy,

Substituting (4.8) and (4.9) into (4.5), and assuming independent and identically distributed volatility scale of salary for stock and inflation
(.e., Glp c°p), we have

G,+(afer)GrR + %O'rR Grorg + (
(29] (61 ) — 66! pt+P2+pPs

+y(3p5+p1)) Gy
\? ' 4.10
)G*‘ +33%p3 = 10
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p1 = 3(0",)? +216%067 5016 + A2 (0'5)2 0,701 — 4105067 s0101 ), — S 2x(6)? 610707,
—1(cl5)? 610167, %GSSGI,,G’SO'IGIJr%(G’ )2(0" )01+ § o (o" V2o!lio;

2
Aal(ol) 060, | Ahol,66l,  Oh(cl) (ol (o],) e
s 2 ) 2056107,  Oia(0 ) P s
+Ai0 pt (o°,) + o’y (0%,) 207, Up
py = 11000y _ 2ol A’ (a’ )i ha(o ’;)292,0',, ho'6a!, 3(cs’,v)2<c7r’p)2
- S S S S 2
26;2 o o) (0%5) , 20.; , 40°
_36/(d')c, 60,0 91 (o ,s) + 916 l] + (o'y)"(c') (0%p)"0s
2 (Gxx)z 205 (o ) 2(c* .;)2 405

I
pz:(c%)“cneﬂ—<o"v)4cﬁe,c’p+w +(0%)2(0!,)2 0,262 — (0%5)20! s0126,07
(0°)2(c') 0P (a,)  2(0',) (')

4 (G.YS>2

+20'016;067, —20%;0' 016,067, +

(c')'0? | (o')'ad’, | (o))" 20°(c')’ | o6 | oly(ali) e ali(d!,)’

PZ )t T et T eyt T @ T e T e e
kol Mol Mw'x)jeﬂ B Az(c'.fezzo’p _ Aza eza PG >2<o’2p>2 " cr'.s-2<a'p>2
o, [o2h (o_xx) (O"YJ (0— ;) [
3 4 4 3 2
_ (O-,S) GIGIOJP - 2(613) 61612 + (O-IS) GIOJPGI N (GIS) GI(OJP) +20 20. (GI ) —0 ( ) o 0.
ps = 2 2 2 Y. Iy /s T
(0%5) (o%5) (0%5) (0%5)
(Glp)z(GIs)zGI s I 142 2 s I I s I 1 1\2 I
+ — —20°,0'50101A1 —2(0"5)“ 010" Ay + 0°50" 40716,0" , + 6° ;0" 507010 yA1 + (0 5) 010" , 226,
2 1 \2 s I 1 \2 1 1
(6l5) oi1(6!,)”  o%50'501(07)) , A 2Xhole6l,
— > — 5 72635'},20' 5916 P+ T

with G (T,rgy,) = U(y).
Applying Legendre transform to (4.10), we have

1

A _ N P 1 B 21 N2 24
G+ (a—brg(t)) Gre + 5 0" Grerg HK +y(5p +P1)IZ— (2675 (0%p ) — 610 p+p2+ps | Z°C:

2 GZZ -
o1 :1%( Ip) +A 08 y61y6191+7tz( ) 61 G[ QLIG so! vcslcr ,,—fk ( ) 91616
G Y)2 6,010! ), — Lo*s0! yo! Ycr,é)l—o— g )2(62’,,) o1+ 10°%(cls)?0l o1 + A 0%,
L ha(0l) 00!, | 080!,  bik(o )’(c!y)?  (a!))’0, —u
(G‘.,.)2 o2 (o-xl‘_>2 o p
py = M10lols _ 2ol %007 | h(o!)’60!, | ko',  3(c')(s!,)
2 26°%, . o, (6;3)2 (0%, o; . 40°,2
_3 91(0-15) o-lp _ 6 Glpo_ls _ e[Z(G ) + 9[0' Al + ( ) (0' ) (O-Ap) Gls
2 (Gs:)z 205 (6%)2 2(c%, )2 405
o, ‘52(c! ) . .
p3 = (61,)4016,> — (61,462 0,01 , + ( .‘) 221( 2”>2+1(02'“s)2(6113)220;127912 —(6*,)2cl 020,60,
+2015619161p 726%6180'19161]] + (0%)° (o le or’(o'y)” 2(0'(;;; ()C27 5)
ps— (c')'02 | (60’6, 4 (6"’ (c',)  26°(0") n o'sa! 6 | olp(c)’e  ols(c!,)’
(o) (00" 4(6;;)4 (6})2 (0% (0% 22 22(6‘9)2 s
L 2ol 6 Molsol, | MP(c)’6”  A(dly) 60!,  Aoli60, I a')(d')) I a's(a’))
o'y o'y (Gsi>2 (oﬁ)z o'y 4(0-;‘)2 20°%
3 4 4 3 2
(ol e80!, 2(c'5) 0162  (ol5) oi07,6,  (ol5) oi(07)) 5
ps = — T 7 2 +26%0;(c’y)* - 61(c's) 0107,
(0%) (0%) (0%) 2(o%)
1 \2(~1 )2
c oly) oy
+ @) (@) o (2 2) —20°%6! 01041 —2(0")* 016,722 + 056! ;016,07 , + 0% 0! 616107 ey + (67) 0107, A2 0
2 2 2
(GIS) O-I(Glp) GSXGISGI(O'I[)) s I I 2/120'159[(71[,
_ — —20°0':6/0' ) + —————
2 2 p o5

Differentiating equation (4.9) for G with respect to z we obtain a linear PDE in terms of / and its derivatives and using y = h = —G., we have
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1 1 1
ht+(a_br)hrR+EGrR2hrRrR —Zhy (Eps +P1) - |:k+h (EPS +pl):| -

A.11)
1 2 1 h2hh
(29125(0'1p> — 60’ JrP2+P4) <h12Z+Z2hZZ) +§P3 <2h+ P ZZ) =0
z
where
p1 = %( lp)2+110'SSGISG[91+12(0"S)291261 1116 O'[ 0'10' p 12( )ZGIO'IGIP
o s)29,o,c pf%cﬁ o! 65016/ +£(G’2)2(02’ o1+ to* (G )2o!s0;
1 1 132 1
+,0° ot A (o (63 ) o', 4 oo’ 916 p 91/12(;7&11)26 ») (0'21)(;30'3 —up
py= 21950l 2hidsolly lo’(c )’ | Ao(0!)°0", | loolibioly  3(0h)(0!,)
oS5 [ (G: ) (o, )2 [ 405
300000, 0oy 670 | g g () (ol | (%),
-2 (O-xl‘_>2 - 205 (Gs )2 2(6’.,.)2 405,
I \4 <201 \2
ps = (6')*016/” — (o!5)* 0,067, + (L) orla,) Gj (%)) +(0-As)2(61_y)220-129127 (6%)?0! ;0,206,067
s 5) o 2(o’, 1)
+201s619161p—26%6%0‘19161,;-I-( i >UI (c')’ - (Ué‘)&f;zy )
1\~492 1 39 1 IAZ 1\2 20,2 1Y2 LN 1 1529 ! (o! 2
pu= o+ S St e e e G
[ 2Mhal6 Mo'yo!, i 2201’02 Ma(0) 80!,  hol6ol, I (o' (c",)’ I o'(o',)’
o’ o’ (65;)2 (0'%)2 o’ 4(o-sv)2 207,
13 1 14 2 14 1 13 1 \2 1 \2 (1 )2
ps = (o .y();:)ezlc » 2(6(;)v 352191 n (o s()(::; P 2)(;51(; ») +26,%0(c!,)? — 91(613)20'16119-1- (6;»)(%)6: —206%,6! 01610
s s s s oy
—2(013)20'1612/12 +0%50'501010" , + 6° 506 5016,6" A1 + (675) 20167 M2 6 — (o) o(ely)” ‘;’w )
s 1 vl
70'.;0'.,.31(6 ) —26%, 4,060 ot 2126 910 » GIp =0,
uc=1—up—ug
i
o —A10% —oly0 +olol, + o, 9——
uS*: P 105 20 sU2 sO p (1 ) th (4'12)
o' )’(Gbs)
, 2 a's)’s! %0500,
.o, oyl (o ) 6, — o010, — 6205 — (o7)) 1291+( % Lt 2a0alr] Orzh;
ug® = + 3 zh, + , (4.13)
or 05,07 (o) hoy

o,=0°,
We will now solve (4.11) for / and substitute into (4.12) and (4.13) to obtain the optimal investment strategies.
5. Explicit Solution of the optimal investment strategies for The CRRA Utility Function
Assume the investor takes a power utility function
U(x):p7 p<l, p#0 5.1

The relative risk aversion of an investor with utility described in (5.1) is constant and (5.1) is a CRRA utility.
From (3.5) we have i (T,r,z) = (V')~! (z) and from (5.1), we have

h(T,rg,z) = T
We assume a solution to (4.11) with the following form
h(tr2) =g(tr) [T 4v(),  v(T)=0, g(Tys)=1.
Then

by =gz 4V, hzz—ipz(”" ), e = — 855 ) (5.2)



Fundamental Journal of Mathematics and Applications

97

1 1
s Mg = 8rp2?7 Y, Mygry = &rprg2? "

2-p)s _(5-1)

hy, = Z'p-
(1-p)*

Substituting (5.2) into (4.11), we have

8rgrgorg? g(Z+p
81+ (a—brr)gr, — %ﬂL%pl) — 5 —gp1 +
(2-p)g(2621(0",)’=6/6" +pr+ps)

(1-p)*

2
28(2671(0",) —016' p+pa+pa)
I-p

+y () =pr1y(t) = po=0
Splitting (5.3), we have
1
v (1)~ (3p5+pi)v(e) ~ k=0

2
—6,6' ) +p2+ps)

2
8rgrrorg? + sZ+p) _ gps 2226 5 (0') 610", +p2+ps)  (2-p)g(26:5 (o))
2

g+ (a—brr)gr — i—p > —8P1+ T—p (—p)

Considering the boundary condition,

yields the solution

where p3 =0, p, = 5ps +p1
Next, obtain the solution of (5.4), by assuming, a solution of the form

g(t,rR) =M(1) NORM(T) =1, N(T) =0

8re =M (ON (1) N, gy = M (1) N* () N and gy = rg (1) N' (1) MO ! (1) MO8
Substituting (5.5) into (5.4), we have
M, 12 12 ps pi 1 1
Nyrg+ — +Na— Nbrg + =Nk —N%% L T
iR+ o+ Na TR+ SNTKrR+ 5 2+2(1—p)+1—p 7Ps = 5P
2 2
2267°5(0’y)" —6i6" y +pa+ps)  (2—p) (2675 (0p)" — 6167, + P2+ pa)

_ =0,
1-p (1-p)° P

Splitting (5.6), we have

M, 172 Ps P1 1 1
ﬁ"‘Nﬂ‘FzNzk]—Fm—Fm_jp —§p12
+2<2612%(0_1p) 66"y +patps) (2-p)(26:° 1 (")) =6:6" p+p2+p4)

= (1-p) =0

1
N, —Nb+ 5Nzkl =0

Solving (5.6) and (5.7), we obtain

1
a+(a®—2kH) % k ‘r}
M(t):cle{ ( oH) e

— ¢
, €1 =€,

Ps pr 11 202026l —00l, 4 patps)  (2-p)(262L(cl,)’ — 661, +pa+ pa)

+
2(1-p) 1-p 2 2 1-p (1—p)?

where

T+ vI(t)fkf%vpsfvpl =0

=0

—5Ps—5P1+ - M(T)=1

(5.3)

54

(5.5)

(5.6)

(5.7)
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=

. at(a®—2kH) 2k ™! } Wit T)

g(rp,t) = 1 exp— IR
{ai(az—Zsz)sz’lT} 1
e

Therefore, the solution of (4.11) becomes

ai(az—Zsz)%kg I
o K e

h(zer>Z) = |
{aﬂaszzH)sz*‘T} P+

I

e

where p3 =0, p. = 5ps +p;

Theorem 5.1. Let the optimal investment strategies for cash, bond and stock be given as follows
uc* =1—up* —ug*.Then N (t) = 2b[z 1 yith dy = —b anddy =0.

Proof. Let

o) —A16% —Mhols0+0' 50!, + ol (6 — ) 1

= 22 5.8
ug o, o, b1 (5.8)
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Remark 5.1
If we let of p= =0l p = 0y = 0, the optimal strategies (5. 8) and (5.9) would be of the form of the [7]
Recall from [7], the coefficients d, d, degenerates to b and zero, in the absence of the coefficient of the CRRA (i.e, as p — 0), however,
in this work, even in the presence of the coefficient of CRRA the coefficients d, d; are already degenerate. We therefore, conclude that,
under the inflationary market, the CRRA utility function has little or no effect on the investment strategy.
The associated optimal investment strategy for a logarithmic utility function, as p — 0 is given by
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6. Discussion and conclusion

6.1. Discussion

From Proposition 5.1, we deduced that in the absence of inflation, proportions of the pension wealth invested in stock and bond would be at
least at minimal returns, and the optimal investment strategy, with CRRA utility function, would be constant. From (5.10) and (5.11), we
observe that the optimal investment process is lumped with a lot of inflation radicals. More so, from remark 5.1, we discovered that the
CRRA utility function does not have much effect on inflation and its effect on wealth investment. From the analysis, we see that the returns
on investment of the pension wealth will reduce drastically, therefore, the contributor require the extra measure to dampen the effect of
inflation on the investment strategy. From this analysis, we deduce also that the more the returns on optimal investment degenerates, which is
as a result of inflation-affected optimal investment strategy, the more the price of stock becomes non-increasing, then the need for more
wealth investment in both stock and bond becomes necessary, in order to recover for the lost times, and pull down the price of stock, hence
the need for an amortization fund by the plan member becomes necessary.
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6.2. Conclusion

The optimal investment strategy for a prospective investor in a DC pension scheme, under the inflationary market, with stochastic salary,
under the affine interest rate model has been studied. Relevant to this work, the CRRA utility function was used and we obtained the optimal
investment strategies for cash, bond and stock using the Legendre transform and dual theory. More so, the effects of inflation parameters and
the coefficient of CRRA utility function were analyzed, with insignificant input on the investment strategy. We conclude, therefore, inflation
has significant negative effect on optimal investment strategy, particularly, the CRRA utility function is not constant with the investment
strategy.

6.3. Recommendation

From the result obtained in this work, we recommend the investigation of the effect of extra contribution on optimal investment strategy, in
DC pension scheme, under inflationary market.
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