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Abstract  

A review of literature covering the past decade indicates a shortage of cluster-randomized trials (CRTs) in 

education and psychology in Turkey, the gold standard that is capable of producing high-quality evidence for 

high-stake decision making when individual randomization is not feasible. Scarcity of CRTs is not only 
detrimental to collective knowledge on the effectiveness of interventions but also hinders efficient design of such 

studies as prior information is at best incomplete or unavailable. In this illustration, we demonstrate how to 

estimate variance parameters from existing data and transform them into standardized forms so that they can be 

used in planning sufficiently powered CRTs. The illustration uses publicly available software and guides 

researchers step by step via introducing statistical models, defining parameters, relating them to notations in 

statistical models and power formulas, and estimating variance parameters. Finally, we provide example 

statistical power and minimum required sample size calculations.   

 

Key Words: cluster-randomized trials, variance estimation, statistical power analysis, minimum required sample 

size.  

 

INTRODUCTION  

Cluster randomized trials (CRTs) are experimental designs where subjects are not assigned to 
treatment conditions independently but rather as a group. There has been an increasing interest in 

CRTs over the past decade in educational research (Spybrook, Shi, & Kelcey, 2016). Merely using 

“CRT” as a searching keyword, more than 1000 articles related to CRTs are found in educational 

research area in the academic journals on the Web of Science database. Although CRTs are not as 
efficient as individual-randomized trials, the nature of an intervention may warrant assignment of 

clusters (groups of individuals) to treatment conditions. There are a couple of reasons for this. First, it 

may be more viable to implement an intervention at the cluster level. Second, using existing clusters 
can be highly beneficial in terms of cost reduction and implementation convenience. Third, it may not 

be ethical to deprive some subjects from the intervention within the same organization. For example, 

providing some students with a promising intervention while excluding others from the study could 
be considered an unfair practice in education. Furthermore, CRTs can reduce the risk of treatment 

contamination that might occur if individuals in the same organization were to be randomized to 

treatment conditions. 

However, compared to individual-randomized trials, CRTs are more complicated to design, need more 
participants to obtain similar statistical power, and anticipated statistical analyses are more 

complicated (Hayes & Moulton, 2017). Statistical methods that ignore clustering might produce 

misleading results, because they assume that all subjects, regardless of which clusters they come from, 
provide independent observations. In education settings, the assumption of independent observations 

is often violated as a result of contextual effects. For example, observations may not be independent 
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from each other because students in the same classroom have an experienced teacher or collaboration 
among them is encouraged. Similarly, students and teachers within the same school share resources 

such as library or laboratory that differ from other schools, which may have similar contextual effect. 

Applying methods that ignore clustering (e.g. ordinary least squares) in such cases can prompt 
confidence intervals that are excessively narrow and yield p-values that are very small (Bland, 2004). 

In the case of experimental designs, narrower confidence intervals and smaller p-values can misguide 

researchers as they may indicate significant differences when, in fact, there is actually none.  

There are different ways of addressing clustering depending on statistical methodology and sampling 
scheme. One solution is to make inferences based on cluster-robust standard errors (e.g. Cameron & 

Miller, 2015). If results pertain to a specific subpopulation consisting of a few clusters and not to be 

generalized, another alternative is to include cluster membership as fixed effects in the statistical model 
along with the treatment indicator. Nonetheless, applying Hierarchical Linear Models (HLM, 

Raudenbush & Bryk, 2002) is more common in education. Even if researchers can use cluster-robust 

standard errors, or depending on the sampling scheme, use fixed effects estimation method, it is not 

straightforward to decompose variance to within and between clusters, a strategy we will use 
throughout this guide to estimate and standardize variance parameters. Therefore, in parallel with 

studies in education effectiveness research we adopt HLM formulation.  

By the same token, when planning studies that have similar nesting structure (student within classroom 
within schools) contextual effects should be taken into consideration, as power analysis procedures 

rely on the standard error of the estimate. There are various studies that have derived approximate 

standard error formulas with which a researcher can estimate power rate ahead of an experimental 
study (a priori power analysis) given sample size and other characteristics (e.g., Bloom, 1995; Bloom, 

2006; Bloom, Bos, & Lee, 1999; Dong & Maynard, 2013; Hedges & Rhoads, 2010; Konstantopoulos, 

2009a, 2009b).  

Despite the increasing trend in the use of CRTs across many education systems and countries around 
the world, our review of literature in the past decade indicates a shortage in educational and 

psychological research in Turkey. Also, statistical power analysis in existing studies are either absent 

or have not considered nesting structure of the sample. We examined 174 experimental studies in 
education field published in Turkish journals on the Ulakbim Tubitak Journal Park Database to see 

whether they report power analysis procedure to determine effective sample size. Although none of 

the experiments utilized CRT, none of the authors reported power analysis procedure either. As a 
result, in these papers, results mostly suffer from small sample size where the experiment possibly 

could not detect a significant treatment effect when in fact there was.   

One particular issue with a priori power analysis is that variance parameters used in the approximate 

formulas are not known. Other parameters needed for power calculations either have commonly 
accepted standards or does not need estimation or require extensive methodological expertise. For 

example, standard practice in educational research is to keep power rate at 80%, have type I error rate 

of 5%, and to conduct two-tailed hypothesis testing of the treatment effect (Dong & Maynard, 2013). 
Moreover, sample size information (e.g., the average number of students per school) can be obtained 

from administrative records or calculated via descriptive statistics. 

While there is an emerging body of literature reporting standardized variance parameters from existing 

data (e.g., Hedberg & Hedges, 2014; Hedberg, 2016; Hedges & Hedberg, 2013; Spybrook, Westine, 
& Taylor, 2016; Westine, 2016; Westine, Spybrook, & Taylor, 2014; Zopluoglu, 2012), the majority 

of which focuses on K-12 academic outcomes within the United States, results may not apply to other 

subjects, grades, or geographical areas. Variance parameters are often sample and subject specific and 
should be obtained either from prior research in the literature or empirical data, preferably as close as 

possible to the geographical area of interest, and as similar as possible to the subject under scrutiny. 

Thus, estimation and standardization of variance parameters from earlier research of the same kind 

become an indispensable tool to researchers, especially where there is little or no prior information.   
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Purpose of the Study 

The purpose of this study is to guide researchers in education and psychology toward planning efficient 
CRTs in light of little or no prior knowledge. Specifically, the study aims to provide readers with a 

short tutorial on estimating variance parameters from existing data using HLM, standardizing them in 

terms of well-known variance parameters such intra-class correlation coefficients and R-squared 
values, and using standardized parameters in statistical power and minimum required sample size 

calculations for planning CRTs. 

 

METHOD 

We provide models for two- and three-level CRTs in HLM and mixed-model forms and define 

parameters as in Dong and Maynard (2013). We also illustrate how to estimate treatment effect and 

obtain variance parameters via lme4 (Bates, Maechler, Bolker, & Walker, 2015) library in the R 

environment (R Core Team, 2019). Finally, we use estimated variance parameters (unstandardized) to 

calculate some of the standardized design parameters (i.e., intra-class correlation coefficients and R-

squared values) and use them in statistical power analysis via PowerUpR (Bulus, Dong, Kelcey, & 

Spybrook, 2019). In most instances using two libraries in the R environment will be sufficient to 

analyze and plan CRTs, however, depending on the complexity of the task, researchers can use any 

other preferred software or platform.  

Ideally, results from a CRT should be informative with respect to variation in the outcome, explanatory 

power of covariates, and the treatment effect, which can be obtained via several statistical models. 

Minimally sufficient models that can inform researchers in both planning and analysis of CRTs are 
null and full models. Null model (also known as unconditional model) can be used to get a sense of 

unconditional variation in the outcome (i.e., dependent variable), whereas full model can be used to 

estimate both the treatment effect and conditional variation in the outcome. Null and full models for 

two- and three-level CRTs are described below.  

 

Two-level CRTs 

Null Model to Estimate Unconditional Variation  

The following unconditional model can be used to obtain variance parameters 𝜎2 and 𝜏2 as defined 

below, which will be used to calculate standardized variance parameters along with parameters from 

full model.  

HLM formulation: 

Level 1:  𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑟𝑖𝑗    

Level 2: 𝛽0𝑗 = 𝛾00 + 𝜇0𝑗  

 
Mixed model formulation: 

𝑌𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑟𝑖𝑗  

 

where 𝑟𝑖𝑗 and 𝜇0𝑗  are level 1 and level 2 residuals, following normal distributions as 𝑟𝑖𝑗~𝑁(0, 𝜎2) and 

𝜇0𝑗~𝑁(0, 𝜏2), respectively. Thus, 𝜎2 and 𝜏2 are variances in the outcome between level 1 and level 2 

units, respectively. 𝑌𝑖𝑗 is level 1 outcome of interest for subject 𝑖 in cluster 𝑗, 𝛽0𝑗  is level 1 intercept 

(in this case, the mean of subjects in cluster 𝑗), 𝛾00 is level 2 intercept (in this case, the mean of all 

subjects in all clusters - grand mean).  
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Full Model to Estimate Treatment Effect and Conditional Variation 

The following model can be used to obtain variance parameters 𝜎|𝑋
2  and 𝜏|𝑊

2  as defined below, which 

are used to calculate standardized variance parameters along with parameters from unconditional 

model.  

HLM formulation: 

Level 1:  𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑟𝑖𝑗    

Level 2: 𝛽0𝑗 = 𝛾00 + 𝛿𝑇𝑗 + 𝛾01𝑊𝑗 + 𝜇0𝑗  

  𝛽1𝑗 = 𝛾10 

 

Mixed model formulation: 

𝑌𝑖𝑗 = 𝛾00 + 𝛿𝑇𝑗 + 𝛾01𝑊𝑗 + 𝛾10𝑋𝑖𝑗 + 𝜇0𝑗 + 𝑟𝑖𝑗  

where 𝑟𝑖𝑗 and 𝜇0𝑗  are level 1 and level 2 conditional residuals, following normal distributions as 

𝑟𝑖𝑗~𝑁(0, 𝜎|𝑋
2 ) and 𝜇0𝑗~𝑁(0, 𝜏|𝑊

2 ), respectively. Thus, 𝜎|𝑋
2  and 𝜏|𝑊

2  are conditional variances in the 

outcome between level 1 and level 2 units, respectively.  𝑌𝑖𝑗 is level 1 outcome of interest for subject 

𝑖 in cluster 𝑗, 𝑋𝑖𝑗 is level 1 covariate for subject 𝑖 in cluster 𝑗, 𝑇𝑗  is treatment condition (1 if cluster 𝑗 

assigned to the treatment, 0 if not) and 𝑊𝑗 is level 2 covariate for cluster 𝑗, 𝛽0𝑗  is level 1 intercept, 𝛾00 

is level 2 intercept, 𝛿 is the treatment effect, 𝛽1𝑗  or 𝛾10 is regression weight for level 1 covariate 𝑋𝑖𝑗, 

𝛾01 is regression weight for level 2 covariate 𝑊𝑗. 

We can calculate standardized variance parameters based on unstandardized variance parameters from 

unconditional and full models. 𝜌 = 𝜏2/(𝜏2 + 𝜎2) represents proportion of variance in the outcome 

between level 2 units (also referred to as intra-class correlation coefficient in the literature),  𝑅1
2 = 1 −

𝜎|𝑋
2 /𝜎2 is proportion of variance in the outcome explained by level 1 covariates, 𝑅2

2 = 1 − 𝜏|𝑊
2 /𝜏2 is 

proportion of variance in the outcome explained by level 2 covariates. The treatment effect can also 

be standardized in the form of Cohen’s d as 𝛿∗ = 𝛿/√𝜏2 + 𝜎2, hereafter often referred to as effect 

size. 

In the full model, we can get an estimate for the treatment effect and the associated 𝑡 statistics. The 
hypothesis of “there is a treatment effect” is tested against the null hypothesis of “there is no treatment 

effect”. By comparing the 𝑡 statistics from the full model to the critical 𝑡 value given Type I error rate 

(𝛼, probability of detecting treatment effect when in fact there is none in the underlying population), 

we can inspect whether results can be explained beyond chance factor. Similarly, knowing 𝑡 statistics, 

we can have an idea about Type II error rate (𝛽, probability of detecting no treatment effect when in 

fact there is an effect in the underlying population). In practice we are interested in the probability of 

detecting a treatment effect when in fact there is an effect in the underlying population, and that is 

statistical power (1 − 𝛽). To calculate statistical power, we can use 𝑡 statistics after an experiment, 
although it may not be useful, as the experiment has already been completed. However, we can plan 

for an experiment such that sample size will likely produce adequate statistical power had it been 

repeated many times. To calculate statistical power prior to an experiment, we need some information 
from earlier studies; an estimate of what would be a meaningful treatment effect (often set as 0.20 or 

0.25 in education, but may be increased if there is sufficient evidence that earlier interventions 

produced large treatment effects) and its standard error. 
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Standard Error Formula under Balanced Sample Size and Homogenous Variance 

Assuming that level 1 variances are equal across 𝐽 number of level 2 units, and level 1 sample sizes 

are balanced (e.g., 𝑛 number of level 1 units per level 2 unit), standardized variance takes the form 

𝑉𝑎𝑟(𝛿∗) =
𝜌(1 − 𝑅2

2)

𝑝(1 − 𝑝)𝐽
+

(1 − 𝜌)(1 − 𝑅1
2)

𝑝(1 − 𝑝)𝑛𝐽
  

Standard error of the treatment effect is 𝑆𝐸(𝛿∗) = √𝑉𝑎𝑟(𝛿∗), and if we know 𝛿∗ and 𝑆𝐸(𝛿∗), we can 

calculate 𝑡 statistics with which statistical power can be calculated. 𝛿∗/𝑆𝐸(𝛿∗) follows 𝑡 distribution 

with 𝐽 − 𝑔 − 2 degrees of freedom where 𝑔 is number of covariates added at level 2 (Bloom, 2006, p. 

17; Dong & Maynard, 2013, p. 51). Statistical power (1 − 𝛽) for two-tailed hypothesis testing can be 

calculated as  

1 − 𝛽 = 𝑃 (𝑡𝑑𝑓(𝜆) > 𝑡𝑑𝑓,1−𝛼/2(0)) +  𝑃 (𝑡𝑑𝑓(𝜆) < 𝑡𝑑𝑓,𝛼/2(0)) 

where 𝑑𝑓 = 𝐽 − 𝑔 − 2 for the two-level CRT, 𝑡𝑑𝑓,𝛼/2(0) is the statistic associated with central 𝑡 

distribution with degrees of freedom 𝑑𝑓  and probability 𝛼/2, 𝑡𝑑𝑓(𝜆) is the statistic associated with 

non-central 𝑡 distribution with non-centrality parameter 𝜆 = 𝛿∗/𝑆𝐸(𝛿∗), degrees of freedom 𝑑𝑓, and 

𝛼 and 𝛽 are Type I and Type II error rates (see, Hedges & Rhoads, 2010; Moerbeek & Safarkhani, 

2018). In what follows we will demonstrate how to estimate variance parameters and how to calculate 

parameters needed in 𝑉𝑎𝑟(𝛿∗) formula.  

 

Estimation and Standardization of Treatment Effect and Variance Components 

If not pre-installed, lme4 and PowerUpR libraries should be installed in the R environment using 

install.packages(c("lme4", "PowerUpR")) command. They can be loaded into the current 

R session using library(lme4) and library(PowerUpR) commands. 

In order to demonstrate variance estimation procedure in R, considering education settings, we 

simulate a simple two-level CRT data named CRT2 which has 2,000 students across 100 schools (20 

students per school). The data include five variables; school identification numbers (schid), a level 1 

outcome variable (outcome), a level 2 treatment variable (treatment), a level 1 covariate (covx), 

and a level 2 covariate (covw). Number of level 1 or level 2 covariates will not change analysis strategy 

very much. Outcome is continuous and can be considered as any of the achievement indicator for a 
particular subject – such as mathematics, science, or reading scores. The treatment can be any 

intervention that aims at increasing student achievement scores such as a science, technology, 

engineering, and mathematics (STEM) program. Level 1 and level 2 covariates can be student pretest 

score and average school-level pretest score. First a few lines of the simulated data is printed below. 

Each school has a unique identification number (schid). Since schools are assigned to treatment 

conditions, the same school identification numbers will have the same values for treatment variable 

(treatment). Level 1 (students) and level 2 (schools) covariates (covx and covw) follows standard 

normal distributions, and outcome (outcome) is a linear function of these covariates with some level 

1 and level 2 noise added (See data generation mechanism in Appendix A). From this point forward, 

R scripts are within shaded boxes. Along with code chunks, comments begin with ## -- and outputs 

begin with ##. 
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First, we estimate variance parameters for unconditional model to calculate the intra-class correlation 

coefficient. The output includes variance for two random effects indicating variation in the outcome 

that is between school means (tau2) and that is between students (sigma2). Sum of the two is roughly 

same as variance of the outcome. Thus, proportion of variance in the outcome that is between schools, 

also known as intra-class correlation (rho2), can be calculated.  

 

 

 

Next, we estimate variance parameters for the full model to calculate R-squared values along with 

variance parameters from unconditional model.  The output, again, includes variances for two random 

effects indicating conditional variation in the outcome that is between schools (tau2w) and students 

(sigma2x) beyond what is explained by level 2 and level 1 predictors. As some of the variation 

between schools and students are explained by level 2 and level 1 predictors respectively, note that 

variance components are reduced compared to the null model. Using proportion of reduction in the 

variance for level 2 and level 1, we can calculate R-squared values for each (r21 and r22).   

head(CRT2) 

##   schid treatment    outcome        covx      covw 

## 1     1         0 -0.7145407 -0.37560287 0.2533185 

## 2     1         0  0.2411899 -0.56187636 0.2533185 

## 3     1         0 -0.8423327 -0.34391723 0.2533185 

## 4     1         0 -0.9780591  0.09049665 0.2533185 

## 5     1         0  3.2965023  1.59850877 0.2533185 

## 6     1         0  1.7267023 -0.08856511 0.2533185 

 

## -- install.packages(c("lme4", "PowerUpR")) 

library(lme4) # for estimation 

library(PowerUpR) # for power analysis 

 

## -- null model (unconditional model) 

null.model <- lmer(outcome ~ (1 | schid), data = CRT2) 

print(VarCorr(null.model), comp = "Variance") 

##  Groups   Name        Variance 

##  schid    (Intercept) 1.2253   

##  Residual             1.9601 

## -- variance parameters 

tau2 <- 1.2253 

sigma2 <- 1.9601 

 

## -- intra-class correlation coefficient 

rho2 <- tau2 / (tau2 + sigma2) 

round(rho2, 2) 

## [1] 0.38 
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We can also extract and standardize the treatment effect (delta) by the variance of the outcome in 

the form of Cohen’s d (es). In this way, the effect is comparable to previous literature, can be 

compared to in future studies, and also be used in statistical power analysis procedures, if needed.  

 

 

 

Statistical Power and Minimum Required Sample Size Calculations 

Before we find statistical power and minimum required sample size, there are a few things to clarify. 

Earlier, we estimated and standardized variance parameters so that we can use them in power analysis 
procedures, however, there are other parameters needed, most of which are either have commonly 

accepted standards or known (or can be obtained via simple procedures that does not require 

methodological expertise). In education research, it is common to find power for an effect size (es) of 

0.20 or 0.25, have a Type I error rate (alpha) of .05, and assume a two-tailed (two.tailed) 

hypothesis testing. Other way around, when the interest is in finding minimum required sample size, 

additionally, the power rate is assumed to be 80%. Furthermore, assigning half of the schools to 

treatment group (p) produces optimal power rate or optimal minimum required sample size (note that 

𝑝(1 − 𝑝) in the denominator of standard error formula is maximum when 𝑝 = .50).  In our case, we 

## -- full model 

full.model <- lmer(outcome ~ treatment + covx + covw + (1 | schid), 

data = CRT2) 

print(VarCorr(full.model), comp = "Variance") 

##  Groups   Name        Variance 

##  schid    (Intercept) 0.85332  

##  Residual             0.98335 

## -- variance parameters 

tau2w <- 0.8533 

sigma2x <- 0.9834 

 

## -- R-squared values for level 1 and level 2 

r21 <- 1 - (sigma2x / sigma2) 

r22 <- 1 - (tau2w / tau2) 

round(r21, 2) 

## [1] 0.5 

round(r22, 2) 

## [1] 0.3 

 

## -- treatment effect  

coef(summary(full.model))["treatment",] 

##   Estimate Std. Error    t value  

##  0.9849094  0.1930537  5.1017374 

delta <- 0.9849 

es <- delta / sqrt(sigma2 + tau2) 

round(es, 2) 

## [1] 0.55 
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know there are 20 students per school (n), and 100 schools (J) in total. Now we can calculate statistical 

power as 

 

 

where, in addition to parameters defined earlier, g2 is the number of covariates added at level 2. 

Parameters obtained from the data produce a power rate of 46.3%, which means if we repeat this 

experiment for a large number of times, we will detect a statistically significant treatment effect 46.3% 

of the time, if in fact there is an effect in the underlying population. This is under recommended 
benchmark power rate of 80% in power analysis literature. In other words, this is worse than flipping 

a coin in order to decide whether or not an intervention would be effective.  Figure 1 demonstrates 

how far we are from the benchmark power rate. By visual inspection, it seems a sample consisting of 

somewhere between 200 to 250 schools is capable of producing results with 80% power rate.  

 

 

 

 
 
Figure 1. Statistical Power as a Function of Number of Schools for Two-level CRT Example 

## -- power analysis 

design <- power.cra2r2(es = .20, alpha = .05, two.tailed = TRUE, 

                       rho2 = .38, r21 = .50, g2 = 1, r22 = .30, 

                       p = .50, n = 20, J = 100) 

##  

## Statistical power:  

## ---------------------------------------  

##  0.463  

## ---------------------------------------  

## Degrees of freedom: 97 

## Standardized standard error: 0.106 

## Type I error rate: 0.05 

## Type II error rate: 0.537 

## Two-tailed test: TRUE 

 

plot(design, ypar = "power", locate = TRUE, xlim = c(50, 250)) 
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Precise number of schools to detect an effect size of 0.20 with 80% power rate can be found via 
calculating minimum required number of schools in PowerUpR (script below) or PowerUp! (Figure 

2) as 

 

 

 

Model 3.1:  Sample Size Calculator for 2-Level Cluster Random Assignment Design 

(CRA2_2_)— Treatment at Level 2 

Assumptions   Comments 

MRES = MDES 0.20 MRES = MDES 

Alpha Level (α) 0.05 Probability of a Type I error 

Two-tailed or One-tailed 
Test? 

2   

Power (1-β) 0.80 Statistical power (1-probability of a Type II error) 

Rho (ICC) 0.38 Proportion of variance in outcome that is between clusters 

n (Average Cluster Size) 20  
Mean number of Level 1 units per Level 2 cluster (harmonic 
mean recommended) 

Sample Retention Rate:  
Level 2 units 

100% Proportion of Level 2 units retained in analysis sample 

Sample Retention Rate:  
Level 1 units 

100% Proportion of Level 1 units retained in analysis sample 

P 0.500 Proportion of  sample  randomized to treatment: JT / (JT + JC) 

R1
2 0.500 

Proportion of variance in Level 1 outcome explained by Level 1 
covariates  

R2
2 0.300 

Proportion of variance in Level 2 outcome explained by Level 2 
covariates 

g* 1  Number of Level 2 covariates  

Priori-M (Multiplier) 2.81  Computed from Priori-T1 and Priori-T2 

M (Multiplier) 2.81  Automatically computed  

J (Sample Size  [Clusters #]) 223 Number of clusters needed for given MRES 

 
 

 

    

Note: The parameters in yellow cells need to be specified. Then click "RUN" to calculate sample size. 
 

Figure 2. Minimum Required Number of Schools for Two-level CRT Example 

 

With a sample similar to what we have in terms of average of number of students per school (𝑛 = 20), 

intra-class correlation coefficient (𝜌 = .38), explanatory power of covariates at level 1 (𝑅1
2 = .50), 

and at level 2 (𝑅2
2 = .30), we need at least 223 schools to detect an effect size of 0.20 with a power 

rate of 80% and type I error rate of 5% for a two-tailed hypothesis testing of the treatment effect. 

Explanatory Power of Covariates 

# -- minimum required sample size 

mrss.cra2r2(power = .80, es = .20, alpha = .05, two.tailed = TRUE, 

            rho2 = .38, r21 = .50, g2 = 1, r22 = .30, 

            p = .50, n = 20) 

## J = 223 
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Researchers often have control over sample size to increase power rate prior to implementing a two-
level CRT. However, in some cases, sampling more units is not feasible or induces prohibitive cost. 

In this case, explanatory power of covariates for a level can be increased via collecting more 

information, which in turn improves the power rate. The question naturally comes to mind is whether 
to collect more information on level 1 or level 2 units. To address this question, we demonstrate to 

what extent changes in 𝑅1
2 or 𝑅2

2 lead to changes in variance for treatment effect via taking first 

derivative of 𝑉𝑎𝑟(𝛿∗) with respect to 𝑅1
2 or 𝑅2

2. What becomes apparent is that changes in 𝑉𝑎𝑟(𝛿∗) 

occur in the opposite direction with changes in 𝑅1
2 or 𝑅2

2 (note negative signs). This means if we 

increase 𝑅1
2 or 𝑅2

2 this will reduce 𝑉𝑎𝑟(𝛿∗), which in turn improves power rate. 

𝜕𝑉𝑎𝑟(𝛿∗)

𝜕𝑅2
2 = −

𝜌

𝑝(1 − 𝑝)𝐽
 

 

𝜕𝑉𝑎𝑟(𝛿∗)

𝜕𝑅1
2 = −

(1 − 𝜌)

𝑝(1 − 𝑝)𝑛𝐽
 

Due to limited resources, researchers may favor collecting information on a level that reduces 𝑉𝑎𝑟(𝛿∗) 

comparably more. In this case, increasing 𝑅2
2 reduces the variance (𝜌𝑛)/(1 − 𝜌) times more compared 

to the reduction induced by increasing 𝑅1
2 by the same amount (obtained from the ratio of the two 

derivatives).  Therefore, focusing on increasing explanatory power of covariates at level 2 is a more 

efficient strategy. 

For example, for the two-level CRT example, increasing 𝑅2
2 from .40 to .50 (.10 increment) reduces 

variance from 0.01126 to 0.00974 (a reduction of 0.00152), which, in turn, increases power rate from 

46.3% to 51.9%. However, increasing 𝑅1
2 from .30 to .40 (.10 increment) marginally reduces variance 

from 0.01126 to 0.011136 (a reduction of 0.000124), which, in turn, increases power rate marginally 

from 46.3% to 46.7%. The ratio of variance reductions is precisely what one would obtain if they use 

(𝜌𝑛)/(1 − 𝜌) formula, which is 12.26. This means increasing 𝑅2
2 by .10 reduces variance 12.26 times 

more compared to the variance reduction induced by increasing 𝑅1
2 by the same amount.  

 

Three-level CRTs 

Null Model to Estimate Unconditional Variation 

The following unconditional model can be used to obtain variance parameters 𝜎2, 𝜏2
2 and 𝜏3

2 as defined 
below, which will be used to calculate standardized variance parameters along with parameters from 

the full model.  

HLM formulation: 

Level 1:  𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝑟𝑖𝑗𝑘     

Level 2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝜇0𝑗𝑘  

Level 3: 𝛾00𝑘 = 𝜉000 + ϛ00k, 

 

Mixed model formulation: 

𝑌𝑖𝑗𝑘 = 𝜉000 + ϛ00k + 𝜇0𝑗𝑘 + 𝑟𝑖𝑗𝑘  

where 𝑟𝑖𝑗𝑘, 𝜇0𝑗𝑘, and ϛ00k are level 1, level 2, and level 3 residuals, following normal distributions as 

𝑟𝑖𝑗𝑘~𝑁(0, 𝜎2), 𝜇0𝑗𝑘~𝑁(0, 𝜏2
2), and ϛ00k~𝑁(0, 𝜏3

2), respectively. Thus, 𝜎2, 𝜏2
2 and 𝜏3

2 are variances in 

the outcome between level 1, level 2 and level 3 units, respectively. 𝛽0𝑗𝑘  is level 1 intercept (in this 

case, mean of subjects in sub-cluster 𝑗 and cluster 𝑘), 𝛾00𝑘  is level 2 intercept (in this case, mean of 

subjects in all sub-clusters in cluster 𝑘), 𝜉000 is level 3 intercept (in this case, mean of all subjects in 

all sub-clusters in all clusters - grand mean).  
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Full Model to Estimate Treatment Effect and Conditional Variation 

The following model can be used to obtain variance parameters 𝜎|𝑋
2 , 𝜏2|𝑊

2   and 𝜏3|𝑉
2  as defined below, 

which are used to calculate standardized variance parameters along with parameters from the 

unconditional model.  

HLM formulation: 

Level 1:  𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑋𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘     

Level 2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝛾01𝑘𝑊𝑗𝑘 + 𝜇0𝑗𝑘  

  𝛽1𝑗𝑘 = 𝛾10𝑘  

Level 3: 𝛾00𝑘 = 𝜉000 + 𝛿𝑇𝑘 + 𝜉001𝑉𝑘 + ϛ00k 

  𝛾01𝑘 =  𝜉010 

𝛾10𝑘 =  𝜉100  
 

Mixed model formulation: 

𝑌𝑖𝑗𝑘 = 𝜉000 + 𝛿𝑇𝑘 + 𝜉001Vk + 𝜉010𝑊𝑗𝑘 + 𝜉100𝑋𝑖𝑗𝑘 + ϛ00k + 𝜇0𝑗𝑘 + 𝑟𝑖𝑗𝑘  

where 𝑟𝑖𝑗𝑘, 𝜇0𝑗𝑘, and ϛ00k are conditional residuals following normal distributions as  𝑟𝑖𝑗𝑘~𝑁(0, 𝜎|𝑋
2 ), 

𝜇0𝑗𝑘~𝑁(0, 𝜏2|𝑊
2 ), and ϛ00k~𝑁(0, 𝜏3|𝑊

2 ), respectively. Thus, 𝜎|𝑋
2 , 𝜏2|𝑊

2  and 𝜏3|𝑉
2  are residual variances 

at level 1, level 2 and level 3, respectively, which are not accounted for by the full model. 𝑌𝑖𝑗𝑘 is level 

1 outcome of interest for subject 𝑖 in sub-cluster 𝑗 which is in cluster 𝑘, 𝑋𝑖𝑗𝑘 is level 1 covariate for 

individual 𝑖 in sub-cluster 𝑗 which is in cluster 𝑘, 𝑊𝑗𝑘 is level 2 covariate for sub-cluster 𝑗 in cluster 𝑗,  

𝑇𝑘 is treatment condition (1 if cluster 𝑘 assigned to treatment, 0 if not), and 𝑉𝑘 is level 3 covariate. 

𝛽0𝑗𝑘 , 𝛾00𝑘 , and 𝜉000 are level 1, level 2 and level 3 intercepts, respectively. 𝛿 is the treatment effect, 

𝛽1𝑗𝑘  or 𝛾10𝑘  or 𝜉100 is regression weight for level 1 covariate 𝑋𝑖𝑗𝑘, 𝛾01𝑘  or 𝜉010 is regression weight 

for level 2 covariate 𝑊𝑗𝑘, and 𝜉001is regression weight for level 3 covariate 𝑉𝑘. 

Similar to two-level CRT case, we can calculate standardized variance parameters based on 

unstandardized variance parameters from unconditional and full models.  𝜌2 = 𝜏2
2/(𝜏3

2 + 𝜏2
2 + 𝜎2) 

and represents proportion of variance in the outcome between level 2 units, 𝜌3 = 𝜏3
2/(𝜏3

2 + 𝜏2
2 + 𝜎2) 

and represents proportion of variance in the outcome between level 3 units, 𝑅1
2 = 1 − 𝜎|𝑋

2 /𝜎2 and is 

proportion of variance in the outcome explained by level 1 covariates, 𝑅2
2 = 1 − 𝜏2|𝑊

2 /𝜏2
2 and is 

proportion of variance in the outcome explained by level 2 covariates, and 𝑅3
2 = 1 − 𝜏3|𝑉

2 /𝜏3
2 and is 

proportion of variance in the outcome explained by level 3 covariates. The treatment effect can be 

standardized in the form of Cohen’s d as 𝛿∗ = 𝛿/√𝜏3
2 + 𝜏2

2 + 𝜎2. 

 

Standard Error Formula under Balanced Sample Size and Homogenous Variance 

Assuming balanced sample sizes, that is, 𝑛 number of level 1 units per level 2 unit, 𝐽 number of level 

2 units per level 3 unit, and also assuming variance within each level 2 and level 3 unit is same across 

𝐽𝐾 number of level 2 units and 𝐾 number of level 3 units, standardized standard error takes the form  

𝑉𝑎𝑟(𝛿∗) =
𝜌3(1 − 𝑅3

2)

𝑝(1 − 𝑝)𝐾
+

𝜌2(1 − 𝑅2
2)

𝑝(1 − 𝑝)𝐽𝐾
+

(1 − 𝜌2 − 𝜌3)(1 − 𝑅1
2)

𝑝(1 − 𝑝)𝑛𝐽𝐾
 

Similar to two-level CRT, standard error of the treatment effect is 𝑆𝐸(𝛿∗) = √𝑉𝑎𝑟(𝛿∗). If we know 

𝛿∗ and 𝑆𝐸(𝛿∗) we can calculate 𝑡 statistics, and therefore statistical power can be calculated. 

𝛿∗/𝑆𝐸(𝛿∗) follows 𝑡 distribution with 𝐾 − 𝑔3 − 2 degrees of freedom where 𝑔3 is number of 
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covariates added at level 3 (Dong & Maynard, 2013, p. 52). Statistical power can be calculated as in 

the two-level CRT case.  

 

Estimation and Standardization of Treatment Effect and Variance Components 

Similar to two-level CRT case, considering education settings, we simulated a simple three-level CRT 

data named CRT3 which has 6000 students across 300 classrooms in 100 schools (20 students per 

classroom and 3 classrooms per school). The data includes seven variables; school identification 

numbers (schid), classroom identification numbers (clsid), a level 1 outcome variable (outcome),  

a level 3 treatment variable (treatment), a level 1 covariate (covx), a level 2 covariate (covw), and 

a level 3 covariate (covv). First few lines of the simulated data are printed below. Each school and 

classroom have unique identification numbers (schid and clsid). Since schools are assigned to 

treatment conditions, the same school and classrooms therein will have the same values for treatment 

variable (treatment). Level 1 (students) and level 2 (classrooms), and level 3 (schools) covariates 

(covx, covw, and covv) follow standard normal distributions, and outcome (outcome) is a linear 

function of these covariates with some level 1, level 2, and level 3 noise added (See data generation 

mechanism in Appendix A). 

 

 

 

As in two-level CRT case, first we estimate variance parameters for unconditional model to calculate 

intra-class correlation coefficients. The output includes variance for three random effects indicating 

variation in the outcome that is between school means (tau23), between classroom means (tau22) 

and that is between students (sigma2). Sum of the three is roughly same as variance of the outcome. 

Thus, proportion of variance in the outcome that is between schools and classrooms can be calculated 

(rho3 and rho2).  

head(CRT3) 

##   schid clsid treatment    outcome       covx       covw      covv 

## 1     1     1         0  3.0263592  0.5622673 -0.3756029 0.2533185 

## 2     1     1         0  1.7124732 -0.0974125 -0.3756029 0.2533185 

## 3     1     1         0  1.0353372  1.0164552 -0.3756029 0.2533185 

## 4     1     1         0 -0.8436311 -1.1561674 -0.3756029 0.2533185 

## 5     1     1         0  1.7452900  2.3208602 -0.3756029 0.2533185 

## 6     1     1         0  0.6092003 -0.6035312 -0.3756029 0.2533185 
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The output for the full model, again, includes variance for three random effects indicating conditional 

variation in the outcome that is between schools (tau23v), classrooms (tau22w) and students 

(sigma2x) beyond what is explained by level 3, level 2 and level 1 predictors, respectively. As some 

of the variation between schools, between classrooms and between students are explained by level 3, 
level 2 and level 1 variables, using proportion of reduction in the variance for level 3, level 2 and level 

1 we can calculate R-squared values for each (r23, r22 and r21).   

## -- null model (unconditional model) 

null.model <- lmer(outcome ~ (1 | schid) + (1 | clsid), data = CRT3) 

print(VarCorr(null.model), comp = "Variance") 

##  Groups   Name        Variance 

##  clsid    (Intercept) 1.2593   

##  schid    (Intercept) 0.9969   

##  Residual             1.6160 

## -- variance parameters 

tau23 <- 0.9969 

tau22 <- 1.2593 

sigma2 <- 1.6160 

 

## -- intra-class correlation coefficients for level 2 and level 3 

rho2 <- tau22 / (tau23 + tau22 + sigma2) 

rho3 <- tau23 / (tau23 + tau22 + sigma2) 

round(rho2, 2) 

## [1] 0.33 

round(rho3, 2) 

## [1] 0.26 
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Statistical Power and Minimum Required Sample Size Calculations 

Default parameters for power analysis are same as two-level CRT case. Different from two-level CRT 

case, there are 20 students per classroom (n), 3 classrooms per school (J), and 100 schools (K) in total. 

Now we can calculate statistical power as 

 

## --  full model 

full.model <- lmer(outcome~ treatment + covx + covw + covv + 

               (1 | schid) + (1 | clsid), data = CRT3) 

print(VarCorr(full.model), comp = "Variance") 

##  Groups   Name        Variance 

##  clsid    (Intercept) 1.06824  

##  schid    (Intercept) 0.71853  

##  Residual             1.00901 

## -- variance parameters 

tau23v <- 0.7185 

tau22w <- 1.0682 

sigma2x <- 1.0090 

 

## -- R-squared values for level 1, level 2 and level 3 

r21 <- 1 - (sigma2x / sigma2) 

r22 <- 1 - (tau22w / tau22) 

r23 <- 1 - (tau23v / tau23) 

round(r21, 2) 

## [1] 0.38 

round(r22, 2) 

## [1] 0.15 

round(r23, 2) 

## [1] 0.28 

## -- treatment effect  

coef(summary(full.model))["treatment",] 

##   Estimate Std. Error    t value  

##  0.9323254  0.2124156  4.3891572 

delta <- 0.9323 

es <- delta / sqrt(sigma2 + tau22 + tau22) 

round(es, 2) 

## [1] 0.46 
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where, in addition to calculated parameters above, g3 is number of covariates added at level 3. 

Parameters obtained from the data produce a power rate of 45.8%, which means if we repeat this 
experiment for a large number of times, we will detect a statistically significant treatment effect 45.8% 

of the time, if in fact there is a treatment effect in the underlying population. Figure 3 demonstrates 

how far we are from the benchmark power rate. By visual inspection, it seems a sample consisting of 

somewhere between 200 to 250 schools is capable of producing results with 80% power rate.  

 

 

 
Figure 3. Statistical Power as a Function of Number of Schools for Three-level CRT Example 

## -- power analysis 

design <- power.cra3r3(es = .20, alpha = .05, two.tailed = TRUE, 

                       rho2 = .33, rho3 = .26, 

                       r21 = .38, r22 = .15, g3 = 1, r23 = .28, 

                       p = .50, n = 20, J = 3, K = 100) 

##  

## Statistical power:  

## ---------------------------------------  

##  0.458 

## ---------------------------------------  

## Degrees of freedom: 97 

## Standardized standard error: 0.107 

## Type I error rate: 0.05 

## Type II error rate: 0.542 

## Two-tailed test: TRUE 

 

plot(design, ypar = "power", locate = TRUE, xlim = c(50, 250)) 
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To find minimum required number of schools needed to detect an effect size of 0.20 with a power rate 

of 80% we can use PowerUpR (script below) or PowerUp! (Figure 4) as 

 

 

 

Model 3.2:  Sample Size Calculator for 3-Level Cluster Random Assignment Designs 

(CRA3_3r)— Treatment at Level 3 

Assumptions   Comments 

MRES = MDES 0.20 
Minimum Relevant Effect Size = Minimum Detectable 
Effect Size 

Alpha Level (α) 0.05 Probability of Type I error 

Two-tailed or One-tailed Test? 2   

Power (1-β) 0.80 Statistical power  (1 - probability of Type II error) 

Rho3 (ICC3) 0.26 
Proportion of variance in outcome between Level 3 
units:  V3/(V1+V2+V3) 

Rho2 (ICC2) 0.33 
Proportion of variance between Level 2 units: V2/(V1 
+ V2 +  V3)  

P 0.50 Proportion of Level-3 units randomized to treatment  

R1
2 0.38 

Proportion of variance in Level 1 outcome explained by 
the Level 1 covariates  

R2
2 0.15 

Proportion of variance in Level 2 outcome explained by 
the Level 2 covariates  

R3
2 0.28 

Proportion of variance in Level 3 outcome explained by 
the Level 3 covariates 

g3* 1  Number of Level 3 covariates  

n (Average Sample Size for Level 1) 20  
Mean number of Level 1 units per Level 2 unit 
(harmonic mean recommended) 

J (Average Sample Size for Level 2) 3  
Mean number of Level 2 units per Level 3 unit 
(harmonic mean recommended) 

Priori-J (Sample Size  [Clusters #]) 226   

    Priori-T1 (for desired precision) 1.97  
Computed from given alpha Level, two-tailed or one-
tailed test 

    Priori-T2 (for desired precision) 0.84  Computed from given power Level 

Priori-M (Multiplier) 2.81  Computed from Priori-T1 and Priori-T2 

M (Multiplier) 2.81  Automatically computed  

K (Sample Size  [# of Level 3 units]) 226 Number of Level 3 clusters needed for given MDES. 

 
 

Note: The parameters in yellow cells need to be specified. Then click "RUN" to calculate sample size. 

Figure 4. Minimum Required Number of Schools for Three-level CRT Example 

 

With a sample similar to what we have in terms of average number of students per classroom (𝑛 =
20), average number of classrooms per school (𝐽 = 3),  intra-class correlation coefficients (𝜌2 = .33 

# -- minimum required sample size 

mrss.cra3r3(power = .80, es = .20, alpha = .05, two.tailed = TRUE, 

            rho2 = .33, rho3 = .26, 

            r21 = .38, r22 = .15, g3 = 1, r23 = .28, 

            p = .50, n = 20, J = 3) 

## K = 226 
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and 𝜌3 = .26 ), explanatory power of covariates at level 1 (𝑅1
2 = .38), level 2 (𝑅2

2 = .15), and at level 

3 (𝑅3
2 = .28), power analysis result suggest that we need at least 226 schools to detect an effect size 

of 0.20 with a power rate of 80% and type I error rate of 5% for a two-tailed hypothesis testing of 

treatment effect. 

 

Explanatory Power of Covariates 

Due to the same reasons and similar to two-level CRT case, one should keep in mind that it is more 

efficient to increase explanatory power of covariates via including additional covariates at the third 

level. If we take first derivative of 𝑉𝑎𝑟(𝛿∗) with respect to 𝑅1
2, 𝑅2

2, or 𝑅3
2, what becomes apparent is 

that changes in 𝑉𝑎𝑟(𝛿∗) occur in the opposite direction with changes in 𝑅1
2, 𝑅2

2, or 𝑅3
2. This means 

increase in explanatory power for any of the 𝑅1
2, 𝑅2

2, or 𝑅3
2 will reduce 𝑉𝑎𝑟(𝛿∗), which improves the 

power rate. 

𝜕𝑉𝑎𝑟(𝛿∗)

𝜕𝑅3
2 = −

𝜌3

𝑝(1 − 𝑝)𝐾
 

𝜕𝑉𝑎𝑟(𝛿∗)

𝜕𝑅2
2 = −

𝜌2

𝑝(1 − 𝑝)𝐽𝐾
 

𝜕𝑉𝑎𝑟(𝛿∗)

𝜕𝑅1
2 = −

(1 − 𝜌2 − 𝜌3)

𝑝(1 − 𝑝)𝑛𝐽𝐾
 

Comparably, increasing 𝑅3
2 reduces the variance (𝜌3𝐽)/𝜌2 times more compared to the reduction 

induced by increasing 𝑅2
2 by the same amount, and  (𝜌3𝑛𝐽)/(1 − 𝜌2 − 𝜌3) times more compared to 

the reduction induced by increasing 𝑅1
2. Therefore, focusing on increasing explanatory power of 

covariates at level 3 is a more efficient strategy.  

For example, for the three-level CRT example, increasing 𝑅3
2 from .28 to .38 (.10 increment) reduces 

variance from 0.011398 to 0.010357 (a reduction of 0.00104), which, in turn, increases power rate 

from 45.8% to 49.4%. Similarly, increasing 𝑅2
2 from .15 to .25 (.10 increment) reduces variance from 

0.011398 to 0.010957, which, in turn, increases power rate from 45.8% to 47.3%. The ratio of variance 

reductions is precisely what one would obtain if they use (𝜌3𝐽)/𝜌2 formula, which is 2.36. This means 

increasing 𝑅3
2 by .10 reduces variance 2.36 times more compared to the variance reduction induced by 

increasing 𝑅2
2 by the same amount. However, increasing 𝑅1

2 from .48 to .58 (.10 increment) reduces 
variance marginally from 0.011398 to 0.011370, which, in turn, increases power rate marginally from 

45.8% to 45.9%. Ratio of variance reductions is precisely what one would obtain if they use 

(𝜌3𝑛𝐽)/(1 − 𝜌2 − 𝜌3)  formula, which is 38. This means increasing 𝑅3
2 by .10 reduces variance 38 

times more compared to the variance reduction induced by increasing 𝑅1
2 by the same amount.  

 

DISCUSSION and CONCLUSION  

In this tutorial, we demonstrated how to analyze and plan two- and three-level CRTs. We provided 
statistical models and estimated variance parameters to further use them in statistical power analysis 

procedures. Most of the power analysis programs require specification of standardized variance 

parameters. We also demonstrated how to standardize variance parameters into intra-class correlation 

coefficients and R-squared values. This guide will potentially assist researchers in their endeavors to 
plan two- and three-level CRTs with greater precision, thus, provide reliable results to evaluators, 

stakeholders and policy makers.  

Statistical power calculations for two- and three-level CRTs can be conducted in any software program 
that allows standardized parameters as input (e.g., Optimal Design Plus, PowerUpR and PowerUp!). 
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Results from minimum required sample size (MRSS) calculations in PowerUp! and PowerUpR are 
compared to each other in nine slightly different designs (D1-D9 in Table B1) for two-level CRT, 

changing one parameter at a time. The same procedure is repeated for three-level CRT (D1-D12 in 

Table B2). Results indicate that MRSS calculations in both software programs are very much the same, 

rarely differ by one unit as a result of rounding difference in two different platforms.  

We elaborated on the explanatory power of covariates and their relation to statistical power, 

demonstrated that collecting more information on higher level units and including them in statistical 

models as covariates improve power rate substantially. In contrast, covariates added at the individual 
level improve power rate only marginally. Thus, if there are financial and practical challenges to 

sampling more clusters, an alternative strategy would be focusing on improving explanatory power of 

covariates.  

From the beginning of an intervention to the end, some clusters and individuals therein may refuse or 

discontinue participating, resulting in non-participation or attrition which deteriorates the power rate. 

Non-participation and attrition rates can also be obtained from prior research, for which minimum 

required sample size calculations can be adjusted accordingly. Thus, when analyzing existing data or 
reporting results, documenting non-participation and attrition rates will also help researchers to design 

CRTs with greater precision. One thing to keep in mind, in education context for example, is the fact 

that those students within schools cannot be oversampled while we can sample additional schools to 

adjust the sample size for non-participation or attrition.   

There are some limitations to this guide. Although we demonstrated how to estimate variance 

parameters for CRTs, there might be other practical issues a researcher needs to deal with. For 
example, there might be missing data, outliers, or assumption of linearity may not hold. Researchers 

may also need to use weights, if they would like to plan for generalizable large-scale CRTs, and they 

have access to similar large-scale data sets. Such topics require an extensive treatment and are beyond 

the scope of this guide.  
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Appendix A 

Data Generation Process 

 

Data Generating Model for Two-level CRT 

The statistical model to generate data for two-level CRT is same as the statistical model described in 

the main text. Here we provide only the mixed model formulation, which is  

𝑌𝑖𝑗 = 𝛾00 + 𝛿𝑇𝑗 + 𝛾01𝑊𝑗 + 𝛾10𝑋𝑖𝑗 + 𝜇0𝑗 + 𝑟𝑖𝑗  
where parameters are explained elsewhere in the main text. The following parameter values are used 

in the simulation, while considering 20 students per school (𝑛) and 100 schools in total (𝐽).  

𝛾00 = 0 
𝛿 = 1 

𝑇𝑗~𝐵𝐸𝑅𝑁(0.50) 

𝛾01 = 0.50 
𝑊𝑗~𝑁(0,1) 

𝛾10 = 1 
𝑋𝑖𝑗~𝑁(0,1) 
𝜇0𝑗 ~𝑁(0,1) 
𝑟𝑖𝑗~𝑁(0,1) 

 

 

 

Data Generating Model for Three-level CRT 

The mixed model formulation for three-level CRT is  

𝑌𝑖𝑗𝑘 = 𝜉000 + 𝛿𝑇𝑘 + 𝜉001Vk + 𝜉010𝑊𝑗𝑘 + 𝜉100𝑋𝑖𝑗𝑘 + ϛ00k + 𝜇0𝑗𝑘 + 𝑟𝑖𝑗𝑘  

where parameters are explained elsewhere in the main text. The following parameter values are used 

in the simulation, while considering 20 students per classroom (𝑛), 3 classrooms per school (𝐽), and 

100 schools in total (𝐾). 

𝜉000 = 0 
𝛿 = 1 

𝑇𝑘~𝐵𝐸𝑅𝑁(0.50) 
𝜉001 = 0.25 
Vk = 𝑁(0,1) 
𝜉010 = 0.50 
𝑊𝑗𝑘~𝑁(0,1) 
𝜉100 = 0.75 

set.seed(123) # for replication  

delta <- 1  

js <- 100  

ns <- rep(20, js)  

id <- as.factor(rep(1:js, ns))  

tj <- rep(rbinom(js, 1, .50), ns) 

wj <- rep(rnorm(js), ns) 

uj <- rep(rnorm(js), ns) 

xij <- rnorm(sum(ns)) 

rij <- rnorm(sum(ns)) 

yij <- delta * tj + 0.50 * wj + xij + uj + rij 

 

CRT2 <- data.frame("schid" = id, 

                   "treatment" = tj, 

                   "outcome" = yij, 

                   "covx" = xij, 

                   "covw" = wj) 
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𝑋𝑖𝑗𝑘~𝑁(0,1) 
ϛ00𝑘~𝑁(0,1) 
𝜇0𝑗𝑘~𝑁(0,1) 
𝑟𝑖𝑗𝑘~𝑁(0,1) 

 

 
 

 

set.seed(123) # for replication 

delta <- 1 

ks <- 100 

js <- rep(3, ks) 

ns <- rep(20, sum(js)) 

 

id3 <- as.factor(rep(rep(1:ks, js), ns)) 

id2 <- as.factor(rep(rep(1:sum(js), ns))) 

 

tk <- rep(rep(rbinom(ks, 1, .50), js), ns) 

vk <- rep(rep(rnorm(ks), js), ns) 

sk <- rep(rep(rnorm(ks), js), ns) 

wjk <- rep(rep(rnorm(sum(js)), ns)) 

ujk <- rep(rep(rnorm(sum(js)), ns)) 

xijk <- rnorm(sum(ns)) 

rijk <- rnorm(sum(ns)) 

yijk <- delta * tk + 0.25 * vk + 0.50 * wjk +  0.75 * xijk + sk + ujk + 

rijk 

 

CRT3 <- data.frame("schid" = id3, 

                   "clsid" = id2, 

                   "treatment" = tk, 

                   "outcome" = yijk, 

                   "covx" = xijk, 

                   "covw" = wjk, 

                   "covv" = vk) 
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Appendix B 

PowerUpR and PowerUp! Comparisons 

 

Table B1 
Comparison for Two-level CRTs 

 

Assumptions Base D1 D2 D3 D4 D5 D6 D7 D8 D9 

MRES = MDES 0.20 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Alpha Level (α) 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Two-tailed or One-tailed Test? 2 2 2 1 2 2 2 2 2 2 

Power (1-β) 0.80 0.80 0.80 0.80 0.20 0.80 0.80 0.80 0.80 0.80 

Rho (ICC) 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.40 0.40 0.40 

n (Average Cluster Size) 20  20  20  20  20  20  10  20  20  20  

P 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.30 0.50 0.50 

R1
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50 

R2
2 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.50 

J (Sample Size  [# of Level 2 units]) in PowerUp! 234 60 348 184 41 128 246 239 241 171 

J (Sample Size  [# of Level 2 units]) in PowerUpR 233 60 348 184 41 128 245 238 241 171 

Note. 𝑔 (number of covariates added at level 2) is fixed at 1 for all nine designs.  
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Table B2 
Comparison for Three-level CRTs 

 

Assumptions Base D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

MRES = MDES 0.20 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Alpha Level (α) 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Two-tailed or One-tailed Test? 2 2 2 1 2 2 2 2 2 2 2 2 2 

Power (1-β) 0.80 0.80 0.80 0.80 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Rho3 (ICC3) 0.30 0.30 0.30 0.30 0.30 0.15 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Rho2 (ICC2) 0.30 0.30 0.30 0.30 0.30 0.30 0.10 0.30 0.30 0.30 0.30 0.30 0.30 

P 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.30 0.50 0.50 0.50 0.50 0.50 

R1
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.30 0.50 0.50 0.50 0.50 

R2
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.40 0.50 0.50 0.50 

R3
2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.50 0.50 

n (Average Sample Size for Level 1) 20  20  20  20  20  20  20  20  20  20  20  10  20  

J (Average Sample Size for Level 2) 2  2  2  2  2  2  2  2  2  2  2  2  3  

K (Sample Size  [# of Level 3 units]) in PowerUp! 183 47 272 144 33 125 145 217 184 194 136 187 162 

K (Sample Size  [# of Level 3 units]) in PowerUpR 183 47 272 144 33 125 145 217 184 194 135 186 162 

Note. 𝑔3 (number of covariates added at level 3) is fixed at 1 for all 12 designs.  

 

 
 

 


