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ON EXISTENCE OF CANONICAL SCREENS FOR
COISOTROPIC SUBMANIFOLDS
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Abstract. In this paper we study coisotropic lightlike submanifolds of a semi-
Riemannian manifold. For a large variety of this class of submanifolds, we
prove two theorems on the existence of integrable canonical screen distribution
and canonical null transversal bundle subject to some reasonable geometric
conditions.

1. Introduction

Let (M, g) be a m-dimensional submanifold of an (m + n)-dimensional semi-
Riemannian manifold (M̄, ḡ) of a constant non-zero index q. Suppose the induced
metric g on M is non-degenerate. Define

(1.1) TM⊥ =
{
V ∈ Γ(TM̄) : g(V, W ) = 0, ∀W ∈ Γ(TM̄)

}

the normal bundle subspace of M in M̄ . Following is the orthogonal complementary
decomposition:

(1.2) TM̄ = TM ⊕ TM⊥, TM ∩ TM⊥ = {0}.
Here, both the tangent and the normal bundle subspaces are non-degenerate and
any vector field of TM̄ splits uniquely into a component tangent to M and a
component perpendicular to M . Now let g degenerate on M . Then, there exists a
vector field ξ 6= 0 of M such that

(1.3) g(ξ, X) = 0, ∀X ∈ Γ(TM).

The radical space (O’Neill [17, page 53]) of TxM , at each point x ∈ M , is a subspace
Rad TxM defined by

(1.4) RadTxM = {ξ ∈ TxM : gx(ξ, X) = 0, ∀X ∈ TxM} .

M is called a lightlike submanifold of M̄ [9]. We follow [9] for the notations and
the results used in this paper. Suppose dim(Rad TxM) = r 6= 0. Comparing (1.1)
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with (1.4) with respect to degenerate g and any null vector being perpendicular to
itself implies that TxM⊥ is also null and

(1.5) Rad TxM = TxM ∩ TxM⊥.

Thus, for a lightlike submanifold M , (1.2) does not hold because TM and TM⊥

have a non-trivial intersection and their sum is not the whole of tangent bundle
space TM̄ . In other words, a vector of TxM̄ cannot be decomposed uniquely into
a component tangent to TxM and a component of TxM⊥. Therefore, the standard
text-book definition of the second fundamental form and the Gauss-Wiengarten
formulas do not work, in the usual way, for the lightlike case.

To deal with this anomaly, lightlike manifolds have been studied by several ways
corresponding to their use in a given problem. Indeed, see Akivis-Goldberg [1], Bon-
nor [5], IIyenko[10], Israel [11, 12], Katsuno [14], Leistner [15], Nurowski-Robinson
[16], Penrose [18], Perlick [19], Rosca [20], and more referred in these papers. In
1991, Bejancu-Duggal [3] introduced a general geometric technique of using a non-
degenerate screen distribution S(TM) to deal with the above anomaly for lightlike
hypersurfaces (also applicable for a general submanifold). Based on this specific
technique of using a screen distribution, we have the following:

TM = Rad TM ⊕orth S(TM).(1.6)
TM̄ |M = TM ⊕ tr(TM) TM ∩ tr(TM) = {0}(1.7)

= S(TM) ⊥ S(TM)⊥(1.8)

where tr(TM) is a complementary (but never orthogonal) transversal vector bundle
to TM in TM̄ |M , S(TM)⊥ is non-degenerate of rank 2n and RadTM is its vector
subbundle. The submanifold (M, g, S(TM)) is called r-lightlike or coisotropic [13]
according as Rad TM ⊂ TM⊥ or Rad TM = TM⊥. In the later case, r = n <
m. Unfortunately, due to the degenerate metric g, an arbitrary screen S(TM)
is not unique and, therefore, the induced objects of the submanifold depend on
its choice that creates a problem. Thus, it is reasonable to look for a canonical
screen in lightlike geometry. First paper on the existence of a canonical screen
distribution for lightlike hypersurfaces was published by Bejancu [2] in 1993. Since
then considerable work has been done on this problem and now there are a large
classes of lightlike hypersurfaces of semi-Riemannian manifolds with the choice of
a canonical screen distribution (see a review article [7] with extensive upto-date
references and three papers [1, 4, 6] on follow up work), in some cases subject to a
reasonable geometric condition.

Continuing our study in this direction, the objective of this paper is to show that
there exist canonical distributions for a large variety of coisotropic submanifolds of
semi-Riemannian manifolds. In section 2 we recall Gauss and Weingarten type
equations and find the transformation equations with respect to a change in the
screen distribution. Section 3 contains proofs of two theorems on the existence of
canonical screen distributions.

2. Screen transformation equations

Let (M, g, S(TM)) be a coisotropic lightlike submanifold of (M̄, ḡ). Then, Rad TM =
TM⊥ and S(TM⊥) = {0}. There exists a local quasi-orthonormal field of frames
of M̄ along M :

(2.1) {ξ1, ..., ξn, N1, ..., Nn, Wn+1, ..., Wm}
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where {ξ1, ..., ξn} is a null basis of Γ (Rad TM), {N1, ..., Nn} a null basis of the
transversal bundle tr(TM) and {Wn+1, ..., Wm} orthonormal basis of Γ (S(TM))|U)
respectively. Moreover,

(2.2) ḡ(Ni, ξj) = δij , for any i, j ∈ {1, . . . , n}.

Denote by P the projection of TM on the screen distribution S(TM) with respect
to the decomposition (1.6). Suppose ∇̄ and ∇ are the Levi - Civita connection on
M̄ and a linear connection on M . Following are the Gauss and Weingarten type
equations [13]:

∇̄XY = ∇XY +
n∑

i=1

hi (X, Y ) Ni,(2.3)

∇̄XNi = −ANi
X +

n∑

j=1

τij (X) Nj ,(2.4)

∇XPY = ∇∗XPY +
n∑

i=1

h∗i (X, PY ) ξi,(2.5)

∇Xξi = −Aξi X −
n∑

j=1

τij(X) ξj , ∀X , Y ∈ Γ (TM),(2.6)

for every i = 1, . . . , n. Here hi are the second fundamental forms of M with respect
to the normals Ni, ANi are their respective shape operators and τij are 1-forms on
M . Also h∗i are the second fundamental forms of S(TM) with respect to Rad TM ,
Aξi are the respective shape operators of the screen distribution and ∇∗ is the
metric connection on S(TM). Moreover,

hi(X, ξi) = 0, ḡ(hi(X, PY ), ξi) = g(Aξi X, PY ),(2.7)
ḡ(h∗i (X, PY ), Ni) = ḡ(ANiX, PY ), ∀X, Y ∈ Γ (TM).(2.8)

Suppose a screen S(TM) changes to another screen S(TM)′, where

{ξ1, ..., ξn, N ′
1, ..., N ′

n, W ′
n+1, ..., W ′

m}
is another quasi-orthonormal field of frames for the same set of null sections {ξ1, . . . , ξn}.
Following are the transformation equations due to this change (see details in [9,
pages 164-165]).

W ′
a =

m−n∑

b =1

Ab
a

(
Wb − εb

n∑

i=1

f ib ξi

)
,(2.9)

N ′
i = Ni +

n∑

j=1

Nijξj +
m−n∑
a =1

fiaWa,(2.10)

with the conditions

(2.11) 2Nii = −
m−n∑
a=1

εa(fia)2, Nij + Nji +
m−n∑
a=1

εafiafja = 0, ∀i 6= j.
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h′i(X,Y ) = hi(X,Y ), ∀X , Y ∈ Γ (TM),(2.12)

∇′XPY = ∇XPY −
n∑

j=1

(
n∑

i=1

hi(X, PY )Nij

)
ξj

−
m−n∑
a=1

(
n∑

i=1

hi(X, PY )fia

)
Wa.(2.13)

Lemma 2.1. The second fundamental forms h∗i and h′∗i of the screen distribu-
tions S(TM) and S(TM)′ respectively are related as follows:

h′∗i (X, PY ) = h∗i (X, PY ) +
1
2
||Zi||2hi(X, PY ) + g(∇XPY, Zi)

−
∑

j 6=i

{g(Zj ,Zj)−Nij}hj(X, PY )(2.14)

for a fixed i and j summed from 1 to n and each Zi =
∑m−n

a=1 fia Wa are n charac-
teristic vector fields of the screen change.

Proof. Using (2.13) and then (2.10) we obtain

ḡ(∇′XPY,N ′
i) = ḡ(∇XPY, Ni) + ḡ(∇XPY,

m−n∑
a =1

fiaWa)

−
n∑

j=1

(
n∑

i=1

hi(X, PY )Nij

)
ḡ(ξj , Ni)

−g

(
m−n∑
a=1

(
n∑

i=1

hi(X,PY )fia

)
Wa,

m−n∑
a =1

fiaWa

)
.

Hence, we get

ḡ(∇′XPY, N ′
i) = ḡ(∇XPY,Ni) + ḡ(∇XPY,Zi)

−hi(X, PY )(Nii +
m−n∑
a =1

f2
ia)

−
n∑

i 6=j

hj(X, Y )[Nji +
m−n∑
a =1

fiafja].

Thus, from (2.11) we get

ḡ(∇′XPY, N ′
i) = ḡ(∇XPY,Ni) + ḡ(∇XPY,Zi)

−hi(X, PY )(−1
2
‖ Zi ‖2 +

m−n∑
a =1

f2
ia)

−
n∑

i 6=j

hj(X, Y )Nij .

Finally, using (2.5) we get (2.14).
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3. Existence theorems for canonical screen

We show that there are two classes (labeled as class A and class B) of
coisotropic submanifolds which admit integrable canonical screen distributions. Let
ωi be the respective n dual 1-forms of the characteristic vector fields Zi given by

(3.1) ωi(X) = g(X,Zi), ∀X ∈ Γ(TM),

where 1 ≤ i ≤ n. Denote by S the first derivative of a screen distribution S(TM)
given by

(3.2) S(x) = span{[X, Y ]x, Xx, Yx ∈ S(TM), x ∈ M},
where [, ] is the Lie-bracket. S(TM) integrable implies that S ⊆ S(TM).

Class A1. Consider a complementary vector bundle F of Rad TM in S(TM)⊥

and choose a basis {Vi}, i ∈ {1, . . . , n} of Γ(F|U ). Thus the sections we are looking
for are expressed as follows

(3.3) Ni =
n∑

k = 1

{Ai k ξk + Bi k Vk} ,

where Ai k and Bi k are smooth functions on U . Then {Ni} satisfy (2.2) if and only
if

∑n
k = 1 Bi k ḡj k = δi j , where ḡj k = ḡ(ξj , Vk ), j, k ∈ {1, . . . , n}. Observe that

G = det [ḡj k] is everywhere non-zero on U , otherwise S(TM)⊥ would be degen-
erate at least at a point of U . Assume that F is parallel along the tangent direction.

Theorem 3.1. Let (M, g, S(TM), F ) be a coisotropic submanifold of a semi-
Riemannian manifold M̄ such that the complementary vector bundle F of RadTM
in S(TM)⊥ is parallel along the tangent direction. Then,

(a) any choice of a screen distribution is integrable and
(b) all the n-forms ωi in (3.1) vanish identically on the first derivative S given

by (3.2).
(c) If S coincides with S(TM), then, there exist n null sections {ξ1, . . . , ξn} of

Γ(RadTM) with respect to which S(TM) is a canonical screen distribution,
up to an orthogonal transformation with a canonical set {N1, . . . , Nn} of
null transversal vector bundles and the screen fundamental forms h∗i are
independent of a screen distribution.

Proof. Taking covariant derivative of Ni (given by (3.3)) with respect to X ∈
Γ(TM), we get

∇̄XNi =
n∑

k=1

{X(Aik)ξk + Aik∇̄Xξk + X(Bik)Vk + Bik∇̄XVk}.

Using (2.3), (2.4) and (2.6), we obtain

ANiX =
n∑

k=1



(AikA∗ξk

X −Aik)ξk +
n∑

j=1

τkj(X)ξj + X(Bik)Vk + Bik∇̄XVk





+
n∑

j=1

τij(X)Nj .

1suggested by Bayram Sahin, Inonu University, Turkey
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Since F is parallel, ∇̄XVk ∈ Γ(F ). Thus for Y ∈ Γ(S(TM)), we get

g(ANi
X,Y ) =

n∑

k=1

Aikg(A∗ξk
X, Y ).

Then using (2.8) we get

(3.4) ḡ(h∗i (X,Y ), Ni) =
r∑

k=1

Aikḡ(hi(X, Y ), ξk).

Since the right side of (3.4) is symmetric, it follows that each h∗i is symmetric
on S(TM). This [9, theorem 2.5, page 161] implies that any choice of S(TM) is
integrable. Thus, (a) holds. Choose an integrable screen S(TM). Thus, S is a
subbundle of S(TM). Now using (3.4) in (2.14) and hi = h′i, we obtain

g(∇XPY,Zi) =
∑

i 6=j

hj(X,PY )[Nji + g(Zi,Zj)]

+
1
2
hi(X,PY ) ‖ Zi ‖2,(3.5)

∀X, Y ∈ Γ(TM|U ) and for each fixed i. Since the right hand side of (3.5) is symmet-
ric in X and Y , we have g([X, Y ],Zi) = ωi([X, Y ]) = 0, ∀X, Y ∈ Γ(S(TM)|U ), that
is, ωi vanishes on S. Similarly, repeating n-times above steps for each i we claim
that each ωi vanishes on S which proves (b). If we take S = S(TM), then, each ωi

vanish on this choice of S(TM) which implies that all the n characteristic vector
fields Zi vanish. Therefore, all the functions fia vanish. Finally, substituting this
data in (2.10) and (2.11) it is easy to see that all the functions Nij also vanish. Thus,
the Eqs. (2.9), (2.10) and (2.14) become W ′

a =
∑m−n

b =1 Ab
aWb (1 ≤ a ≤ m − n),

N ′
i = Ni and h′∗i = h∗i where (Ab

a) is an orthogonal matrix of S(TM) at any point
x ∈ M . Therefore, S(TM) is a canonical screen up to an orthogonal transformation
with canonical transversal vector fields Ni and the screen fundamental forms h∗i are
independent of a screen distribution. This completes the proof.

Class B2. It is known that the second fundamental forms and their respective
shape operators of a non-degenerate submanifold are related by means of the metric
tensor. Contrary to this we see from Eqs. (2.7) and (2.8) that there are interre-
lations between the second fundamental forms of the lightlike M and its screen
distribution and their respective shape operators. This interrelation indicates that
the lightlike geometry depends on a choice of screen distribution. While we know
from Eq. (2.12) that the second fundamental forms of the lightlike M are inde-
pendent of a screen, the same is not true for the fundamental forms of S(TM)
(see Eq. (2.14), which is the root of non-uniqueness anomaly in the lightlike ge-
ometry. Since, in general, it is impossible to remove this anomaly, we consider a
family of coisotropic submanifolds M such that the fundamental forms of the screen
distribution S(TM) are related with the fundamental forms of M as follows:

(3.6) h∗i (X, PY ) = ϕihi(X, Y ), ∀X, Y, Γ(TM |U ), i ∈ {1, . . . , n},
where each ϕi is a conformal smooth function on U in M . To avoid trivial ambi-
guities, we will consider U to be connected and maximal in the sense that there is
no larger domain U ′ ⊃ U on which Eq. (3.6) holds.

2A particular case (n = 2) of this class appeared in [8]
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The motivation for the geometric condition (3.6) comes from the classical geome-
try of non-degenerate submanifolds for which there are only one type of fundamental
forms with their one type of respective shape operators. Using above we prove the
following existence theorem:

Theorem 3.2. Let (Mm, g, S(TM)) be a coisotropic submanifold of a semi-
Riemannian manifold M̄m+n such that (3.6) holds. Then all the assertions from
(a) through (c) of the theorem 3.1 will hold.

Proof. Substituting (3.6) in (2.8) and then using (2.7) we get

(3.7) g(ANiX, PY ) = ϕig(AξiX, PY ) ∀X ∈ Γ(TM|U ).

Since each Aξi
is symmetric with respect to g, Eq. (3.7) implies that each ANi

is self-
adjoint on Γ(ST (M)) with respect to g, which further follows from [9, theorem 2.5,
page 161] that any choice of a screen distribution is integrable. Using (3.6) in (2.14)
and h′i = hi we obtain

g(∇XPY,Zi) =
1
2
||Zi||2hi(X, PY )

+
∑

j 6=i

{g(Zj ,Zj)−Nji}hj(X, PY )(3.8)

Then the rest of the proof is similar to the proof of Theorem 3.1.

Example. Let M be a co-isotropic submanifold of R5
2, given by

x2 = (x2
3 + x2

5)
1
2 , x4 = x1, x3 > 0, x5 > 0.

S(TM) = span{W = x5 ∂ x2 + x2 ∂ x5}
Rad(TM) = span{ξ1 = ∂ x1 + ∂ x4, ξ2 = x2 ∂ x2 + x3 ∂ x3 + x5 ∂ x5}

tr(TM) = span{N1 =
1
2
(−∂ x1 + ∂ x4), N2 =

1
2x2

3

{−x2 ∂ x2 + x3 ∂ x3 − x5 ∂ x5}}.
Then, by direct calculations, we get

∇̄ξ1W = 0, ∇̄ξ2W = W, ∇̄ξ1ξ2 = 0, ∇̄W W = x2 ∂ x2 + x5 ∂ x5.

Using Gauss formula, we obtain

∇W W =
1
2
ξ2, h∗1(W,W ) = 0, h∗1(ξ1,W ) = h∗2(ξ1, W ) = 0,

h∗1(ξ2,W ) = h∗2(ξ2,W ) = h2(ξ, W ) = h2(ξ2,W ) = 0, h1 = 0.

and
h2(W,W ) = −(x2

3), h∗2(W,W ) =
1
2
.

Thus, M belongs to class B co-isotropic submanifolds with conformal functions ϕ1

(arbitrary) and ϕ2 = − 1
2x2

3
. Therefore, theorem 3.2 holds.

Remark. It follows from above two theorems that the geometric condition of
parallel F or Eq. (3.6) provide an integrable screen distribution, which is the root
requirement for a coisotropic submanifold to admit a canonical screen. We also
know that, in general, the induced Ricci tensor of any lightlike submanifold is not
symmetric. Since a symmetric induced Ricci tensor is also a desirable property,
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fortunately, it is known [13] that
“A totally umbilical coisotropic submanifold M of a semi- Riemannian manifold

(M̄(c), ḡ) of a constant curvature c admits an integrable screen distribution if and
only if the Ricci tensor on M is symmetric”.

Consequently, a large class of totally umbilical coisotropic lightlike submanifolds
of (M̄(c), ḡ) are candidates for the existence of a canonical screen distribution and
an induced symmetric Ricci tensor.

Based on above, the results of this paper can be used to introduce the concept
of an induced scalar curvature for coisotropic submanifolds. For a similar study on
scalar curvature for lightlike hypersurfaces of Lorentzian manifolds, see [6].
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